Statistical Profile Generation for Traffic Monitoring Using Real-time UAV based Video Data
|
|
|
- Iris Wilcox
- 10 years ago
- Views:
Transcription
1 Proceedig o he 5h Medierraea Coerece o Corol & Auomaio, July 27-29, 27, Ahe - Greece 34-7 Saiical Proile Geeraio or raic Moiorig Uig Real-ime UAV baed Video Daa A. Puri, K. P. Valavai ad M. Koii Deparme o CSE, Umaed Syem ab, Uiveriy o Souh Florida, ampa, F 3362 USA Abrac he eye-i-he-y aleraive o collecig real-ime emporal/paial daa uig mall umaed helicoper i propoed o: moior raic, evaluae ad ae raic paer ad provide accurae vehicle cou. Colleced real-ime viual daa are covered o raic aiical proile ad ued a coiuouly updaed ipu o exiig raic imulaio model improvig calibraio, accuracy (i erm o variable parameer value) ad uure raic predicio. Fucioaliy o imulaio model i ehaced, ad reliabiliy i improved. he propoed approach oer igiica advaage over coveioal mehod where hiorical ad oudaed daa i ued o ru poorly calibraed raic imulaio model. Keyword umaed helicoper, viual daa, raic moiorig, raic imulaio model. h l g a d l i o i, () i,, x d r o d o,d o,d Space Headway egh o ir vehicle Accepable Gap i legh Nomeclaure Average legh o vehicle Number o vehicle currely i he ewor Occupacy Flow Mea Speed o vehicle i ewor oal umber o lae ravel ime o he i h vehicle i he h lae oal ime period uder obervaio Number o vehicle i lae a ime Free low peed Spaial deiy Speed o i h vehicle i he h lae emporal deiy (Peudo-) paial-emporal deiy Widh o Virual Deecor egh o Virual Deecio Frame Number o vehicle i he h lae Origi ode Deiaio ode Number o vehicle wih origi o ad deiaio d ravel ime or vehicle wih origi o ad deiaio d I. INRODUCION Small umaed helicoper oer a ovel, viable ad co-eecive oluio o he problem o collecig paial ad emporal real-ime, dyamic, video-baed raic ewor daa. Aumig ha helicoper modelig corol ad avigaio iue have bee olved, i ha bee how ha a eam o uch mall ele-operaed / emi-auoomou umaed helicoper, each equipped wih a ully auoomou pa-il camera viio yem may be ued o: rac idividual vehicle; rac he ae movig capured vehicle; loc i a peciic vehicle dicaed by a huma operaor who view capured video daa; provide vehicle cou; moior raic over a ierecio or road egme or peciic raic ewor; evaluae ad ae raic paer, ad improve raic maageme [], [2]. Mo imporaly, uch a yem may be ued or emergecy repoe where helicoper ly o he cee o a accide ad provide viual daa o emergecy repoe eam who ca he mae imely iormed deciio. I hor, aerial vehicle are beig ued or raic daa collecio ad urveillace []. he ovel idea preeed i hi paper ocue o he ac ha colleced video daa may be icorporaed io raic imulaio model improvig real-ime raic moiorig ad corol. Video daa may be ued o evaluae raic paer over choe area, udy poible ewor ehaceme, updae ad calibrae raic imulaio model uch ha real-ime chage i a urba raic yem will be capured ad dicrepacie bewee acual/imulaed raic codiio will be miimized. he way o impleme hi idea i by coverig colleced video daa io ueul raic meaure ha ca be combied o obai eeial aiical proile or raic paer. I eece, ollowig he propoed approach, raic parameer uch a mea-peed, deiy, volume, urig raio, origi-deiaio marix, o ame a ew, may be derived accuraely ad be ued o improve predicio o raic behavior i real-ime. Emergecy repoe raegie ad corol o raic uig adapive ierecio igal corol, ramp meerig or variable meage ig ca alo be plaed ad opimized i realime. Derived parameer beig dyamically updaed may erve a ipu o commercial raic imulaio model. I i impora o emphaize ha raic imulaio model play a impora role i maagig ad evaluaig raic ewor. raic egieer rely o accurae predicio o uure raic red baed o oupu rom uch model. Hece, calibraio ad updae o hee model become a very impora ad criical cocer. Sice curre eor uch a iducive loop are uable o provide deailed daa or uch model, ad ice daa collecio ollowig coveioal echique i a highly exhauive ad ieive procedure, moly hiorical ouo-dae daa i ued or calibraio o hee model. hereore, he propoed aleraive mehod i uiied. A hi age o he reearch, he helicoper (helicoper) i (are) aumed o hover over ierecio area, or above
2 Proceedig o he 5h Medierraea Coerece o Corol & Auomaio, July 27-29, 27, Ahe - Greece 34-7 a peciic ree egme, ha i, he ource i ixed. hu, oly a cerai regio o he ewor i viible o he camera. A a laer age, muliple helicoper will ly a he ame ime o cover a wider area o he ewor. he image will be uperimpoed o obai a complee picure o he ewor. Secio II dicue relaed reearch, while Secio III ummarize o-board ad o-he-groud proceig udameal. Secio IV ocue o he geeraio o aiical proile, ad Secio V pree reul. II. REAED WORK he icreae i umber o vehicle o roadway ewor ha ecouraged rapor maageme agecie o allow ue o echology advace ad iovaive oluio o obai daa o raic red o moior ad corol raic i real-ime. Curre mehod uch a deecor embedded i paveme or peumaic ube, ad camera moued o ower have prove o be expeive ad ime-coumig. Moreover, hee mehod provide poi-baed daa ice oly a cerai poi or regio o he ewor i argeed. UAV provide he bird eye view obaiig emporal-paial daa or ewor urveillace. Saellie were iiially coidered or raic urveillace purpoe, bu he raiory aure o aellie orbi mae i diicul o obai he righ imagery o addre coiuou problem uch a raic racig [7]. Alo, cloud cover hamper good image qualiy o day wih bad weaher. Maed aircra are deemed expeive or raic urveillace udie ad are o-operaioal i evere weaher a well a poeially uae evirome due o preece ad aey cocer o operaor. Umaed helicoper o he oher had, ca ly a low aliude ad