Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
|
|
|
- Brittany Morris
- 9 years ago
- Views:
Transcription
1 Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r > 0, then r is the distance of the point from the pole; θ (in degrees or radians) formed by the polar axis and a ray from the pole through the point. We call the ordered pair (r, θ) the polar coordinate of the point. 3. Example: In polar coordinate system, locate point (2, π 4 ). 4. In using polar coordinates (r, θ), if r < 0, the corresponding point is on the ray from the pole extending in the direction opposite the terminal side of θ at a distance r units from the pole. 1
2 5. Example: In polar coordinate system, locate point ( 3, 2π 3 ). 6. Example: Plot the points with the following polar coordinates: (1) (3, 5π 3 ) (2) (2, π 4 ) (3) (3, 0) (4) ( 2, π 4 ) 7. Example: Find several polar coordinates of a single point (2, π 4 ). 8. Remark: A point with polar coordinates (r, θ) also can be represented by either of the following: (r, θ + 2kπ) or ( r, θ + π + 2kπ), k any integer The polar coordinates of the pole are (0, θ), where θ can be any angle. 9. Example: Plot the point with polar coordinates (3, π ), and find other polar coordinates (r, θ) 6 of this same point for which: (1) r > 0, 2π θ 4π (2) r < 0, 0 θ < 2π 2
3 (3) r > 0, 2π θ < Theorem: Conversion from polar coordinates to rectangular coordinates by If P is a point with polar coordinates (r, θ), the rectangular coordinates (x, y) of P are given x = r cos θ y = r sin θ 11. Example: Find the rectangular coordinates of the points with the following polar coordinates: (1) (6, π 6 ) (2) ( 4, π 4 ). 12. Converting from rectangular coordinates to polar coordinates: Case 1: Points that lie on either the x-axis or the y-axis. Suppose a > 0, we have 3
4 Case 2: Points that lie in a quadrant. 13. Summary: Steps for converting from rectangular to polar coordinates. (1) Always plot the point (x, y) first. (2) To find r using r 2 = x 2 + y 2. (3) To find θ, first determine the quadrant that the point lies in: Quadrant I: θ = tan 1 y x Quadrant III: θ = π + tan 1 y x Quadrant II: θ = π + tan 1 y x Quadrant IV: θ = tan 1 y x 14. Find polar coordinates of a point whose rectangular coordinates are: (1) (0, 3) (2) (2, 2) (3) ( 1, 3) 4
5 15. Example: Transform the equation r = 4 sin θ from polar coordinates to rectangular coordinates. 16. Example: Transform the equation 4xy = 9 from rectangular coordinates to polar coordinates. 5
6 5.2 Polar equations and graphs 1. Polar grids consist of concentric circles (with centers at the pole) and rays (with vertices at the pole). 2. The graph of a polar equation An equation whose variables are polar coordinates is called a polar equation. The graph of a polar equation consists of all points whose polar coordinates satisfy the equation. 3. Example: Identify and graph the equation: r = 3. 6
7 4. Example: Identify and graph the equation: θ = π Identify and graph the equation: r sin θ = 2. 7
8 6. Identify and graph the equation: r cos θ = Theorem: Let a be a nonzero real number. Then the graph of the equation r sin θ = a is a horizontal line a units above the pole if a > 0 and a units below the pole if a < 0. The graph of the equation r cos θ = a is a vertical line a units to the right of the pole if a > 0 and a units to the left of the pole if a < 0. 8
9 8. Example: Identify and graph the equation: r = 4 sin θ. 9. Example: Identify and graph the equation: r = 2 cos θ. 9
10 10. Theorem: Let a be a positive real number. Then the graph of each of the following equation is a circle passing through the pole: (1) r = 2a sin θ: radius a; center at (0, a) in rectangular coordinates (2) r = 2a sin θ: radius a; center at (0, a) in rectangular coordinates (3) r = 2a cos θ: radius a; center at (a, 0) in rectangular coordinates (2) r = 2a cos θ: radius a; center at ( a, 0) in rectangular coordinates 10
11 5.3 The Complex Plane; De Moivre s Theorem 1. Complex plane: Real axis and imaginary axis 2. Remark: Any point on the real axis is of the form z = x + 0i = x, a real number. Any point on the imaginary axis is of the form z = 0 + yi, a pure imaginary number. 3. Definition: Let z = x + yi be a complex number. The magnitude or modulus of z denoted by z, is defined as the distance from the origin to the point (x, y). That is, z = x 2 + y 2 4. Recall that if z = x + yi, then its conjugate, denoted by z = x yi. Example: It follows from z z = x 2 + y 2 that z = z z. 11
