Set Theory: Shading Venn Diagrams
|
|
|
- Bernard Hopkins
- 9 years ago
- Views:
Transcription
1 Set Theory: Shading Venn Diagrams Venn diagrams are representations of sets that use pictures. We will work with Venn diagrams involving two sets (two-circle diagrams) and three sets (three-circle diagrams). In order to ease our discussion of Venn diagrams, we can identify each distinct region within a Venn diagram with a label, as shown in the table below. Our labels are actually the Roman Numerals for the numbers 1 through 4 (in the two-circle diagram) and the numbers 1 through 8 (in the three-circle diagram): Two-Circle Venn Diagram Three-Circle Venn Diagram The concepts of intersection, union, and complement (as well as the corresponding notation) are also used in Venn diagrams, as we can shade parts of a diagram to represent a certain set. Furthermore, any time parentheses are involved a notation statement, that piece of the corresponding Venn diagram is shaded first. The rest of this section contains several examples, but the concepts of this section will be learned primarily through practice. To represent the set A in a two-circle Venn diagram, simply shade the circle corresponding to set A, and ignore the rest of the figure, as shown in Figure 2.4.a. Likewise, the same idea would be followed to indicate set B.
2 Example 1: Create a Venn diagram for the set A B. While we may be able to visualize the set A B in the diagram right away, let s take a look at a step-by-step approach. That process looks a little bit like a cartoon strip. To represent the set A B in a two-circle Venn diagram, start by lightly shading the set A. We will do this with vertical lines, as shown in Figure 2.4.b. Next, shade set B with horizontal lines, as shown in Figure 2.4.c. The cross-hatched, football-shaped region in the center represents where the shadings overlap. Since we are trying to shade ONLY the intersection of these two sets, we finish our diagram by darkly shading the overlap of the two sets, and erasing the parts of sets A and B that are not in the overlap. This is shown in Figure 2.4.d. Example 2: Create a Venn diagram for the set A B. Again, we may be able to visualize the set A B and draw the diagram right away. This is just fine, but for some the step-by-step approach will be helpful.
3 Start by lightly shading the set A with vertical lines, as shown in Figure 2.4.e. Next, shade set B with horizontal lines. Like before, the crosshatched region represents where the shadings overlap, as shown in Figure 2.4.f. Since we are trying to shade the union of these two sets, we finish our diagram by joining the sets together. That is, we darkly shade everything we shaded in the previous image. This is shown in Figure 2.4.g. Just like we saw with two-circle Venn diagrams, to represent the set A in a three-circle Venn diagram, we simply shade the circle corresponding to set A, and ignore the rest of the figure, as shown in figure 2.4.h. Likewise, the same idea would be followed to indicate set B or set C. (By the way, can you see why some people refer to these as Mickey Mouse problems?) The creation of more involved three-circle Venn diagrams is very similar to the process we followed for two-circle Venn diagrams. They are just a little longer.
4 When considering the Venn diagram representation for the union and/or intersection of more than two sets, just like with the arithmetic order of operations, we need to work from left to right. And, once again, similar to the arithmetic order of operations, the only time we make an exception to the left-to-right process is when parentheses are used to group a specific operation. Just like the arithmetic expressions and 10 (2 + 5) simplify to two different values, the sets A B C and A (B C) will yield two different Venn diagrams. Example 3: Create a three-circle Venn diagram for the set A B C. Again, some of us may be able to visualize all or part of this diagram right away. If that is true, great. If not, fall back on a step-by-step approach. Start by shading the set A with vertical lines, as shown in Figure 2.4.i. Next, shade set B with horizontal lines, as shown in Figure 2.4.j. Once again, the crosshatched, football-shaped region represents where the shadings overlap. We re not done yet; we ve only shown the first half. At this point we use that overlap and have shaded the set A B, as shown in Figure 2.4.k. Then we have to show the union of that football-shaped region with set C. So, we let the previously determined region be shaded with vertical lines, and then shade set C with horizontal lines, as shown in figure 2.4.l.
5 Finally, since we are trying to shade the union in this last step, we finish our diagram by joining the sets together. That is, we simply shade everything that was shaded in the previous image. The final image looks like Figure 2.4.m. Example 4: Create a three-circle Venn diagram for the set A (B C). This time, because of the parentheses, we have to consider (B C) first. Thus, start by shading set B, as shown in Figure 2.4.n. Next, we shade set C, as shown in Figure 2.4.o. Once again, the crosshatched region represents where the shadings overlap. Since we want the union of these two sets, we now join the sets together and have shaded B C.