do o ivolve ri o operaor. hey may be employed or a wide rage o raporaio operaio ad plaig applicaio uch a icide repoe, moior reeway codiio, raic igal corol coordiaio, raveler iormaio, emergecy vehicle guidace, vehicle racig o ierecio, meaureme o ypical roadway uage, ad eimaio o Origi-Deiaio (OD) low [3]. O-goig reearch proec propoe echologie ha improve urveillace echique or raic maageme. ravel ime eimaio algorihm uch a Exrapolaio mehod ad Plaoo machig have bee developed baed upo meaurable poi parameer uch a volume, lae occupacy ec. image machig algorihm are ued o mach vehicle image or igaure capured a wo coecuive obervaio poi. Oher echique ue image eor o meaure raic low parameer [4], [5]. III. HARDWARE, ON-BOARD/OFF-INE PROCESSING Each helicoper i equipped wih cuom made viio yem or o-board ad o-he-groud daa proceig, pa-il camera or dyamic racig ad car-ollowig, oher eor ad miio peciic coroller or robu hoverig over ierecio ad aiged arge area. A cuom made yem i how i Figure. Helicoper lie he oe how i Figure may be ued o ly o ad hover over choe ierecio or imulaeou video daa collecio, ad o collec video daa over urace ree egme, raic corridor, or highway egme. he ued (ully ucioal) viio yem ha o-board ad o-he-groud proceig capabiliie or image abilizaio, obec exracio, localizaio, moio eimaio, groupig, ewor geomery exracio, vehicle racig ad raic paer, o op o ad i addiio o a robu helicoper corol yem. Figure. Cuom-made Umaed Helicoper wih O-board Viio yem ad coroller. Figure 2 how he diere module ivolved i he image proceig proce []. he abilizaio module overcome vibraio ihere i a VO vehicle. he moio exracio module gaher iormaio rom he Ierial Meaureme Ui (IMU) o exrac he movig obec rom he image, he coiguraio o which i relaive o he camera. he eaure exracio module i ued o elec eaure rom he image equece ha mo liely provide a much iormaio a poible, uch a edge ad lie ha ca be mached o auomobile or o he ilhouee o he road. he eaure groupig module group he eaure geeraed by he eaure exracio module o allow or cee ierpreaio. Image rom Camera IMU & GPS Daa Sabilizaio Moio Exracio Evirome Seup raic Saiic Feaure Exracio Figure 2. Bloc diagram o he image proceig module Feaure Groupig Vehicle racig o ully exploi he capabiliie o he helicoper (mobile) plaorm, he viio yem i deiged o adap o diere eviromeal eup. he eviromeal eup elecio module coai algorihm o achieve hi auomaically. he rucure coaiig he grouped eaure are raced i he vehicle racig module hrough he image equece o eimae he raecory each vehicle ollowed. Fially, he raic aiic module receive all he iormaio creaed i he yem ad cover i o aiical meaure. hi module i able o cou he oal umber o vehicle or urig vehicle a
3 Proceedig o he 5h Medierraea Coerece o Corol & Auomaio, July 27-29, 27, Ahe - Greece 34-7 ierecio baed o he eimaed vehicle raecorie ad he exraced local ewor geomery. IV. GENERAING SAISICA PROFIES Colleced video daa are exploied o obai deailed iormaio abou he raic low i geeral. Relaed raic parameer are ormulaed ad modiied baed o iormaio exraced uig aerial video daa. Figure 3 how he propoed ad uilized cocepual ramewor. he real world raic ewor bloc depic he phyical raic ewor. he gray bloc depic he uilizaio o umaed helicoper ad he o-board/ohe groud image proceig yem. raic parameer are geeraed ad ed o a raic imulaio model, which will he be ued or modelig raic codiio. Oce he model i calibraed o accommodae a curre raic paer, meaure o raegic eecivee are icorporaed o mae improved deciio i real-ime. Hiorical Daa raic model imulaio Real World raic ewor - Ieraive procedure or calibraio o raic model parameer Model raic Codiio e parameer Collec realime - raic daa uig exiig device Real-ime raic corol iormaio proviio ad emergecy corol Collec - real ime video rom UAV Cover video image io raic daa Geeraio o e parameer or raic model Opimal raegy Capaciy ad Occupacy: Capaciy o a li may be deermied baed o he pace headway ad accepable gap: d l + ( l + g ) (2) i i i hu, he oal capaciy o he li become +. Alo, he occupacy o he li uig emporal daa rom a aic image may be give a: o (3) + Figure 4. Calculaig Accepable Gap uig Viual Daa Saiical coverio ivolve placeme o virual deecor (VD) a he begiig ad ed o each li a how i Figure 5. a raic model imulaio Meaure o raegy eecivee Geeraio o raic corol, raic iormaio raegy Figure 3. Cocepual Framewor o Real-ime Video Daa Collecio ad raic Simulaio Corol Cuomized raic parameer hould ad are obaied baed o each raic ewor egme uder coideraio. Colleced raic video paial-emporal daa i real-ime provide microcopic deail o idividual vehicle. Kowledge o ime ad poiio (pace) o a vehicle allow or raecory ploig ad racig o hee vehicle. Such iormaio may be very ueul i carollowig udie. he accepable gap i a car-ollowig behavior may be calculaed baed o Figure 4. I i impora o oe ha i a dowow area he accepable gap i much maller ha elewhere, bu he idea i he ame. hu, he accepable gap i calculaed uig equaio: h l + g a () Oher raic relaed parameer may be calculaed a ollow. Figure 5. Virual Deecor o begiig ad ed o each li hee VD ac a poi deecor where each vehicle ery i recorded helpig i deermiig he pah o he vehicle. hi i ur i helpul o calculae he urig moveme ad he origi-deiaio (O-D) marix. Mea Speed o Newor Mea peed,, may be calculaed by obervig he ravel ime o idividual vehicle hrough he li: dl d l (4) i i, i i, wih d l VD 2 - VD. Flow Flow,, i give by he umber o vehicle paig hrough a cerai poi i he ewor i a give ime period ():