12 5. Polar form of a complex number: When a complex number is written in the standard form z = x + yi, we say that it is in rectangular form, or Cartesian form. If r 0 and 0 θ < 2π, the complex number z = x + yi may be written in polar form as z = x + yi = (r cos θ) + (r sin θ)i = r(cos θ + i sin θ) If z = r(cos θ + i sin θ) is the polar form of a complex number, the angle θ, 0 θ < 2π, is called the argument of z. Because r 0, we have r = x 2 + y 2, the magnitude of z = r(cos θ + i sin θ) is z = r. 6. Example: Plot the point corresponding to z = 3 i in the complex plane, and write an expression for z in polar form. 7. Example: Plot the point corresponding to z = 2(cos i sin 30 0 ) in the complex plane, and write an expression for z in rectangular form. 12
13 8. Theorem: Let z 1 = r 1 (cos θ 1 + i sin θ 1 ) and z 2 = r 2 (cos θ 2 + i sin θ 2 ) be two complex numbers. Then z 1 z 2 = r 1 r 2 [cos(θ 1 + θ 2 ) + i sin(θ 1 + θ 2 )] If z 2 0, then z 1 z 2 = r 1 r 2 [cos(θ 1 θ 2 ) + i sin(θ 1 θ 2 )] 9. Example: If z = 3(cos i sin 20 0 ) and w = 5(cos i sin ), find zw and z w. 10. Theorem: De Moivre s Theorem If z = r(cos θ + i sin θ) is a complex number, then z n = r n [cos(nθ) + i sin(nθ)] where n 1 is a positive integer. 11. Example: Write [2(cos i sin 20 0 )] 3 in the standard form a + bi. 13
14 12. Example: Write (1 + i) 5 in the standard form a + bi. 13. Definition: Let w be a given complex number, and let n 2 denote a positive integer. Any complex number z that satisfies the equation z n = w is called a complex nth root of w. 14. Theorem: Let w = r(cos θ 0 + i sin θ 0 ) be a complex number and let n 2 be an integer. If w 0, there are n distinct complex roots of w, given by the formula where k = 0, 1, 2,..., n 1. z k = n r[cos( θ 0 n + 2kπ n ) + i sin(θ 0 n + 2kπ n )] 15. Example: Find the complex cube roots of 1 + 3i. 14
15 5.4 Vectors 1. Definition: A vector is a quantity that has both magnitude and direction. It is customary to present a vector by using an arrow. The length of the arrow represents the magnitude of the vector, and the arrowhead indicates the direction of the vector. 2. Definition: If P and Q are two distinct points in the xy-plane, there is exactly one line containing both P and Q. The points on that part of the line that joins P to Q, including P and Q, form what is called the line segment P Q. If we order the points so that they proceed from P to Q, we have a directed line segment from P to Q, or a geometric vector, which we denote by P Q. We call P the initial point and Q the terminal point. 15
16 3. The magnitude of the directed line segment P Q is the distance from the point P to the point Q; that is the length of the line segment. The direction of P Q is from P to Q. If a vector v has the same magnitude and the same direction as the directed line segment P Q, we write v = P Q. The vector v whose magnitude is 0 is called the zero vector, 0. The zero vector is assigned no direction. Two vectors v and w are equal, written v = w if they have the same magnitude and the same direction. 4. Definition: The sum v + w of two vectors is defined as follows: We position the vectors v and w so that the terminal point of v coincides with the initial point of w. The vector v + w is then the unique vector whose initial point coincides with the initial point of v and whose terminal point coincides with the terminal point of w. 5. Properties of vector addition: (1) Vector addition is commutative: v + w = w + v 16
17 (2) Vector addition is associative: u + ( v + w ) = ( u + v ) + w (3) v + 0 = 0 + v = v (4) If v is a vector, then v is the vector having the same magnitude as v but whose direction is opposite to v. (5) v + ( v ) = ( v ) + v = 0 6. Definition: If v and w are two vectors, we define the difference v w as v w = v + ( w ) 17
18 7. Multiplying vectors by numbers If α is a scalar and v is a vector, the scalar product α v is defined as follows: (1) If α > 0, the product α v is the vector whose magnitude is α times the magnitude of v and whose direction is the same as v. (2) If α < 0, the product α v is the vector whose magnitude is α times the magnitude of v and whose direction is opposite that of v. (3) If α = 0 or if v = 0, then α v = 0 Properties of scalar multiplication: 0 v = 0, 1 v = v, 1 v = v (α + β) v = α v + β v, α( v + w ) = α v + α w α(β v ) = (αβ) v 8. Example: 18
