Finite Mixtures for Insurance Modeling
|
|
|
- Horace Lynch
- 9 years ago
- Views:
Transcription
1 Matthew J. Flynn, PhD Finite Mixtures for Insurance Modeling
2 Outline - Finite Mixture Models (FMM) Motivation Grouped claims, long-tailed lines JMP 9 Distribution Platform finite mixtures Interactive JMP Two-Component Normal mixture R two packages - flexmix, gamlss JMP s Nonlinear Platform SAS Proc NLMIXED More Examples Poisson counts, WC Losses
3 Joint work with Luyang Fu and Doug Pirtle of State Auto
4 HO by-peril example: heavier tail than lognormal
5 Motivation Personal Lines Auto Comprehensive Losses
6 JMP 9 includes finite 2,3+ component Normal mixtures
7 Interactive JMP Two-Component Normal mixture
8 Via R library(gamlss); library(gamlss.mx); m2 <- gamlssmx( waiting ~ 1, data=faithful, family=no, k=2); m2 library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2)
9 Via SAS Proc UNIVARIATE
10 SAS obtain starting values via Proc SQL /* two-component normal mixture */ proc sql; select log(mean(waiting)-0.5*var(waiting)**0.5) as mu1start, log(mean(waiting)+0.5*var(waiting)**0.5) as mu2start into :mu1start, :mu2start from faithful; quit;
11 SAS obtain starting values via Proc SQL /* two-component normal mixture */ proc sql; select log(mean(waiting)-0.5*var(waiting)**0.5) as mu1start, log(mean(waiting)+0.5*var(waiting)**0.5) as mu2start into :mu1start, :mu2start from faithful; quit; Create SAS Macro variables note: separation
12 Proc NLMIXED data=faithful; parms eta_mu1=&mu1start. eta_mu2=&mu2start. eta_sigma1=1.8 eta_sigma2=1.8 eta_p1=0.57 ; mu1 = exp(eta_mu1); mu2 = exp(eta_mu2); sigma1 = exp(eta_sigma1); sigma2 = exp(eta_sigma2); p1 = exp(eta_p1)/(1 + exp(eta_p1)); p2 = 1 - p1; y = waiting; Starting values (from above) Log link functions Normal 2 Component Finite Mixture loglikelihood loglike = logpdf('normalmix', y, 2, p1, p2, mu1, mu2, sigma1, sigma2) ; *loglike = logpdf('normal', y, mu1, sigma1)*p1 + (1 - p1)*logpdf('normal', y, mu2, sigma2); model y ~ general(loglike); estimate 'mu1' mu1; estimate 'mu2' mu2; estimate 'sigma1' sigma1; estimate 'sigma2' sigma2; estimate 'p1' p1; estimate 'p2' p2; run;
13
14 Via JMP nonlinear platform - setup dt = Current Data Table(); // set up the negative log likelihood with // starting values ll = dt << new column("normmix"); Exform = expr( ll << set formula(parameter( { eta_mu1= , eta_mu2= , eta_sigma1=1.8, eta_sigma2=1.8, eta_p1=-0.57 }, mu1 = exp(eta_mu1); mu2 = exp(eta_mu2); sigma1 = exp(eta_sigma1); sigma2 = exp(eta_sigma2); p1 = exp(eta_p1)/(1 + exp(eta_p1)); p2 = 1 - p1; -log( Normal Mixture Density( :waiting, mu1 / mu2, sigma1 / sigma2, p1 / p2 ) ) ) )); eval(eval Expr(exform));
15 Via JMP Nonlinear Platform nl = Nonlinear( Loss( :Normmix ), Numeric Derivatives Only( 1 ), Loss is Neg LogLikelihood( 1 ), QuasiNewton BFGS, Finish, Custom Estimate( exp(eta_mu1) ), Custom Estimate( exp(eta_mu2) ), Custom Estimate( exp(eta_sigma1) ), Custom Estimate( exp(eta_sigma2) ), Custom Estimate( exp(eta_p1)/(1 + exp(eta_p1)) ), Custom Estimate( 1 - exp(eta_p1)/(1 + exp(eta_p1)) ), );
16 Via JMP Nonlinear Platform Output
17 JMP Analyze, Distribution Platform
18 Time Permitting Additional Examples Proc FMM.sas FMM(2) Poisson Counts - regressors Exp_mix.sas FMM Exponential, Gamma dists WC_Loss.sas FMM Gamma with regressors
19 Further Reading Deb, Partha and J. F. Burgess Jr., A quasi-experimental comparison of statistical models for health care expenditures, 2003, wp, Deb, Partha and P. K. Trivedi, Demand for Medical Care by the Elderly: A Finite Mixture Approach, Journal of Applied Econometrics, 1997, 12, , v12.3/deb-trivedi/ Grun, Bettina and Friedrich Leisch, Fitting Finite Mixtures of Generalized Linear Regressions in R, Computational Statistics and Data Analysis, 2006, Klugman, Stuart and Jacques Rioux, Toward a unified approach to fitting loss models, North American Actuarial Journal, Jan-06, 10, 1, 63-83, Lee, Andy H., Kui Wang, Kelvin K.W. Yau, Geoffrey J. McLachlan and S.K. Ng Maternity length of stay modeling by gamma mixture regression with random effects Biometrical Journal, Aug-2007, v49, n5, p Leisch, Friederich and Bettina Gruen, FlexMix Version 2: Finite mixtures with concomitant variables and varying and constant parameters, Journal of Statistical Software, 2007, 28(4), 1-35, Park, Byung-Jung and Dominique Lord, Application of Finite Mixture Models for Vehicle Crash Data Analysis, wp, Feb-2009,