4 Proceedig o he 5h Medierraea Coerece o Corol & Auomaio, July 27-29, 27, Ahe - Greece 34-7 ( ( ) ( )) hereore, he dyamic occupacy o a li i deied baed o he raic low ad peed a ollow: * li o (6) Deiy Calculaig deiy o a paricular li or ewor ha prove o be very diicul give ha poi deecor are uable o eep rac o vehicle currely pree o a li. Video daa eable u o calculae deiy uig paial, emporal, a well a (peudo)-paial-emporal mehod. o calculae paial deiy, a virual deecor o widh x i placed a ay poi o he li a how i Figure 6. Figure 6. A Virual Deecor o x o calculae paial deiy he paial deiy ca be calculaed a: i i, (7) * x x i i, i i, (8) * x emporal deiy i calculaed uig a Virual Deecio Frame (VDF) a how i Figure 7. hi mehod, i ac, ue a igle ill-image a oe ime ad calculae he vehicle pree iide he VDF. (5) Uig a VDF o legh d r, he equaio or emporal deiy become: d r (Peudo-) Spaial-emporal Deiy Baed o he wo calculaed meaureme, he paialemporal deiy may be obaied by repeaig he procedure over a ime period. hu, emporal deiy i calculaed or each ime ui or a period o ime (or example: oe hour), ad he average deiy, ca be calculaed a:, d r d * d r (9) d () urig Moveme/Origi-Deiaio I i eeial or raic plaer o ow a eimae o umber o vehicle paig hrough a ierecio. I i alo eceary o ow he raio o urig vehicle (le, hrough or righ) or igal imig ad corol purpoe. Preely, urig moveme are calculaed uig maual cou oly. hi raio ca however be calculaed by racig every idividual vehicle hrough a ierecio, uig he racig algorihm. A meioed earlier, VD are aiged a ar ad ed poi o li. Each vehicle i he ewor i agged wih i ideiy umber, id, ime o arrival ad poiio a each VD i goe hrough. For example, Figure 5 depic a ierecio wih eigh VD o record he moveme o vehicle. A vehicle ha eer he ewor hrough VD ad ur le will be aiged he pah VD -VD 2 -VD 7 -VD 8 ad o o. hu, o id he urig moveme or all vehicle wih ag VD 2, he pah o each vehicle mu be checed. hu, he urig moveme will be give by he raio VD 2 VD 7 :VD 2 VD 3 :VD 2 VD 6. OD marix i eeial o aalyze he ravel behavior or a give ewor. OD udie are beeicial or obervig raic paer, a hey are idicaive o he driver preerred pah rom a peciic origi o a peciic deiaio. Vehicle will be alo raced rom he mome hey eer he ewor uil hey leave i a how i Figure 8. Figure 8. A ewor wih muliple OD ode Figure 7. A Virual Deecio Frame o calculae emporal deiy Each ode ac a boh a origi ad a deiaio. Whe a vehicle eer he ewor hrough a ode, i ge agged by i ource o origi. I pah i ollowed, ad
5 Proceedig o he 5h Medierraea Coerece o Corol & Auomaio, July 27-29, 27, Ahe - Greece 34-7 ially whe i leave he ewor, i ge aiged wih he deiaio poi. ravel ime o each vehicle or every OD pair will be oberved ad abulaed. Aumig o,d be he umber o vehicle wih origi o ad deiaio d. Figure 9 how a iaiaio o a OD marix ha ca be ormed rom Figure 8. Same ype o able ca ued o repree he ravel ime o,d or vehicle o eer ad exi he ewor. evirome; or he experimeer ca maually place he box o he deired deecio regio. I i criical ha he boxe do o overlap he ame regio o iere, ad he ame vehicle hould o be coued by boh he VD. Sill, here ca be excepio whe a vehicle rie o chage lae i he deecio zoe. Figure illurae how hee deecor are implemeed baed o he propoed approach. he colored boxe how VD or diere lae. I may be oed ha becaue o iabiliy acor o he helicoper, hee boxe eem o be hied acro he lae i igure. hi lead o oe vehicle beig coued by wo deecor, which lead o vehicle cou error. Furher image abilizaio will produce much beer ad accurae reul. Figure 9. OD Marix or mall ewor I cae o large ewor, each origi or deiaio ode or a zoe will be coidered a a ceroid o he zoe [6]. Wih curre echology, eimaig hi ceroid poi i o accurae. Wih help o aerial daa, i will be eaier o accuraely calculae ceroid o he zoe baed o deiy o he zoe. Delay Delay i a very impora compoe o raic behavior. A ewor wih miimum delay implie a ree low ewor wih low ravel ime. Delay ca be eiher recurre (due o boleec, pea-hour) or emporal (due o a icide/accide ec). Delay ca be accoued due o icreaed occupacy o he ewor which lead o peed lower ha ree low peed. I i raher very hard o calculae delay uig coveioal mehod o loop deecor. Coiderig ha every vehicle i recorded or ime ad poiio hrough he ewor, delay may be calculaed a: * d d Delay i i, i i, i i, () Figure. Colored boxe how implemeaio o virual deecor i he image proceig echique. Sychro i ued o imulae a raic ewor o he USF campu. Newor geomery wa validaed uig he Google Earh oware, while pecial aeio wa paid o urig lae. Volume calculaed rom he obaied daa are ipu o he imulaio model. Figure pree he real raic ewor buil uig Sychro 6. Depedig o applicaio, oher releva parameer may be deied ad meaured / eimaed. V. RESUS AND RECOMMENDAIONS Saiical proile geeraed uig he previouly derived equaio erve a ipu io imulaio model o updae he raic parameer i real-ime. Such procedure lead o beer ad opimized reul rom hee model, which will improve he accuracy o imulaed reul a well a dimiih dicrepacie bewee oberved ad imulaed raic daa. Virual deecor are implemeed a colored boxe i he image proceig algorihm. Each lae ha i ow correpodig box, which i repoible or deecig every vehicle paig hrough i. he boxe ca be eiher auomaically placed aer he yem recogize he road Figure. he USF campu ewor uig Sychro Daa wa colleced uig a umaed helicoper wih a ully auoomou pa-il viio yem wih oe camera moued o he helicoper hoverig over he ierecio o Alumi Dr. ad eroy Colli Drive i he morig hour rom 7: AM o 8: AM. Cou/volume were exraced ad ipu io Sychro o updae he raic behavior. Figure 2 how he volume, average peed, ad urig moveme o he oberved area.
