This paper is not to be removed from the Examination Halls
|
|
|
- Prudence Walsh
- 9 years ago
- Views:
Transcription
1 ~~FN3023 ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON FN3023 ZA BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences, the Diplomas in Economics and Social Sciences and Access Route Investment Management Monday, 19 May 2014 : 14:30 to 17:30 Candidates should answer FOUR of the following EIGHT questions. All questions carry equal marks. A calculator may be used when answering questions on this paper and it must comply in all respects with the specification given with your Admission Notice. The make and type of machine must be clearly stated on the front cover of the answer book. PLEASE TURN OVER UL14/0233 Page 1 of 5
2 1. (a) Explain what we mean by exchange traded funds. What benefits do these funds offer to investors? You spread your investment equally in 10 stocks. Each stock has a beta of 1.2, and idiosyncratic risk (the difference between total variance and systematic risk) of 5%. The variance of the market portfolio is 10%. What is the total risk and the idiosyncratic risk of your portfolio? Stocks have a two-factor structure. Two widely diversified portfolios have the following data. Portfolio A has average return 10% and factor betas 1.5 and 0.4, respectively, on the first and second factor. Portfolio B has average return 9% and factor betas 0.2 and 1.3, respectively, on the first and second factor. The risk free return is 2%. What are the risk premia for factor one and factor two? 2. (a) Explain what we mean by floating-rate debt. Discuss ways in which these instruments are helpful to borrowers? A 5-year bond has an annual coupon rate of 5% and yield to maturity of 6%. What is the duration of the bond? What is the convexity of the bond in part? 3. (a) Hedge transactions involving the trading of derivatives have zero net present value, so will never increase the value of the corporation. Discuss this statement, and explain why hedging of corporate risk nonetheless can add value to corporations. A portfolio has a beta of 0.5, and idiosyncratic risk with variance 3%. The variance of the market portfolio is 10%, and the return on the market portfolio is 8% on average. The risk free return is 2%. What is the required return on the portfolio in order that it matches the market portfolio in terms of the Sharpe ratio? Define absolute and relative risk aversion. In asset allocation situations where the investors split their investments into a safe and a risky asset, how do investors with constant absolute risk aversion optimally choose their portfolios as their wealth changes? What about investors with constant relative risk aversion? UL14/0233 Page 2 of 5
3 4. (a) Explain why asset allocation over longer time horizon can be approached as a myopic problem when relative risk aversion is independent of wealth. Consider the situation where a company has a pension liability next year of 1,000, and that the pension liability is expected to grow at a rate of 1% each year indefinitely. The discount rate for this liability is 5%. You are interested in immunising the value of the liability from changes in the interest rate. To do this you can trade a 20-year zerocoupon bond which has 5% yield-to-maturity. What are the details of your immunisation strategy? You can buy stocks on margin by borrowing from your broker on a margin account with 60% initial and maintenance margin. You utilise your margin account maximally. You buy 1,000 shares of a stock valued at 10 per share in year 0. In year 1 you first receive a dividend of 1 per share, and then you sell 700 of your shares at an ex-dividend price of 11 per share. In year 2 you first receive another dividend of 1 per share, and then you sell the remaining shares at an ex-dividend price of 10 per share. What is the 2- year return on your capital? Assume the cash proceeds are kept in the margin account with zero interest rate. 5. (a) Explain what we mean by the term structure of interest rates. Name three different types of hypotheses explaining the shape of the term structure of interest rates. The price of a bond is P, and the yield to maturity is r (annually compounded). You estimate that the current ratio of the change in the bond price, ΔP, over the change in the yield to maturity, Δr, is -4.5 times the price of the bond P. You also recognise that the ratio ΔP/Δr above is not constant for varying levels of r and you are trying to work out the numbers for the current yield to maturity of 5%. If the price of the bond is P=100, what is the (Macaulay) duration of the bond? Explain how we can make use of bond duration in practice. You are given the following information about a portfolio, denoted A, the market portfolio, denoted M, and the risk free asset, denoted R. Portfolio A Market portfolio M Risk free asset R Expected return 7.3% 8% 2% Variance 10% 9% 0 Beta Jensen s alpha UL14/0233 Page 3 of 5