19 9. Magnitudes of vectors: If v is a vector, we use the symbol v to represent the magnitude of v. 10. Theorem: Properties of v If v is a vector and if α is a scalar, then (1) v 0, (2) v = 0 if and only if v = 0 (3) v = v (4) α v = α v (5) A vector u for which u = 1 is called a unit vector 11. Definition: An algebraic vector is represented as v = a, b where a and b are real numbers (scalars) called the components of the vector v We use a rectangular coordinate system to represent algebraic vectors in the plane. If v = a, b is an algebraic vector whose initial point is at the origin, then v is called a position vector. Note that the terminal point of the position vector v = a, b is P = (a, b). 12. Theorem: Suppose that v is a vector with initial point P 1 = (x 1, y 1 ), not necessarily the origin, and terminal point P 2 = (x 2, y 2 ). If v = P 1 P 2, then v is equal to the position vector v = x2 x 1, y 2 y 1 19
20 13. Example: Find the position vector of the vector v = P 1 P 2 if P 1 = ( 1, 2) and P 2 = (4, 6). 14. Theorem: Equality of vectors Two vectors v and w are equal if and only if their corresponding components are equal. That is, If v = a 1, b 1 and w = a 2, b 2 then v = w if and only if a 1 = a 2 and b 1 = b Alternative representation of a vector: Let i denote the unit vector whose direction is along the positive x-axis; let j denote the unit vector whose direction is along the positive y-axis. Then i = 1, 0 and j = 0, 1. Any vector v = a, b can be written using the unit vectors i and j as follows: v = a, b = a 1, 0 + b 0, 1 = a i + b j We call a and b the horizontal and vertical components of v, respectively. 16. Properties: Let v = a 1 i + b1 j = a1, b 1 and w = a 2 i + b2 j = a2, b 2 be two vectors, and let α be a scalar. Then (1) v + w = (a 1 + a 2 ) i + (b 1 + b 2 ) j = a 1 + a 2, b 1 + b 2 (2) v w = (a 1 a 2 ) i + (b 1 b 2 ) j = a 1 a 2, b 1 b 2 (3) α v = (αa 1 ) i + (αb 1 ) j = αa 1, αb 1 (4) v = a b
21 17. Example: If v = 2 i + 3 j = 2, 3 and w = 3 i 4 j = 3, 4, find v + w and v w 18. Example: If v = 2 i + 3 j = 2, 3 and w = 3 i 4 j = 3, 4, find (1)3 v (2)2 v 3 w (3) v 19. Theorem: Unit vector in the direction of v For any nonzero vector v, the vector u = is a unit vector that has the same direction as v v v 20. Example: Find the unit vector in the same direction as v = 4 i 3 j. 21
22 5.5 The dot product 1. Definition: If v = a 1 i + b1 j and w = a2 i + b2 j are two vectors, the dot product v w is defined as v w = a1 a 2 + b 1 b Example: If v = 2 i 3 j and w = 5 i + 3 j, find: (1) v w (2) w v (3) v v (4) v w (5) v (6) w 3. Properties of the dot product If u, v, and w are vectors, then (1) u v = v u (2) u ( v + w ) = u v + u w (3) v v = v 2 (4) 0 v = 0 22
23 4. Angle between vectors Let u and v are two nonzero vectors, the angle θ, 0 θ π, between u and v is determined by the formula cos θ = u v u v 5. Example: Find the angle θ between u = 4 i 3 j and v = 2 i + 5 j. 23
24 5.5 The dot product 1. Definition: If v = a 1 i + b1 j and w = a2 i + b2 j are two vectors, the dot product v w is defined as v w = a1 a 2 + b 1 b Example: If v = 2 i 3 j and w = 5 i + 3 j, find: (1) v w (2) w v (3) v v (4) v w (5) v (6) w 3. Properties of the dot product If u, v, and w are vectors, then (1) u v = v u (2) u ( v + w ) = u v + u w (3) v v = v 2 (4) 0 v = 0 24
25 4. Angle between vectors Let u and v are two nonzero vectors, the angle θ, 0 θ π, between u and v is determined by the formula cos θ = u v u v 5. Example: Find the angle θ between u = 4 i 3 j and v = 2 i + 5 j. 6. Parallel vectors Two vectors v and w are said to be parallel if there exists a nonzero scalar α so that v = α w. In this case, the angle θ between v and w is 0 or π. 7. Example: Show vectors v = 3 i j and w = 6 i 2 j are parallel. 25
26 8. Orthogonal vectors If the angle θ between two nonzero vectors v and w is π, the vectors v and w are called 2 orthogonal. Theorem: Two vectors v and w are orthogonal if and only if v w = 0 9. Example: Show vectors v = 2 i j and w = 3 i + 6 j are orthogonal. 10. Projection of a Vector onto Another Vector 26
27 Theorem: If v and w are two nonzero vectors, the projection of v onto w is v1 = v w w 2 w Theorem : The decomposition of v into v 1 and v 2, where v 1 is parallel to w and v 2 is perpendicular to w, is v1 = v w w 2 w v2 = v v 1 11: Example: Find the vector projection of v = i + 3 j onto w = i + j. 27