6 Proceedig o he 5h Medierraea Coerece o Corol & Auomaio, July 27-29, 27, Ahe - Greece 34-7 Volume Speed Volume 7.am 7.am 7.2am 7.3am 7.4am 7.5am ime Eaboud Weboud Norhboud Souhboud Average Speed 7.am 7.am 7.2am 7.3am 7.4am 7.5am ime urig Moveme (Eaboud raic) 4 2 Number o 8 Vehicle am 7.am 7.2am 7.3am 7.4am 7.5am ime urig Moveme (Weboud raic) 2 8 Number o 6 Vehicle am 7.am 7.2am 7.3am 7.4am 7.5am ime EB EB EBR WB WB WBR NB NB NBR SB SB EBR EB EB WBR WB WB I ca be oberved ha he raic ollow a cerai red depedig o he direcio o ravel. Sice he daa i or oly oe hour (due o limiaio o lyig ime), ad cover oly oe ierecio, maor deviaio i raic are o oiceable. hough, i ha o be poied ou, ha hi eor i o how ha impora iormaio ca be exraced ou rom readily available video daa. I he uure, he lyig ime ad he obervable area ca be icreaed maively. Fuure wor eed o be doe wih muliple helicoper hoverig o diere ierecio collecig daa imulaeouly. he combied daa eed o be ipu io he imulaio model o geerae a overall proile o he raic ewor. Alo, wor eed o be doe o calculaig aiic whe he helicoper i i a movig ae, ha i, he image ource i alo movig. Acowledgeme: hi reearch ha bee parially uppored by a ARO Gra W9NF-6--69, a SPAWAR Gra N39-6-C- 62, ad a Hillborough Cou Gra he auhor would alo lie o ha Dr. P-S. i or hi comme. REFERENCES [] P.-S. i, A. Puri,. Hage, ad K. Valavai, Auoomou raormaio o video image daa rom UAV io raic iormaio or imulaio model calibraio, 3 h IS World Cogre, odo, Ocober 26. [2] A. Puri, K. Valavai, ad M. Koii, Geeraig raic Saiical Proile Uig Umaed Helicoper-Baed Video Daa, o appear i IEEE I. Co. o Roboic ad Auomaio, April 27. [3] B. Coima, M. McCord, R. Mihalai ad K. Redmill, Surace raporaio urveillace rom umaed aerial vehicle, Proceedig 83 rd Aual Meeig o he raporaio Reearch Board, Ja 24. [4] Z. Yi, F. Yag, H.X. iu, ad B. Ra, Uig Image Seor o Meaure Real-ime raic Flow Parameer, 24 RB Aual Meeig. [5] M.Y. Siyal, ad M. Fahy, Real-ime Meaureme o raic Queue Parameer by Uig Image Proceig echique, 5 h I. Co. o Image Proceig ad i Applicaio, 995. [6] Y. Shei, Urba raporaio Newor: Equilibrium Aalyi wih Mahemaical Programmig Mehod, Preice Hall, NJ. [7] D.W. Murphy, he Air Mobile Groud Securiy ad Surveillace Syem (AMGSS), Proc. O h Aual ADPA Securiy echology Sympoium, 994. Figure 2. Volume, Average Speed ad urig moveme o Alumi Dr. ad erroy Colli Dr.
Design of an Optimized Intelligent Controller of Electromechanical System in Aerospace Application
Deig of a Opimized Iellige Coroller of Elecromechaical Syem i Aeropace Applicaio Tribei Praad Baerjee, Swagaam Da, Ajih Abraham 2, 3 Dep. of Elecroic ad Telecommuicaio Egieerig, Jadavpur Uiveriy, Kolkaa
Introduction to Hypothesis Testing
Iroducio o Hyohei Teig Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw
FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND
FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND by Wachareepor Chaimogkol Naioal Isiue of Developme Admiisraio, Bagkok, Thailad Email: [email protected] ad Chuaip Tasahi Kig Mogku's Isiue of Techology
Bullwhip Effect Measure When Supply Chain Demand is Forecasting
J. Basic. Appl. Sci. Res., (4)47-43, 01 01, TexRoad Publicaio ISSN 090-4304 Joural of Basic ad Applied Scieific Research www.exroad.com Bullwhip Effec Measure Whe Supply Chai emad is Forecasig Ayub Rahimzadeh
Highly Reliable Two-Dimensional RAID Arrays for Archival Storage
Highly Reliable Two-Dimeioal RAID Array for Archival Sorage Jeha-Fraçoi Pâri Comuer Sciece De. Uiveriy of Houo Houo, TX 77- [email protected] Thoma Schwarz, S. J. Deo. de Iformáica y Ciecia de la Comuació U.
CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING
CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING Q.1 Defie a lease. How does i differ from a hire purchase ad isalme sale? Wha are he cash flow cosequeces of a lease? Illusrae.
http://www.ejournalofscience.org Monitoring of Network Traffic based on Queuing Theory
VOL., NO., November ISSN XXXX-XXXX ARN Joural of Sciece a Techology - ARN Jourals. All righs reserve. hp://www.ejouralofsciece.org Moiorig of Newor Traffic base o Queuig Theory S. Saha Ray,. Sahoo Naioal
Reaction Rates. Example. Chemical Kinetics. Chemical Kinetics Chapter 12. Example Concentration Data. Page 1
Page Chemical Kieics Chaper O decomposiio i a isec O decomposiio caalyzed by MO Chemical Kieics I is o eough o udersad he soichiomery ad hermodyamics of a reacio; we also mus udersad he facors ha gover
Ranking of mutually exclusive investment projects how cash flow differences can solve the ranking problem
Chrisia Kalhoefer (Egyp) Ivesme Maageme ad Fiacial Iovaios, Volume 7, Issue 2, 2 Rakig of muually exclusive ivesme projecs how cash flow differeces ca solve he rakig problem bsrac The discussio abou he
3. Cost of equity. Cost of Debt. WACC.
Corporae Fiace [09-0345] 3. Cos o equiy. Cos o Deb. WACC. Cash lows Forecass Cash lows or equiyholders ad debors Cash lows or equiyholders Ecoomic Value Value o capial (equiy ad deb) - radiioal approach
Mechanical Vibrations Chapter 4
Mechaical Vibraios Chaper 4 Peer Aviabile Mechaical Egieerig Deparme Uiversiy of Massachuses Lowell 22.457 Mechaical Vibraios - Chaper 4 1 Dr. Peer Aviabile Modal Aalysis & Corols Laboraory Impulse Exciaio
Experience and Innovation
AC Servo Drives Sigma-5 Large Capaciy EN DE Coe 2 Abou YASKAWA Experiece ad Iovaio 3 Powerful ad Smar 4 Applicaios Efficie High Performace Applicaios 5 Easy Seup 6 Feaures Experiece ad Iovaio Ousadig Expadabiliy
How Much Can Taxes Help Selfish Routing?