4 According to the Treynor-Black model, the optimal mix of the A and M portfolios for variance-averse investors is given by the formula: w = α A α A (1 β A ) + (Er M r F ) Var(ε. A) 2 σ M In this formula, w is the weight on portfolio A, α A is Jensen s alpha of portfolio A, β A is the beta of portfolio A, Er M is the expected return on the market portfolio, r F is the risk free return, Var(ε A ) is the idiosyncratic risk of portfolio A, and σ M 2 is the variance of the market portfolio. Work out the optimal weight w and interpret your answer. 6. (a) Explain what we mean by the equity premium puzzle. Based on the subject guide, explain one way to resolve this puzzle. The Black-Scholes call option formula is C = S N(d 1 ) PV(X) N(d 2 ), where S is the current stock price, PV(X) is the present value of the exercise price paid at the maturity of the option, N(.) is the cumulative standard normal distribution function, and d 1 and d 2 are parameters that depend on S, X, the risk free interest rate, the volatility of the stock, and the time to maturity. Suppose S = PV(X) = 100, d 1 = 0.1, d 2 = -0.1, N(d 1 ) = , and N(d 2 ) = Use the call formula to derive the expression of a put option with the same exercise price. What are the call and the put prices? Suppose you buy x call and y put options of the type mentioned in part of this question. What is the ratio x/y such that the delta of the option portfolio is zero (i.e. such that the value of the option portfolio does not change for small changes in the underlying stock price S)? Explain how this portfolio can be used to hedge against changes in the volatility of the stock. 7. (a) Explain how you can use the single index model to estimate the variance-covariance matrix of stocks. Why is this method useful in practice? A bond is quoted with a price of per 100 face value. The coupon of 3.2% of face value is paid once a year, and it is 45 days since the last coupon payment. If you were to trade this bond, what price do you expect to pay for the bond? The expected return on the market index is 8%, with standard deviation 0.3, and the risk free return is 2%. You consider holding a portfolio that has at most standard deviation 0.2, subject to the constraint that the portfolio earns an M 2 measure of 2%. What Sharpe ratio is required to meet your investment objective? UL14/0233 Page 4 of 5
5 8. (a) The information ratio for a portfolio is defined as Jensen s alpha divided by the unsystematic (idiosyncratic) risk of the portfolio. Explain how this ratio works, and discuss its usefulness for investors. In Roll s model described in the subject guide we consider a dealer market for an asset that has the fundamental price at time t of m t, which changes in response to the arrival of new information, m t = m t 1 + u t, where u t represents new information at time t. The transaction price at time t at which trade takes place is p t = m t + q t c, where q t is equal to +1 or -1 and c is a constant. Roll argues that Cov( p t, p t 1 ) = c 2, where Δp t is the price change at time t (= p t p t-1 ). Explain the relationship between the transaction price and the fundamental price of the asset. Derive Rolls covariance term and explain what additional assumptions are needed as you go along. How can we interpret this result? You are given the following information about 1-year put and call prices for an asset that is currently trading at a price of 100. Exercise price 90 Exercise price 100 Exercise price 110 Call Put Are there arbitrage opportunities in this market? If so, demonstrate how they could be exploited. END OF PAPER UL14/0233 Page 5 of 5
This paper is not to be removed from the Examination Halls
~~FN3023 ZB d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON FN3023 ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,
Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator
University of Stavanger (UiS) Stavanger Masters Program Final Exam MØA 155 Financial Economics Fall 2009 Permitted Material: Calculator The number in brackets is the weight for each problem. The weights
The Tangent or Efficient Portfolio
The Tangent or Efficient Portfolio 1 2 Identifying the Tangent Portfolio Sharpe Ratio: Measures the ratio of reward-to-volatility provided by a portfolio Sharpe Ratio Portfolio Excess Return E[ RP ] r
Rate of Return. Reading: Veronesi, Chapter 7. Investment over a Holding Period
Rate of Return Reading: Veronesi, Chapter 7 Investment over a Holding Period Consider an investment in any asset over a holding period from time 0 to time T. Suppose the amount invested at time 0 is P
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
t = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3
MØA 155 PROBLEM SET: Summarizing Exercise 1. Present Value [3] You are given the following prices P t today for receiving risk free payments t periods from now. t = 1 2 3 P t = 0.95 0.9 0.85 1. Calculate
Fixed Income: Practice Problems with Solutions
Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semi-annual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.