6 Next, we need to find the intersection of B C and set A. So, we take the horizontal shading of B C, as shown in Figure 2.4.p, and then shade set A with vertical lines, as shown in Figure 2.4.q. Finally, since we are trying to shade the intersection, in this last step we finish our diagram by shading only the overlap from the previous image. The Venn diagram looks like Figure 2.4.r.
7 Example 5: Create a three-circle Venn diagram for the set B (A C). Because of the parentheses, we must consider A C first. So, start by shading set A, as shown in Figure 2.4.s. Next, we shade set C, as shown in Figure 2.4.t. Since we want A C, we join the sets together, as shown in Figure 2.4.u. Next, we shade the set B, as shown in Figure 2.4.v.
8 Finally, since we are trying to shade the intersection in this last step, we finish our diagram by shading only the overlap from the previous image. The final image looks like Figure 2.4.w.
7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
Scheduling. Getting Started. Scheduling 79
Scheduling 9 Scheduling An event planner has to juggle many workers completing different tasks, some of which must be completed before others can begin. For example, the banquet tables would need to be
1.4 Compound Inequalities
Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities
Session 6 Number Theory
Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple
Lecture 1. Basic Concepts of Set Theory, Functions and Relations
September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2
THE LANGUAGE OF SETS AND SET NOTATION
THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language
We are going to investigate what happens when we draw the three angle bisectors of a triangle using Geometer s Sketchpad.
Krystin Wright Geometer s Sketchpad Assignment Name Date We are going to investigate what happens when we draw the three angle bisectors of a triangle using Geometer s Sketchpad. First, open up Geometer
Factorizations: Searching for Factor Strings
" 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write
https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...
of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach Bell-Ringer Activity Students
What is a parabola? It is geometrically defined by a set of points or locus of points that are
Section 6-1 A Parable about Parabolas Name: What is a parabola? It is geometrically defined by a set of points or locus of points that are equidistant from a point (the focus) and a line (the directrix).
OA3-10 Patterns in Addition Tables
OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number
Base Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
Multiplying and Dividing Fractions
Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed
Order of Operations More Essential Practice
Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
Mathematics Navigator. Misconceptions and Errors
Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...
Lesson 17 Teacher Page A
Overview Students name fractions greater than with fraction circles. Students name fractions using both mixed numbers and improper fractions. Materials Fraction Circles for students and teacher Transparency
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
Basic Shapes. Most paintings can be broken down into basic shapes. See how this famous painting by Cézanne can be broken down into basic shapes.
Basic Shapes Squares, rectangles, triangles, cones, cylinders, circles, ovals...these are the basic shapes that will aid you in drawing objects more accurately. This technique can be used when doing a
Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations
Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations Benchmark (standard or reference point by which something is measured) Common denominator (when two or more fractions have the same denominator)
Dr Brian Beaudrie pg. 1
Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, 3 0.14 means add 0.14 three times, regroup, and simplify,
The small increase in x is. and the corresponding increase in y is. Therefore
Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that
Section 1.5 Exponents, Square Roots, and the Order of Operations
Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.
Areas of Polygons. Goal. At-Home Help. 1. A hockey team chose this logo for their uniforms.
-NEM-WBAns-CH // : PM Page Areas of Polygons Estimate and measure the area of polygons.. A hockey team chose this logo for their uniforms. A grid is like an area ruler. Each full square on the grid has
Lesson 4. Factors and Multiples. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 4 Factors and Multiples Objectives Understand what factors and multiples are Write a number as a product of its prime factors Find the greatest
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
INTERSECTION MATH And more! James Tanton
INTERSECTION MATH And more! James Tanton www.jamestanton.com The following represents a sample activity based on the December 2006 newsletter of the St. Mark s Institute of Mathematics (www.stmarksschool.org/math).
Note: The teacher will need to construct one sample automobile using the parts above to show to the students.
Preview of Main Idea The development of the assembly line was critical to the success of Henry Ford s Model T vehicle and to the development of Detroit as the Motor City. The efficiencies of the assembly
E XPLORING QUADRILATERALS
E XPLORING QUADRILATERALS E 1 Geometry State Goal 9: Use geometric methods to analyze, categorize and draw conclusions about points, lines, planes and space. Statement of Purpose: The activities in this
Geometer s Sketchpad. Discovering the incenter of a triangle
Geometer s Sketchpad Discovering the incenter of a triangle Name: Date: 1.) Open Geometer s Sketchpad (GSP 4.02) by double clicking the icon in the Start menu. The icon looks like this: 2.) Once the program
A Little Set Theory (Never Hurt Anybody)
A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra
Section 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE
Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,
Literature Discussion Strategies
1 Kathy G. Short From Creating Classrooms for Authors and Inquirers, Kathy G. Short and Jerome Harste, Heinemann, 1996. FREE WRITES (Connection) After reading the book, set a timer for anywhere from 5-15minutes.