How Much Can Taxe Help Selfih Rouing? Tim Roughgarden (Cornell) Join wih Richard Cole (NYU) and Yevgeniy Dodi (NYU) Selfih Rouing a direced graph G = (V,E) a ource and a deinaion one uni of raffic from
Research Article Dynamic Pricing of a Web Service in an Advance Selling Environment
Hidawi Publishig Corporaio Mahemaical Problems i Egieerig Volume 215, Aricle ID 783149, 21 pages hp://dx.doi.org/1.1155/215/783149 Research Aricle Dyamic Pricig of a Web Service i a Advace Sellig Evirome
APPLICATIONS OF GEOMETRIC
APPLICATIONS OF GEOMETRIC SEQUENCES AND SERIES TO FINANCIAL MATHS The mos powerful force i he world is compoud ieres (Alber Eisei) Page of 52 Fiacial Mahs Coes Loas ad ivesmes - erms ad examples... 3 Derivaio
Hourly Demand Response in Day-ahead Scheduling for Managing the Variability of Renewable Energy
Hourly emad Repoe i ay-ahead Schedulig for Maagig he Variabiliy of Reewable Eergy Hogyu Wu, Mohammad Shahidehpour, ad Ahmed Al-Abdulwahab The fir auhor i wih he Rober W. alvi Ceer for Elecriciy Iovaio
REVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, 159-170, 2010
REVISTA INVESTIGACION OPERACIONAL VOL. 3, No., 59-70, 00 AN ALGORITHM TO OBTAIN AN OPTIMAL STRATEGY FOR THE MARKOV DECISION PROCESSES, WITH PROBABILITY DISTRIBUTION FOR THE PLANNING HORIZON. Gouliois E.
Financial Data Mining Using Genetic Algorithms Technique: Application to KOSPI 200
Fiacial Daa Miig Usig Geeic Algorihms Techique: Applicaio o KOSPI 200 Kyug-shik Shi *, Kyoug-jae Kim * ad Igoo Ha Absrac This sudy ieds o mie reasoable radig rules usig geeic algorihms for Korea Sock Price
Título: A decision support tool to optimize scheduling of IT changes Autores: Rodrigo Rebouças, Jacques Sauvé, Antão Moura, Claudio Bartolini, David
íulo: A deiio uppor ool o opimize hedulig of hage Auore: Rodrigo Rebouça, Jaque Sauvé, Aão Moura, Claudio Barolii, David raour Orieadore: Jaque Sauvé e Aão Moura Nível: Douorado Ao de greo o Programa:
Combining Adaptive Filtering and IF Flows to Detect DDoS Attacks within a Router
KSII RANSAIONS ON INERNE AN INFORMAION SYSEMS VOL. 4, NO. 3, Jue 2 428 opyrigh c 2 KSII ombiig Adapive Filerig ad IF Flows o eec os Aacks wihi a Rouer Ruoyu Ya,2, Qighua Zheg ad Haifei Li 3 eparme of ompuer
Managing Learning and Turnover in Employee Staffing*
Maagig Learig ad Turover i Employee Saffig* Yog-Pi Zhou Uiversiy of Washigo Busiess School Coauhor: Noah Gas, Wharo School, UPe * Suppored by Wharo Fiacial Isiuios Ceer ad he Sloa Foudaio Call Ceer Operaios
A panel data approach for fashion sales forecasting
A pael daa approach for fashio sales forecasig Shuyu Re([email protected]), Tsa-Mig Choi, Na Liu Busiess Divisio, Isiue of Texiles ad Clohig, The Hog Kog Polyechic Uiversiy, Hug Hom, Kowloo, Hog Kog Absrac:
Imagine a Source (S) of sound waves that emits waves having frequency f and therefore
heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing
Circle Geometry (Part 3)
Eam aer 3 ircle Geomery (ar 3) emen andard:.4.(c) yclic uadrilaeral La week we covered u otheorem 3, he idea of a convere and we alied our heory o ome roblem called IE. Okay, o now ono he ne chunk of heory
Predicting Indian Stock Market Using Artificial Neural Network Model. Abstract
Predicig Idia Sock Marke Usig Arificial Neural Nework Model Absrac The sudy has aemped o predic he moveme of sock marke price (S&P CNX Nify) by usig ANN model. Seve years hisorical daa from 1 s Jauary
Confidence Intervals for Linear Regression Slope
Chapter 856 Cofidece Iterval for Liear Regreio Slope Itroductio Thi routie calculate the ample ize eceary to achieve a pecified ditace from the lope to the cofidece limit at a tated cofidece level for
Kyoung-jae Kim * and Ingoo Han. Abstract
Simulaeous opimizaio mehod of feaure rasformaio ad weighig for arificial eural eworks usig geeic algorihm : Applicaio o Korea sock marke Kyoug-jae Kim * ad Igoo Ha Absrac I his paper, we propose a ew hybrid
A Queuing Model of the N-design Multi-skill Call Center with Impatient Customers
Ieraioal Joural of u- ad e- ervice, ciece ad Techology Vol.8, o., pp.- hp://dx.doi.org/./ijuess..8.. A Queuig Model of he -desig Muli-skill Call Ceer wih Impaie Cusomers Chuya Li, ad Deua Yue Yasha Uiversiy,
A Comparative Study of Linear and Nonlinear Models for Aggregate Retail Sales Forecasting
A Comparaive Sudy of Linear and Nonlinear Model for Aggregae Reail Sale Forecaing G. Peer Zhang Deparmen of Managemen Georgia Sae Univeriy Alana GA 30066 (404) 651-4065 Abrac: The purpoe of hi paper i
UNDERWRITING AND EXTRA RISKS IN LIFE INSURANCE Katarína Sakálová
The process of uderwriig UNDERWRITING AND EXTRA RISKS IN LIFE INSURANCE Kaaría Sakálová Uderwriig is he process by which a life isurace compay decides which people o accep for isurace ad o wha erms Life
Studies in sport sciences have addressed a wide
REVIEW ARTICLE TRENDS i Spor Scieces 014; 1(1: 19-5. ISSN 99-9590 The eed o repor effec size esimaes revisied. A overview of some recommeded measures of effec size MACIEJ TOMCZAK 1, EWA TOMCZAK Rece years