FINANCIAL PLANNING ASSOCIATION OF MALAYSIA
FINANCIAL PLANNING ASSOCIATION OF MALAYSIA MODULE 4 INVESTMENT PLANNING Course Objectives To understand the concepts of risk and return, the financial markets and the various financial instruments available,
Review for Exam 2. Instructions: Please read carefully
Review for Exam Instructions: Please read carefully The exam will have 1 multiple choice questions and 5 work problems. Questions in the multiple choice section will be either concept or calculation questions.
FIN 3710. Final (Practice) Exam 05/23/06
FIN 3710 Investment Analysis Spring 2006 Zicklin School of Business Baruch College Professor Rui Yao FIN 3710 Final (Practice) Exam 05/23/06 NAME: (Please print your name here) PLEDGE: (Sign your name
Practice Questions for Midterm II
Finance 333 Investments Practice Questions for Midterm II Winter 2004 Professor Yan 1. The market portfolio has a beta of a. 0. *b. 1. c. -1. d. 0.5. By definition, the beta of the market portfolio is
Financial Markets And Financial Instruments - Part I
Financial Markets And Financial Instruments - Part I Financial Assets Real assets are things such as land, buildings, machinery, and knowledge that are used to produce goods and services. Financial assets
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
CAPM, Arbitrage, and Linear Factor Models
CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors
Makeup Exam MØA 155 Financial Economics February 2010 Permitted Material: Calculator, Norwegian/English Dictionary
University of Stavanger (UiS) Stavanger Masters Program Makeup Exam MØA 155 Financial Economics February 2010 Permitted Material: Calculator, Norwegian/English Dictionary The number in brackets is the
M.I.T. Spring 1999 Sloan School of Management 15.415. First Half Summary
M.I.T. Spring 1999 Sloan School of Management 15.415 First Half Summary Present Values Basic Idea: We should discount future cash flows. The appropriate discount rate is the opportunity cost of capital.
Models of Risk and Return
Models of Risk and Return Aswath Damodaran Aswath Damodaran 1 First Principles Invest in projects that yield a return greater than the minimum acceptable hurdle rate. The hurdle rate should be higher for
Option Pricing Applications in Valuation!
Option Pricing Applications in Valuation! Equity Value in Deeply Troubled Firms Value of Undeveloped Reserves for Natural Resource Firm Value of Patent/License 73 Option Pricing Applications in Equity
Chapter Nine Selected Solutions
Chapter Nine Selected Solutions 1. What is the difference between book value accounting and market value accounting? How do interest rate changes affect the value of bank assets and liabilities under the
Final Exam Practice Set and Solutions
FIN-469 Investments Analysis Professor Michel A. Robe Final Exam Practice Set and Solutions What to do with this practice set? To help students prepare for the final exam, three practice sets with solutions
CIS September 2012 Exam Diet. Examination Paper 2.2: Corporate Finance Equity Valuation and Analysis Fixed Income Valuation and Analysis
CIS September 2012 Exam Diet Examination Paper 2.2: Corporate Finance Equity Valuation and Analysis Fixed Income Valuation and Analysis Corporate Finance (1 13) 1. Assume a firm issues N1 billion in debt
SAMPLE MID-TERM QUESTIONS
SAMPLE MID-TERM QUESTIONS William L. Silber HOW TO PREPARE FOR THE MID- TERM: 1. Study in a group 2. Review the concept questions in the Before and After book 3. When you review the questions listed below,
1. CFI Holdings is a conglomerate listed on the Zimbabwe Stock Exchange (ZSE) and has three operating divisions as follows:
NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF COMMERCE DEPARTMENT OF FINANCE BACHELOR OF COMMERCE HONOURS DEGREE IN FINANCE PART II 2 ND SEMESTER FINAL EXAMINATION MAY 2005 CORPORATE FINANCE
CFA Examination PORTFOLIO MANAGEMENT Page 1 of 6
PORTFOLIO MANAGEMENT A. INTRODUCTION RETURN AS A RANDOM VARIABLE E(R) = the return around which the probability distribution is centered: the expected value or mean of the probability distribution of possible
Chapter 13 Composition of the Market Portfolio 1. Capital markets in Flatland exhibit trade in four securities, the stocks X, Y and Z,
Chapter 13 Composition of the arket Portfolio 1. Capital markets in Flatland exhibit trade in four securities, the stocks X, Y and Z, and a riskless government security. Evaluated at current prices in
3. You have been given this probability distribution for the holding period return for XYZ stock:
Fin 85 Sample Final Solution Name: Date: Part I ultiple Choice 1. Which of the following is true of the Dow Jones Industrial Average? A) It is a value-weighted average of 30 large industrial stocks. )
TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II + III
TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II III Instructions 1. Only one problem should be treated on each sheet of paper and only one side of the sheet should be used. 2. The solutions folder
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises.