28 5.6 Vectors in space 1. Rectangular coordinates in space 2. Distance formula in space If P 1 = (x 1, y 1, z 1 ) and P 2 = (x 2, y 2, z 2 ) are two points in space, the distance d from P 1 to P 2 is d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 + (z 2 z 1 ) Example: Find the distance from P 1 = ( 1, 3, 2) to P 2 = (4, 2, 5). 4. Representation of position vectors A vector whose initial point is at the origin is called a position vector. If v is a vector with initial point at origin O and terminal point at P = (a, b, c), then we can represent v in terms of the vectors i, j, and k as v = a i + b j + c k. The scalars a, b, and c are called the components of the vector v = a i + b j + c k. 28
29 5. Representation of any vectors Suppose that v is a vector with initial point P 1 = (x 1, y 1, z 1 ), not necessarily the origin, and the terminal point P 2 = (x 2, y 2, z 2 ). If v = P 1 P 2, then v is equal to the position vector v = (x2 x 1 ) i + (y 2 y 1 ) j + (z 2 z 1 ) k. 6. Example: Find the position vector of the vector v = P 1 P 2 if P 1 = ( 1, 2, 3) and P 2 = (4, 6, 2). 7. Properties of vectors in terms of components. Let v = a 1 i + b1 j + c1 k and w = a2 i + b2 j + c2 k be two vectors, and let α be a scalar. Then (1) v = w if and only if a 1 = a 2, b 1 = b 2, and c 1 = c 2. (2) v + w = (a 1 + a 2 ) i + (b 1 + b 2 ) j + (c 1 + c 2 ) k. (3) v w = (a 1 a 2 ) i + (b 1 b 2 ) j + (c 1 c 2 ) k. (4) α v = (αa 1 ) i + (αb 1 ) j + (αc 1 ) k. (5) v = a b c Example: If v = 2 i + 3 j 2 k and w = 3 i 4 j + 5 k, find: (1) v + w (2) v w (3) 3 v (4) 2 v 3 w (5) v 29
30 9. Unit vector in the direction of v For any nonzero vector v, the vector u = is a unit vector that has the same direction as v. v v 10. Example: Find a unit vector in the same direction as v = 2 i 3 j 6 k. 11. Dot product If v = a 1 i + b1 j + c1 k and w = a2 i + b2 j + c2 k are two vectors, the dot product v w is defined as v w = a1 a 2 + b 1 b 2 + c 1 c Example: v = 2 i 3 j + 6 k and w = 5 i + 3 j k, find (1) v w (2) w v (3) v w (4) v 12. Properties of dot product If u, v, and w are vectors, then (1) u v = v u (2) u ( v + w ) = u v + u w (3) v v = v 2 (4) 0 v = 0 30
31 13. Angle between vectors If u and v are two nonzero vectors, the angle θ, 0 θ π, between u and v is determined by the formula cos θ = u v u v. 14. Example: Find the angle θ between v = 2 i 3 j + 6 k and w = 2 i + 5 j k. 31
32 5.7 The cross product 1. If v = a 1 i +b1 j +c1 k and w = a2 i +b2 j +c2 k are two vectors, the cross product v w is defined as the vector v w = (b1 c 2 b 2 c 1 ) i + (a 1 c 2 a 2 c 1 ) j + (a 1 b 2 a 2 b 1 )1 k. Note that the cross product v w of two vectors is a vector. 2. Example: If v = 2 i + 3 j + 5 k and w = i + 2 j + 3 k, find v w. 3. Determinant 4. Example: 5. Cross product in terms of determinants 32
33 6. Example: If v = 2 i + 3 j + 5 k and w = i + 2 j + 3 k, find: (1) v w (2) w v (3) v v (4) w w 7. Algebraic properties of the cross product If u, v, and w are vectors and α is a scalar, the (1) u u = 0 (2) u v = v u (3) α( v w ) = (α v ) w = v (α w ) (4) u ( v + w ) = ( u v ) + ( u w ) 8. Geometric properties of the cross product Let u and v be vectors in space. (1) u v is orthogonal to both u and v. (2) u v = u v sin θ, where θ is the angle between u and v. (3) u v is the area of the parallelogram having u 0 and v 0 as adjacent sides. (4) u v = 0 if and only if u and v are parallel. 33
34 9. Example: Find a vector that is orthogonal to u = 3 i 2 j + k and v = i + 3 j k. 10. Example: Find the area of the parallelogram whose vertices are P 1 = (0, 0, 0), P 2 = (3, 2, 1), P 3 = ( 1, 3, 1), and P 4 = (2, 1, 0). 34
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
One advantage of this algebraic approach is that we can write down
. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out
MAT 1341: REVIEW II SANGHOON BAEK
MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and
COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i
COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Two vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z
28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition
13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
The Dot and Cross Products
The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross
CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal
The Vector or Cross Product
The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
AP Physics - Vector Algrebra Tutorial
AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form
Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
Section 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