Teaching Bond Valuation: A Differential Approach Demonstrating Duration and Convexity
JOURNAL OF EONOMIS AND FINANE EDUATION olume Number 2 Wier 2008 3 Teachig Bod aluaio: A Differeial Approach Demosraig Duraio ad ovexi TeWah Hah, David Lage ABSTRAT A radiioal bod pricig scheme used i iroducor
A formulation for measuring the bullwhip effect with spreadsheets Una formulación para medir el efecto bullwhip con hojas de cálculo
irecció y rgaizació 48 (01) 9-33 9 www.revisadyo.com A formulaio for measurig he bullwhip effec wih spreadshees Ua formulació para medir el efeco bullwhip co hojas de cálculo Javier Parra-Pea 1, Josefa
The Term Structure of Interest Rates
The Term Srucure of Ieres Raes Wha is i? The relaioship amog ieres raes over differe imehorizos, as viewed from oday, = 0. A cocep closely relaed o his: The Yield Curve Plos he effecive aual yield agais
14 Protecting Private Information in Online Social Networks
4 roecig rivae Iormaio i Olie Social eworks Jiamig He ad Wesley W. Chu Compuer Sciece Deparme Uiversiy o Calioria USA {jmhekwwc}@cs.ucla.edu Absrac. Because persoal iormaio ca be ierred rom associaios
Why we use compounding and discounting approaches
Comoudig, Discouig, ad ubiased Growh Raes Near Deb s school i Souher Colorado. A examle of slow growh. Coyrigh 000-04, Gary R. Evas. May be used for o-rofi isrucioal uroses oly wihou ermissio of he auhor.
A Strategy for Trading the S&P 500 Futures Market
62 JOURNAL OF ECONOMICS AND FINANCE Volume 25 Number 1 Sprig 2001 A Sraegy for Tradig he S&P 500 Fuures Marke Edward Olszewski * Absrac A sysem for radig he S&P 500 fuures marke is proposed. The sysem
INTRODUCTION TO EMAIL MARKETING PERSONALIZATION. How to increase your sales with personalized triggered emails
INTRODUCTION TO EMAIL MARKETING PERSONALIZATION How o increase your sales wih personalized riggered emails ECOMMERCE TRIGGERED EMAILS BEST PRACTICES Triggered emails are generaed in real ime based on each
FEBRUARY 2015 STOXX CALCULATION GUIDE
FEBRUARY 2015 STOXX CALCULATION GUIDE STOXX CALCULATION GUIDE CONTENTS 2/23 6.2. INDICES IN EUR, USD AND OTHER CURRENCIES 10 1. INTRODUCTION TO THE STOXX INDEX GUIDES 3 2. CHANGES TO THE GUIDE BOOK 4 2.1.
Modeling the Nigerian Inflation Rates Using Periodogram and Fourier Series Analysis
CBN Joural of Applied Saisics Vol. 4 No.2 (December, 2013) 51 Modelig he Nigeria Iflaio Raes Usig Periodogram ad Fourier Series Aalysis 1 Chukwuemeka O. Omekara, Emmauel J. Ekpeyog ad Michael P. Ekeree
COLLECTIVE RISK MODEL IN NON-LIFE INSURANCE
Ecoomic Horizos, May - Augus 203, Volume 5, Number 2, 67-75 Faculy of Ecoomics, Uiversiy of Kragujevac UDC: 33 eissn 227-9232 www. ekfak.kg.ac.rs Review paper UDC: 005.334:368.025.6 ; 347.426.6 doi: 0.5937/ekohor30263D
Data Protection and Privacy- Technologies in Focus. Rashmi Chandrashekar, Accenture
Daa Proeio ad Privay- Tehologies i Fous Rashmi Chadrashekar, Aeure Sesiive Creai Daa Lifeyle o Busiess sesiive daa proeio is o a sigle eve. Adequae proeio o mus be provided appropriaely hroughou Mai he
Ranking Optimization with Constraints
Rakig Opimizaio wih Cosrais Fagzhao Wu, Ju Xu, Hag Li, Xi Jiag Tsighua Naioal Laboraory for Iformaio Sciece ad Techology, Deparme of Elecroic Egieerig, Tsighua Uiversiy, Beijig, Chia Noah s Ark Lab, Huawei
The Impact of Introducing a Minimum Wage on Business Cycle Volatility: A Structural Analysis for Hong Kong SAR
W/08/85 he Impac o Iroducig a iimum Wage o Buie ycle Volailiy: A Srucural Aalyi or Hog Kog SAR Naha orer ad Fraci Viek 008 Ieraioal oeary Fud W/08/85 IF Workig aper Aia ad aciic Deparme he Impac o Iroducig
Heat demand forecasting for concrete district heating system
Hea demand forecaing for concree diric heaing yem Bronilav Chramcov Abrac Thi paper preen he reul of an inveigaion of a model for hor-erm hea demand forecaing. Foreca of hi hea demand coure i ignifican
6. Friction, Experiment and Theory
6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal
Formulating Cyber-Security as Convex Optimization Problems Æ
Formulaing Cyber-Securiy a Convex Opimizaion Problem Æ Kyriako G. Vamvoudaki,João P. Hepanha, Richard A. Kemmerer 2, and Giovanni Vigna 2 Cener for Conrol, Dynamical-yem and Compuaion (CCDC), Univeriy
ACCOUNTING TURNOVER RATIOS AND CASH CONVERSION CYCLE
Problems ad Persecives of Maageme, 24 Absrac ACCOUNTING TURNOVER RATIOS AND CASH CONVERSION CYCLE Pedro Orí-Ágel, Diego Prior Fiacial saemes, ad esecially accouig raios, are usually used o evaluae acual
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
Chapter 13. Network Flow III Applications. 13.1 Edge disjoint paths. 13.1.1 Edge-disjoint paths in a directed graphs
Chaper 13 Nework Flow III Applicaion CS 573: Algorihm, Fall 014 Ocober 9, 014 13.1 Edge dijoin pah 13.1.1 Edge-dijoin pah in a direced graph 13.1.1.1 Edge dijoin pah queiong: graph (dir/undir)., : verice.