1. Solutions to PS 1: 1. a. (iv) b. (ii) [6.75/(1.34) = 10.2] c. (i) Writing a call entails unlimited potential losses as the stock price rises. 7. The bill has a maturity of one-half year, and an annualized
Paper 2. Derivatives Investment Consultant Examination. Thailand Securities Institute November 2014
Derivatives Investment Consultant Examination Paper 2 Thailand Securities Institute November 2014 Copyright 2014, All right reserve Thailand Securities Institute (TSI) The Stock Exchange of Thailand Page
Chapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
Paper F9. Financial Management. Friday 6 December 2013. Fundamentals Level Skills Module. The Association of Chartered Certified Accountants
Fundamentals Level Skills Module Financial Management Friday 6 December 2013 Time allowed Reading and planning: Writing: 15 minutes 3 hours ALL FOUR questions are compulsory and MUST be attempted. Formulae
CHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given
Risk and return in Þxed income arbitrage: Nickels in front of a steamroller?
Risk and return in Þxed income arbitrage Université d Evry June 2005 1 Risk and return in Þxed income arbitrage: Nickels in front of a steamroller? Jefferson Duarte University of Washington Francis Longstaff
Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values
Option Values Option Valuation Intrinsic value profit that could be made if the option was immediately exercised Call: stock price exercise price : S T X i i k i X S Put: exercise price stock price : X
2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold
Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes
Financial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial
Introduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.
1. What are the three types of business organizations? Define them
Written Exam Ticket 1 1. What is Finance? What do financial managers try to maximize, and what is their second objective? 2. How do you compare cash flows at different points in time? 3. Write the formulas
Rethinking Fixed Income
Rethinking Fixed Income Challenging Conventional Wisdom May 2013 Risk. Reinsurance. Human Resources. Rethinking Fixed Income: Challenging Conventional Wisdom With US Treasury interest rates at, or near,
Problems and Solutions
Problems and Solutions CHAPTER Problems. Problems on onds Exercise. On /04/0, consider a fixed-coupon bond whose features are the following: face value: $,000 coupon rate: 8% coupon frequency: semiannual
ASSET LIABILITY MANAGEMENT Significance and Basic Methods. Dr Philip Symes. Philip Symes, 2006
1 ASSET LIABILITY MANAGEMENT Significance and Basic Methods Dr Philip Symes Introduction 2 Asset liability management (ALM) is the management of financial assets by a company to make returns. ALM is necessary
Fixed-Income Securities Lecture 4: Hedging Interest Rate Risk Exposure Traditional Methods
Fixed-Income Securities Lecture 4: Hedging Interest Rate Risk Exposure Traditional Methods Philip H. Dybvig Washington University in Saint Louis Matching maturities Duration Effective duration Multiple
Solution: The optimal position for an investor with a coefficient of risk aversion A = 5 in the risky asset is y*:
Problem 1. Consider a risky asset. Suppose the expected rate of return on the risky asset is 15%, the standard deviation of the asset return is 22%, and the risk-free rate is 6%. What is your optimal position
The Language of the Stock Market
The Language of the Stock Market Family Economics & Financial Education Family Economics & Financial Education Revised November 2004 Investing Unit Language of the Stock Market Slide 1 Why Learn About
Obligation-based Asset Allocation for Public Pension Plans
Obligation-based Asset Allocation for Public Pension Plans Market Commentary July 2015 PUBLIC PENSION PLANS HAVE a single objective to provide income for a secure retirement for their members. Once the
Review for Exam 2. Instructions: Please read carefully
Review for Exam 2 Instructions: Please read carefully The exam will have 25 multiple choice questions and 5 work problems You are not responsible for any topics that are not covered in the lecture note
Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk
Derivatives Why? Allow easier methods to short sell a stock without a broker lending it. Facilitates hedging easily Allows the ability to take long/short position on less available commodities (Rice, Cotton,
Wel Dlp Portfolio And Risk Management
1. In case of perfect diversification, the systematic risk is nil. Wel Dlp Portfolio And Risk Management 2. The objectives of investors while putting money in various avenues are:- (a) Safety (b) Capital
Paper F9. Financial Management. Friday 6 June 2014. Fundamentals Level Skills Module. The Association of Chartered Certified Accountants.