6. Vectors. 1 2009-2016 Scott Surgent ([email protected])
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
ex) What is the component form of the vector shown in the picture above?
Vectors A ector is a directed line segment, which has both a magnitude (length) and direction. A ector can be created using any two points in the plane, the direction of the ector is usually denoted by
2 Session Two - Complex Numbers and Vectors
PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar
Trigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
Area and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module:
MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex
Unit 11 Additional Topics in Trigonometry - Classwork
Unit 11 Additional Topics in Trigonometry - Classwork In geometry and physics, concepts such as temperature, mass, time, length, area, and volume can be quantified with a single real number. These are
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts
CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Factoring Patterns in the Gaussian Plane
Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood
Section 10.4 Vectors
Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such
Vector Algebra II: Scalar and Vector Products
Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.
VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position
Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
Review A: Vector Analysis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors
Elementary Linear Algebra
Elementary Linear Algebra Kuttler January, Saylor URL: http://wwwsaylororg/courses/ma/ Saylor URL: http://wwwsaylororg/courses/ma/ Contents Some Prerequisite Topics Sets And Set Notation Functions Graphs
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
Vector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
Module 8 Lesson 4: Applications of Vectors
Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems
LINES AND PLANES IN R 3
LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.
DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
Mathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
Problem set on Cross Product
1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular
Review Sheet for Test 1
Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
FRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
Linear Algebra: Vectors
A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector
Evaluating trigonometric functions
MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,
... ... . (2,4,5).. ...
12 Three Dimensions ½¾º½ Ì ÓÓÖ Ò Ø ËÝ Ø Ñ So far wehave been investigatingfunctions ofthe form y = f(x), withone independent and one dependent variable Such functions can be represented in two dimensions,
Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3
CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -
The Force Table Introduction: Theory:
1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is
of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Lecture L6 - Intrinsic Coordinates
S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
COMPLEX NUMBERS AND SERIES. Contents
COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that
Georgia Standards of Excellence Frameworks. Mathematics. GSE Pre-Calculus Unit 7: Vectors
Georgia Standards of Excellence Frameworks Mathematics GSE Pre-Calculus Unit 7: Vectors These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement.
Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the
CAMI Education linked to CAPS: Mathematics
- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
discuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Introduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
Concepts in Calculus III
Concepts in Calculus III Beta Version UNIVERSITY PRESS OF FLORIDA Florida A&M University, Tallahassee Florida Atlantic University, Boca Raton Florida Gulf Coast University, Ft. Myers Florida International
Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.
6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.
MATH 275: Calculus III. Lecture Notes by Angel V. Kumchev
MATH 275: Calculus III Lecture Notes by Angel V. Kumchev Contents Preface.............................................. iii Lecture 1. Three-Dimensional Coordinate Systems..................... 1 Lecture
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
Differentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