Empirical heuristics for improving Intermittent Demand Forecasting
Empirical heuriic for improving Inermien Demand Forecaing Foio Peropoulo 1,*, Konanino Nikolopoulo 2, Georgio P. Spihouraki 1, Vailio Aimakopoulo 1 1 Forecaing & Sraegy Uni, School of Elecrical and Compuer
Lecture 15 Isolated DC-DC converters
ELEC440/940 Lecure 15 olae C-C converer Ofen, he oupu C volage fro a C-C converer u be iolae fro he inpu AC upply. C power upplie for appliance an equipen are goo exaple. i avanageou o have he iolaion
Optimal Path Routing in Single and Multiple Clock Domain Systems
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, TO APPEAR. 1 Opimal Pah Rouing in Single and Muliple Clock Domain Syem Soha Haoun, Senior Member, IEEE, Charle J. Alper, Senior Member, IEEE ) Abrac Shrinking
1/22/2007 EECS 723 intro 2/3
1/22/2007 EES 723 iro 2/3 eraily, all elecrical egieers kow of liear sysems heory. Bu, i is helpful o firs review hese coceps o make sure ha we all udersad wha his heory is, why i works, ad how i is useful.
On Motion of Robot End-effector Using The Curvature Theory of Timelike Ruled Surfaces With Timelike Ruling
O Moio of obo Ed-effecor Usig he Curvaure heory of imelike uled Surfaces Wih imelike ulig Cumali Ekici¹, Yasi Ülüürk¹, Musafa Dede¹ B. S. yuh² ¹ Eskişehir Osmagazi Uiversiy Deparme of Mahemaics, 6480-UKEY
Formulating Cyber-Security as Convex Optimization Problems
Formulaing Cyber-Securiy a Convex Opimizaion Problem Kyriako G. Vamvoudaki, João P. Hepanha, Richard A. Kemmerer, and Giovanni Vigna Univeriy of California, Sana Barbara Abrac. Miion-cenric cyber-ecuriy
Modelling Time Series of Counts
Modellig ime Series of Cous Richard A. Davis Colorado Sae Uiversiy William Dusmuir Uiversiy of New Souh Wales Yig Wag Colorado Sae Uiversiy /3/00 Modellig ime Series of Cous wo ypes of Models for Poisso
An Approach for Measurement of the Fair Value of Insurance Contracts by Sam Gutterman, David Rogers, Larry Rubin, David Scheinerman
A Approach for Measureme of he Fair Value of Isurace Coracs by Sam Guerma, David Rogers, Larry Rubi, David Scheierma Absrac The paper explores developmes hrough 2006 i he applicaio of marke-cosise coceps
Fuzzy Task Assignment Model of Web Services Supplier
Advaed Siee ad Tehology eers Vol.78 (Mulrab 2014),.43-48 h://dx.doi.org/10.14257/asl.2014.78.08 Fuzzy Task Assige Model of Web Servies Sulier Su Jia 1,2,Peg Xiu-ya 1, *, Xu Yig 1,3, Wag Pei-lei 2, Ma Na-ji
Capital Budgeting: a Tax Shields Mirage?
Theoreical ad Applied Ecoomics Volume XVIII (211), No. 3(556), pp. 31-4 Capial Budgeig: a Tax Shields Mirage? Vicor DRAGOTĂ Buchares Academy of Ecoomic Sudies [email protected] Lucia ŢÂŢU Buchares
Fortified financial forecasting models: non-linear searching approaches
0 Inernaional Conference on Economic and inance Reearch IPEDR vol.4 (0 (0 IACSIT Pre, Singapore orified financial forecaing model: non-linear earching approache Mohammad R. Hamidizadeh, Ph.D. Profeor,
Hilbert Transform Relations
BULGARIAN ACADEMY OF SCIENCES CYBERNEICS AND INFORMAION ECHNOLOGIES Volume 5, No Sofia 5 Hilber rasform Relaios Each coiuous problem (differeial equaio) has may discree approximaios (differece equaios)
Chapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
Introduction to Statistical Analysis of Time Series Richard A. Davis Department of Statistics
Iroduio o Saisial Aalysis of Time Series Rihard A. Davis Deparme of Saisis Oulie Modelig obeives i ime series Geeral feaures of eologial/eviromeal ime series Compoes of a ime series Frequey domai aalysis-he
PERFORMANCE COMPARISON OF TIME SERIES DATA USING PREDICTIVE DATA MINING TECHNIQUES
, pp.-57-66. Available olie a hp://www.bioifo.i/coes.php?id=32 PERFORMANCE COMPARISON OF TIME SERIES DATA USING PREDICTIVE DATA MINING TECHNIQUES SAIGAL S. 1 * AND MEHROTRA D. 2 1Deparme of Compuer Sciece,
ON THE RISK-NEUTRAL VALUATION OF LIFE INSURANCE CONTRACTS WITH NUMERICAL METHODS IN VIEW ABSTRACT KEYWORDS 1. INTRODUCTION
ON THE RISK-NEUTRAL VALUATION OF LIFE INSURANCE CONTRACTS WITH NUMERICAL METHODS IN VIEW BY DANIEL BAUER, DANIELA BERGMANN AND RÜDIGER KIESEL ABSTRACT I rece years, marke-cosise valuaio approaches have
2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics
.4 Nework flow Problem involving he diribuion of a given produc (e.g., waer, ga, daa, ) from a e of producion locaion o a e of uer o a o opimize a given objecive funcion (e.g., amoun of produc, co,...).