Classifying Lesson 1 Triangles
Classifying Lesson 1 acute angle congruent scalene Classifying VOCABULARY right angle isosceles Venn diagram obtuse angle equilateral You classify many things around you. For example, you might choose
Session 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares
Fatigue Analysis of an Inline Skate Axel
FATIGUE ANALYSIS OF AN INLINE SKATE AXEL 57 Fatigue Analysis of an Inline Skate Axel Authors: Faculty Sponsor: Department: Garrett Hansen, Mike Woizeschke Dr. Shanzhong (Shawn) Duan Mechanical Engineering
Introduction to Fractions
Section 0.6 Contents: Vocabulary of Fractions A Fraction as division Undefined Values First Rules of Fractions Equivalent Fractions Building Up Fractions VOCABULARY OF FRACTIONS Simplifying Fractions Multiplying
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to
Decimal Notations for Fractions Number and Operations Fractions /4.NF
Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.
MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
Properties of Atoms and the Periodic Table
Properties of Atoms and the Periodic Table Section 3 The Periodic Table Skim Section 3 and write three questions based on your brief preview. 1. Accept all reasonable answers. How are the elements organized
Mu2108 Set Theory: A Gentle Introduction Dr. Clark Ross
Mu2108 Set Theory: A Gentle Introduction Dr. Clark Ross Consider (and play) the opening to Schoenberg s Three Piano Pieces, Op. 11, no. 1 (1909): If we wish to understand how it is organized, we could
Financial Mathematics
Financial Mathematics For the next few weeks we will study the mathematics of finance. Apart from basic arithmetic, financial mathematics is probably the most practical math you will learn. practical in
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
Using the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º.
Using the Quadrant Eye Piece Protractor Handle You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements 90º. Plumb Bob ø
Tessellating with Regular Polygons
Tessellating with Regular Polygons You ve probably seen a floor tiled with square tiles. Squares make good tiles because they can cover a surface without any gaps or overlapping. This kind of tiling is
Decomposing Numbers (Operations and Algebraic Thinking)
Decomposing Numbers (Operations and Algebraic Thinking) Kindergarten Formative Assessment Lesson Designed and revised by Kentucky Department of Education Mathematics Specialists Field-tested by Kentucky
Grade 7/8 Math Circles November 3/4, 2015. M.C. Escher and Tessellations
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Tiling the Plane Grade 7/8 Math Circles November 3/4, 2015 M.C. Escher and Tessellations Do the following
TEACHER S GUIDE TO RUSH HOUR
Using Puzzles to Teach Problem Solving TEACHER S GUIDE TO RUSH HOUR Includes Rush Hour 2, 3, 4, Rush Hour Jr., Railroad Rush Hour and Safari Rush Hour BENEFITS Rush Hour is a sliding piece puzzle that
Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
The fairy tale Hansel and Gretel tells the story of a brother and sister who
Piecewise Functions Developing the Graph of a Piecewise Function Learning Goals In this lesson, you will: Develop the graph of a piecewise function from a contet with or without a table of values. Represent
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Chapter 1 Section 4: Compound Linear Inequalities
Chapter 1 Section 4: Compound Linear Inequalities Introduction Compound linear inequalities involve finding the union or intersection of solution sets of two or more linear inequalities. You ve already
All of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
Greatest Common Factors and Least Common Multiples with Venn Diagrams
Greatest Common Factors and Least Common Multiples with Venn Diagrams Stephanie Kolitsch and Louis Kolitsch The University of Tennessee at Martin Martin, TN 38238 Abstract: In this article the authors
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children.
0.1 Friend Trends This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children. In the 1950s, a Hungarian sociologist S. Szalai
SIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
Freehand Sketching. Sections
3 Freehand Sketching Sections 3.1 Why Freehand Sketches? 3.2 Freehand Sketching Fundamentals 3.3 Basic Freehand Sketching 3.4 Advanced Freehand Sketching Key Terms Objectives Explain why freehand sketching
Locating the Epicenter and Determining the Magnitude of an Earthquake
Locating the and Determining the Magnitude of an Earthquake Locating the Measuring the S-P time interval There are hundreds of seismic data recording stations throughout the United States and the rest
The GMAT Guru. Prime Factorization: Theory and Practice
. Prime Factorization: Theory and Practice The following is an ecerpt from The GMAT Guru Guide, available eclusively to clients of The GMAT Guru. If you would like more information about GMAT Guru services,
3D Drawing. Single Point Perspective with Diminishing Spaces
3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
Representing Vector Fields Using Field Line Diagrams
Minds On Physics Activity FFá2 5 Representing Vector Fields Using Field Line Diagrams Purpose and Expected Outcome One way of representing vector fields is using arrows to indicate the strength and direction
Math Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
Rational Number Project
Rational Number Project Fraction Operations and Initial Decimal Ideas Lesson 2: Overview Students review equivalence ideas with paper folding. Students develop a symbolic rule for finding equivalent fractions.