Fundamentals Level Skills Module Financial Management Friday 6 June 2014 Time allowed Reading and planning: Writing: 15 minutes 3 hours ALL FOUR questions are compulsory and MUST be attempted. Formulae
Paper F9. Financial Management. Friday 7 June 2013. Fundamentals Level Skills Module. The Association of Chartered Certified Accountants.
Fundamentals Level Skills Module Financial Management Friday 7 June 2013 Time allowed Reading and planning: Writing: 15 minutes 3 hours ALL FOUR questions are compulsory and MUST be attempted. Formulae
Chapter 3 Fixed Income Securities
Chapter 3 Fixed Income Securities Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Fixed-income securities. Stocks. Real assets (capital budgeting). Part C Determination
BASKET A collection of securities. The underlying securities within an ETF are often collectively referred to as a basket
Glossary: The ETF Portfolio Challenge Glossary is designed to help familiarize our participants with concepts and terminology closely associated with Exchange- Traded Products. For more educational offerings,
Additional Practice Questions for Midterm I
1 Finance 333 Investments Additional Practice Questions for Midterm I Winter 2004 Professor Yan 1. Financial assets. A) directly contribute to the country's productive capacity *B) indirectly contribute
FIN 432 Investment Analysis and Management Review Notes for Midterm Exam
FIN 432 Investment Analysis and Management Review Notes for Midterm Exam Chapter 1 1. Investment vs. investments 2. Real assets vs. financial assets 3. Investment process Investment policy, asset allocation,
Options: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
Paper F9. Financial Management. Friday 7 December 2012. Fundamentals Level Skills Module. The Association of Chartered Certified Accountants
Fundamentals Level Skills Module Financial Management Friday 7 December 2012 Time allowed Reading and planning: Writing: 15 minutes 3 hours ALL FOUR questions are compulsory and MUST be attempted. Formulae
Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011
Executive Summary of Finance 430 Professor Vissing-Jørgensen Finance 430-62/63/64, Winter 2011 Weekly Topics: 1. Present and Future Values, Annuities and Perpetuities 2. More on NPV 3. Capital Budgeting
Coupon Bonds and Zeroes
Coupon Bonds and Zeroes Concepts and Buzzwords Coupon bonds Zero-coupon bonds Bond replication No-arbitrage price relationships Zero rates Zeroes STRIPS Dedication Implied zeroes Semi-annual compounding
Lecture 15: Final Topics on CAPM
Lecture 15: Final Topics on CAPM Final topics on estimating and using beta: the market risk premium putting it all together Final topics on CAPM: Examples of firm and market risk Shorting Stocks and other
Exam 1 Sample Questions
Exam 1 Sample Questions 1. Asset allocation refers to. A. the allocation of the investment portfolio across broad asset classes B. the analysis of the value of securities C. the choice of specific assets
11. OVERVIEW OF THE INVESTMENT PORTFOLIO SOFTWARE
11. OVERVIEW OF THE INVESTMENT PORTFOLIO SOFTWARE The Investment Portfolio software was developed by Edwin J. Elton, Martin J. Gruber and Christopher R. Blake, in conjunction with IntelliPro, Inc., to
Certified Personal Financial Advisor (CPFA) for Examination
NATIONAL INSTITUTE OF SECURITIES MARKETS Certified Personal Financial Advisor (CPFA) for Examination Test Objectives 1. Concept of Financial Planning 1.1 Understand what financial planning constitutes
Use the table for the questions 18 and 19 below.