Baumer FWL120 NeuroCheck Edition Art. No: OD106434
High Sensiive Digial Monochrome (b/w) Line Scan Camera Sysem: IEEE1394a Baumer FWL120 NeuroCheck Ediion Ar. No: OD106434 IEEE1394a (FireWire TM ) Progressive Scan CCD Camera 2048 Pixels Ousanding Image
12. Spur Gear Design and selection. Standard proportions. Forces on spur gear teeth. Forces on spur gear teeth. Specifications for standard gear teeth
. Spur Gear Desig ad selecio Objecives Apply priciples leared i Chaper 11 o acual desig ad selecio of spur gear sysems. Calculae forces o eeh of spur gears, icludig impac forces associaed wih velociy ad
A Heavy Traffic Approach to Modeling Large Life Insurance Portfolios
A Heavy Traffic Approach o Modelig Large Life Isurace Porfolios Jose Blache ad Hery Lam Absrac We explore a ew framework o approximae life isurace risk processes i he sceario of pleiful policyholders,
The Application of Multi Shifts and Break Windows in Employees Scheduling
The Applicaion of Muli Shifs and Brea Windows in Employees Scheduling Evy Herowai Indusrial Engineering Deparmen, Universiy of Surabaya, Indonesia Absrac. One mehod for increasing company s performance
Circularity and the Undervaluation of Privatised Companies
CMPO Workig Paper Series No. 1/39 Circulariy ad he Udervaluaio of Privaised Compaies Paul Grou 1 ad a Zalewska 2 1 Leverhulme Cere for Marke ad Public Orgaisaio, Uiversiy of Brisol 2 Limburg Isiue of Fiacial
TSG-RAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999
TSG-RAN Working Group 1 (Radio Layer 1) meeing #3 Nynashamn, Sweden 22 nd 26 h March 1999 RAN TSGW1#3(99)196 Agenda Iem: 9.1 Source: Tile: Documen for: Moorola Macro-diversiy for he PRACH Discussion/Decision
Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence
Deivaive ecuiies: Lecue 7 uhe applicaios o Black-choles ad Abiage Picig heoy ouces: J. Hull Avellaeda ad Lauece Black s omula omeimes is easie o hik i ems o owad pices. Recallig ha i Black-choles imilaly
Estimating Non-Maturity Deposits
Proceedigs of he 9h WSEAS Ieraioal Coferece o SIMULATION, MODELLING AND OPTIMIZATION Esimaig No-Mauriy Deposis ELENA CORINA CIPU Uiversiy Poliehica Buchares Faculy of Applied Scieces Deparme of Mahemaics,
Long Term Spread Option Valuation and Hedging
Long Term Spread Opion Valuaion and Hedging M.A.H. Demper, Elena Medova and Ke Tang Cenre for Financial Reearch, Judge Buine School, Univeriy of Cambridge, Trumpingon Sree, Cambridge CB 1AG & Cambridge
American Journal of Business Education September 2009 Volume 2, Number 6
Amerca Joural of Bue Educao Sepember 9 Volume, umber 6 Tme Value Of Moe Ad I Applcao I Corporae Face: A Techcal oe O L Relaohp Bewee Formula Je-Ho Che, Alba Sae Uver, USA ABSTRACT Tme Value of Moe (TVM
cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
GoRA. For more information on genetics and on Rheumatoid Arthritis: Genetics of Rheumatoid Arthritis. Published work referred to in the results:
For more informaion on geneics and on Rheumaoid Arhriis: Published work referred o in he resuls: The geneics revoluion and he assaul on rheumaoid arhriis. A review by Michael Seldin, Crisopher Amos, Ryk
An approach for designing a surface pencil through a given geodesic curve
An approach for deigning a urface pencil hrough a given geodeic curve Gülnur SAFFAK ATALAY, Fama GÜLER, Ergin BAYRAM *, Emin KASAP Ondokuz Mayı Univeriy, Faculy of Ar and Science, Mahemaic Deparmen [email protected],
Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power
Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,
Economic Papers Series
Pape No. ( Ecooic Pape Seie Macoecooic Model of Public Deb Sevici Capaciy ad Deb Maaee Deb i o a ae of coce a lo a i i aaeable ad uaiable. Deb aaee i he poce by which he ovee acquie ad ue he deb effecively
PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
Distributed Containment Control with Multiple Dynamic Leaders for Double-Integrator Dynamics Using Only Position Measurements
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 6, JUNE 22 553 Disribued Coaime Corol wih Muliple Dyamic Leaders for Double-Iegraor Dyamics Usig Oly Posiio Measuremes Jiazhe Li, Wei Re, Member, IEEE,
Nanocubes for Real-Time Exploration of Spatiotemporal Datasets
Nanocube for RealTime Exploraion of Spaioemporal Daae Lauro Lin, Jame T Kloowki, and arlo Scheidegger Fig 1 Example viualizaion of 210 million public geolocaed Twier po over he coure of a year The daa
How To Solve An Uncerain Daa Problem
Robu Bandwidh Allocaion Sraegie Oliver Heckmann, Jen Schmi, Ralf Seinmez Mulimedia Communicaion Lab (KOM), Darmad Univeriy of Technology Merckr. 25 D-64283 Darmad Germany {Heckmann, Schmi, Seinmez}@kom.u-darmad.de
Topic 5: Confidence Intervals (Chapter 9)
Topic 5: Cofidece Iterval (Chapter 9) 1. Itroductio The two geeral area of tatitical iferece are: 1) etimatio of parameter(), ch. 9 ) hypothei tetig of parameter(), ch. 10 Let X be ome radom variable with
TRANSPORT ECONOMICS, POLICY AND POVERTY THEMATIC GROUP
TRANSPORT NOTES TRANSPORT ECONOMICS, POLICY AND POVERTY THEMATIC GROUP THE WORLD BANK, WASHINGTON, DC Traspor Noe No. TRN-6 Jauary 2005 Noes o he Ecoomic Evaluaio of Traspor Projecs I respose o may requess
Chapter 4 Return and Risk
Chaper 4 Reur ad Risk The objecives of his chaper are o eable you o:! Udersad ad calculae reurs as a measure of ecoomic efficiecy! Udersad he relaioships bewee prese value ad IRR ad YTM! Udersad how obai
Abstract. 1. Introduction. 1.1 Notation. 1.2 Parameters
1 Mdels, Predici, ad Esimai f Oubreaks f Ifecius Disease Peer J. Csa James P. Duyak Mjdeh Mhashemi {[email protected], [email protected], [email protected]} he MIRE Crprai 202 Burlig Rad Bedfrd, MA 01730 1420 Absrac
Physical Topology Discovery for Large Multi-Subnet Networks
Phyical Topology Dicovery for Large Muli-Subne Nework Yigal Bejerano, Yuri Breibar, Mino Garofalaki, Rajeev Raogi Bell Lab, Lucen Technologie 600 Mounain Ave., Murray Hill, NJ 07974. {bej,mino,raogi}@reearch.bell-lab.com