CAEA Lesson Plan Format
CAEA Lesson Plan Format LESSON TITLE: Give that Left Brain a Break! Blind Contour, a New Approach Name of Presenter: Mary Ann Davis Grade Level: Elementary, MS, HS, University, Special Needs (all) Background
Creating 2D Isometric Drawings
1-(800) 877-2745 www.ashlar-vellum.com Creating 2D Isometric Drawings Using Graphite TM Copyright 2008 Ashlar Incorporated. All rights reserved. C62DISO0806. Ashlar-Vellum Graphite No matter how many Top,
How to Graph Trigonometric Functions
How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle
Intro to Excel spreadsheets
Intro to Excel spreadsheets What are the objectives of this document? The objectives of document are: 1. Familiarize you with what a spreadsheet is, how it works, and what its capabilities are; 2. Using
Building Concepts: Dividing a Fraction by a Whole Number
Lesson Overview This TI-Nspire lesson uses a unit square to explore division of a unit fraction and a fraction in general by a whole number. The concept of dividing a quantity by a whole number, n, can
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008
Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?
Writing Reports BJECTIVES ONTENTS. By the end of this section you should be able to :
Writing Reports By the end of this section you should be able to : O BJECTIVES Understand the purposes of a report Plan a report Understand the structure of a report Collect information for your report
A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated
Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means
1974 Rubik. Rubik and Rubik's are trademarks of Seven Towns ltd., used under license. All rights reserved. Solution Hints booklet
# # R 1974 Rubik. Rubik and Rubik's are trademarks of Seven Towns ltd., used under license. All rights reserved. Solution Hints booklet The Professor s Cube Solution Hints Booklet The Greatest Challenge
MD5-26 Stacking Blocks Pages 115 116
MD5-26 Stacking Blocks Pages 115 116 STANDARDS 5.MD.C.4 Goals Students will find the number of cubes in a rectangular stack and develop the formula length width height for the number of cubes in a stack.
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
DOING MORE WITH WORD: MICROSOFT OFFICE 2010
University of North Carolina at Chapel Hill Libraries Carrboro Cybrary Chapel Hill Public Library Durham County Public Library DOING MORE WITH WORD: MICROSOFT OFFICE 2010 GETTING STARTED PAGE 02 Prerequisites
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
Pigeonhole Principle Solutions
Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such
Such As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
The Secret to Playing Your Favourite Music By Ear
The Secret to Playing Your Favourite Music By Ear By Scott Edwards - Founder of I ve written this report to give musicians of any level an outline of the basics involved in learning to play any music by
COLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
CHAPTER 16: PROJECT SCHEDULING
CHAPTER 16: PROJECT SCHEDULING Chapter outline Responsibility Allocation Matrix (RAM chart) Gantt chart Whenever you're working on a large project, it s crucial to share the workload, coordinate your activities,
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
Lecture 2. Binary and Hexadecimal Numbers
Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations
CBA Fractions Student Sheet 1
Student Sheet 1 1. If 3 people share 12 cookies equally, how many cookies does each person get? 2. Four people want to share 5 cakes equally. Show how much each person gets. Student Sheet 2 1. The candy
GRADE 5 SUPPLEMENT. Set A2 Number & Operations: Primes, Composites & Common Factors. Includes. Skills & Concepts
GRADE 5 SUPPLEMENT Set A Number & Operations: Primes, Composites & Common Factors Includes Activity 1: Primes & Common Factors A.1 Activity : Factor Riddles A.5 Independent Worksheet 1: Prime or Composite?
Solutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
NF5-12 Flexibility with Equivalent Fractions and Pages 110 112
NF5- Flexibility with Equivalent Fractions and Pages 0 Lowest Terms STANDARDS preparation for 5.NF.A., 5.NF.A. Goals Students will equivalent fractions using division and reduce fractions to lowest terms.
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
Grade 7/8 Math Circles Sequences and Series
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Sequences and Series November 30, 2012 What are sequences? A sequence is an ordered
Name Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
Regions in a circle. 7 points 57 regions
Regions in a circle 1 point 1 region points regions 3 points 4 regions 4 points 8 regions 5 points 16 regions The question is, what is the next picture? How many regions will 6 points give? There's an
EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS
EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the