Use the table for the questions 18 and 19 below. The following table summarizes prices of various default-free zero-coupon bonds (expressed as a percentage of face value): Maturity (years) 1 3 4 5 Price
Matching Investment Strategies in General Insurance Is it Worth It? Aim of Presentation. Background 34TH ANNUAL GIRO CONVENTION
Matching Investment Strategies in General Insurance Is it Worth It? 34TH ANNUAL GIRO CONVENTION CELTIC MANOR RESORT, NEWPORT, WALES Aim of Presentation To answer a key question: What are the benefit of
Practice Set #4 and Solutions.
FIN-469 Investments Analysis Professor Michel A. Robe Practice Set #4 and Solutions. What to do with this practice set? To help students prepare for the assignment and the exams, practice sets with solutions
YIELD CURVE GENERATION
1 YIELD CURVE GENERATION Dr Philip Symes Agenda 2 I. INTRODUCTION II. YIELD CURVES III. TYPES OF YIELD CURVES IV. USES OF YIELD CURVES V. YIELD TO MATURITY VI. BOND PRICING & VALUATION Introduction 3 A
Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model
Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model VK Dedu 1, FT Oduro 2 1,2 Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Abstract
AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang
AFM 472 Midterm Examination Monday Oct. 24, 2011 A. Huang Name: Answer Key Student Number: Section (circle one): 10:00am 1:00pm 2:30pm Instructions: 1. Answer all questions in the space provided. If space
MBA 8230 Corporation Finance (Part II) Practice Final Exam #2
MBA 8230 Corporation Finance (Part II) Practice Final Exam #2 1. Which of the following input factors, if increased, would result in a decrease in the value of a call option? a. the volatility of the company's
Fixed Income Arbitrage
Risk & Return Fixed Income Arbitrage: Nickels in Front of a Steamroller by Jefferson Duarte Francis A. Longstaff Fan Yu Fixed Income Arbitrage Broad set of market-neutral strategies intended to exploit
1. If the opportunity cost of capital is 14 percent, what is the net present value of the factory?
MØA 155 - Fall 2011 PROBLEM SET: Hand in 1 Exercise 1. An investor buys a share for $100 and sells it five years later, at the end of the year, at the price of $120.23. Each year the stock pays dividends
Fixed Income Portfolio Management. Interest rate sensitivity, duration, and convexity
Fixed Income ortfolio Management Interest rate sensitivity, duration, and convexity assive bond portfolio management Active bond portfolio management Interest rate swaps 1 Interest rate sensitivity, duration,
FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver
FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver Question: How do you create a diversified stock portfolio? Advice given by most financial advisors
Examination II. Fixed income valuation and analysis. Economics
Examination II Fixed income valuation and analysis Economics Questions Foundation examination March 2008 FIRST PART: Multiple Choice Questions (48 points) Hereafter you must answer all 12 multiple choice
Econ 422 Summer 2006 Final Exam Solutions
Econ 422 Summer 2006 Final Exam Solutions This is a closed book exam. However, you are allowed one page of notes (double-sided). Answer all questions. For the numerical problems, if you make a computational
The CAPM (Capital Asset Pricing Model) NPV Dependent on Discount Rate Schedule
The CAPM (Capital Asset Pricing Model) Massachusetts Institute of Technology CAPM Slide 1 of NPV Dependent on Discount Rate Schedule Discussed NPV and time value of money Choice of discount rate influences
Session X: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics. Department of Economics, City University, London
Session X: Options: Hedging, Insurance and Trading Strategies Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Option
Bonds, Preferred Stock, and Common Stock
Bonds, Preferred Stock, and Common Stock I. Bonds 1. An investor has a required rate of return of 4% on a 1-year discount bond with a $100 face value. What is the most the investor would pay for 2. An
Options (1) Class 19 Financial Management, 15.414
Options (1) Class 19 Financial Management, 15.414 Today Options Risk management: Why, how, and what? Option payoffs Reading Brealey and Myers, Chapter 2, 21 Sally Jameson 2 Types of questions Your company,
Mid-Term Spring 2003
Mid-Term Spring 2003 1. (1 point) You want to purchase XYZ stock at $60 from your broker using as little of your own money as possible. If initial margin is 50% and you have $3000 to invest, how many shares
Option Pricing Theory and Applications. Aswath Damodaran
Option Pricing Theory and Applications Aswath Damodaran What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called
CHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION PROBLEM SETS 1. The value of a put option also increases with the volatility of the stock. We see this from the put-call parity theorem as follows: P = C S + PV(X) + PV(Dividends)
ENTREPRENEURIAL FINANCE: Strategy Valuation and Deal Structure
ENTREPRENEURIAL FINANCE: Strategy Valuation and Deal Structure Chapter 9 Valuation Questions and Problems 1. You are considering purchasing shares of DeltaCad Inc. for $40/share. Your analysis of the company
Chapter 6 The Tradeoff Between Risk and Return
Chapter 6 The Tradeoff Between Risk and Return MULTIPLE CHOICE 1. Which of the following is an example of systematic risk? a. IBM posts lower than expected earnings. b. Intel announces record earnings.
ANALYSIS AND MANAGEMENT
ANALYSIS AND MANAGEMENT T H 1RD CANADIAN EDITION W. SEAN CLEARY Queen's University CHARLES P. JONES North Carolina State University JOHN WILEY & SONS CANADA, LTD. CONTENTS PART ONE Background CHAPTER 1
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT PROBLEM SETS 1. In formulating a hedge position, a stock s beta and a bond s duration are used similarly to determine the expected percentage gain or loss
CHAPTER 22 Options and Corporate Finance
CHAPTER 22 Options and Corporate Finance Multiple Choice Questions: I. DEFINITIONS OPTIONS a 1. A financial contract that gives its owner the right, but not the obligation, to buy or sell a specified asset
Introduction to Equity Derivatives
Introduction to Equity Derivatives Aaron Brask + 44 (0)20 7773 5487 Internal use only Equity derivatives overview Products Clients Client strategies Barclays Capital 2 Equity derivatives products Equity
Financial-Institutions Management. Solutions 1. 6. A financial institution has the following market value balance sheet structure:
FIN 683 Professor Robert Hauswald Financial-Institutions Management Kogod School of Business, AU Solutions 1 Chapter 7: Bank Risks - Interest Rate Risks 6. A financial institution has the following market
Finance 2 for IBA (30J201) F. Feriozzi Re-sit exam June 18 th, 2012. Part One: Multiple-Choice Questions (45 points)
Finance 2 for IBA (30J201) F. Feriozzi Re-sit exam June 18 th, 2012 Part One: Multiple-Choice Questions (45 points) Question 1 Assume that capital markets are perfect. Which of the following statements
LOCKING IN TREASURY RATES WITH TREASURY LOCKS
LOCKING IN TREASURY RATES WITH TREASURY LOCKS Interest-rate sensitive financial decisions often involve a waiting period before they can be implemen-ted. This delay exposes institutions to the risk that
Investments, Chapter 4
Investments, Chapter 4 Answers to Selected Problems 2. An open-end fund has a net asset value of $10.70 per share. It is sold with a front-end load of 6 percent. What is the offering price? Answer: When
CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS
1 CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS (f) 1 The three step valuation process consists of 1) analysis of alternative economies and markets, 2) analysis of alternative industries
ENTREPRENEURIAL FINANCE: Strategy, Valuation, and Deal Structure
ENTREPRENEURIAL FINANCE: Strategy, Valuation, and Deal Structure Chapter 11. The Entrepreneur s Perspective on Value Questions and Problems 1. A venture that requires an investment of $5 million is expected
Chapter 11, Risk and Return
Chapter 11, Risk and Return 1. A portfolio is. A) a group of assets, such as stocks and bonds, held as a collective unit by an investor B) the expected return on a risky asset C) the expected return on
1 Capital Allocation Between a Risky Portfolio and a Risk-Free Asset
Department of Economics Financial Economics University of California, Berkeley Economics 136 November 9, 2003 Fall 2006 Economics 136: Financial Economics Section Notes for Week 11 1 Capital Allocation