20 Further Reading Rempala, Grzegorz A. and Richard A. Derrig, Modeling Hidden Exposures in Claim Severity via the EM Algorithm, ASTIN Colloquia - Bergen, Norway Jun-2004, Stokes, Maura E., Fang Chen, and Ying So, On Deck SAS/STAT 9.3, SAS Global Forum, 2011, 331, Teodorescu, Sandra, Different approaches to model the loss distribution of a real data set from motor third party liability insurance, Romanian Journal of Insurance, Apr-2010, ,
21
22 Thank you Questions? Matt Flynn #analytics2011
Offset Techniques for Predictive Modeling for Insurance
Offset Techniques for Predictive Modeling for Insurance Matthew Flynn, Ph.D, ISO Innovative Analytics, W. Hartford CT Jun Yan, Ph.D, Deloitte & Touche LLP, Hartford CT ABSTRACT This paper presents the
The zero-adjusted Inverse Gaussian distribution as a model for insurance claims
The zero-adjusted Inverse Gaussian distribution as a model for insurance claims Gillian Heller 1, Mikis Stasinopoulos 2 and Bob Rigby 2 1 Dept of Statistics, Macquarie University, Sydney, Australia. email:
A Deeper Look Inside Generalized Linear Models
A Deeper Look Inside Generalized Linear Models University of Minnesota February 3 rd, 2012 Nathan Hubbell, FCAS Agenda Property & Casualty (P&C Insurance) in one slide The Actuarial Profession Travelers
The Distribution of Aggregate Life Insurance Claims
The Distribution of ggregate Life Insurance laims Tom Edwalds, FS Munich merican Reassurance o. BSTRT This paper demonstrates the calculation of the moments of the distribution of aggregate life insurance
A Model of Optimum Tariff in Vehicle Fleet Insurance
A Model of Optimum Tariff in Vehicle Fleet Insurance. Bouhetala and F.Belhia and R.Salmi Statistics and Probability Department Bp, 3, El-Alia, USTHB, Bab-Ezzouar, Alger Algeria. Summary: An approach about
Longitudinal Modeling of Singapore Motor Insurance
Longitudinal Modeling of Singapore Motor Insurance Emiliano A. Valdez University of New South Wales Edward W. (Jed) Frees University of Wisconsin 28-December-2005 Abstract This work describes longitudinal
Development Period 1 2 3 4 5 6 7 8 9 Observed Payments
Pricing and reserving in the general insurance industry Solutions developed in The SAS System John Hansen & Christian Larsen, Larsen & Partners Ltd 1. Introduction The two business solutions presented
More Flexible GLMs Zero-Inflated Models and Hybrid Models
More Flexible GLMs Zero-Inflated Models and Hybrid Models Mathew Flynn, Ph.D. Louise A. Francis FCAS, MAAA Motivation: GLMs are widely used in insurance modeling applications. Claim or frequency models
A revisit of the hierarchical insurance claims modeling
A revisit of the hierarchical insurance claims modeling Emiliano A. Valdez Michigan State University joint work with E.W. Frees* * University of Wisconsin Madison Statistical Society of Canada (SSC) 2014
A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA
REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São
AT&T Global Network Client for Windows Product Support Matrix January 29, 2015
AT&T Global Network Client for Windows Product Support Matrix January 29, 2015 Product Support Matrix Following is the Product Support Matrix for the AT&T Global Network Client. See the AT&T Global Network
Stochastic programming approaches to pricing in non-life insurance
Stochastic programming approaches to pricing in non-life insurance Martin Branda Charles University in Prague Department of Probability and Mathematical Statistics 11th International Conference on COMPUTATIONAL
SUMAN DUVVURU STAT 567 PROJECT REPORT
SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania Oriana Zacaj Department of Mathematics, Polytechnic University, Faculty of Mathematics and Physics Engineering
Analysis One Code Desc. Transaction Amount. Fiscal Period
Analysis One Code Desc Transaction Amount Fiscal Period 57.63 Oct-12 12.13 Oct-12-38.90 Oct-12-773.00 Oct-12-800.00 Oct-12-187.00 Oct-12-82.00 Oct-12-82.00 Oct-12-110.00 Oct-12-1115.25 Oct-12-71.00 Oct-12-41.00
Simulation Models for Business Planning and Economic Forecasting. Donald Erdman, SAS Institute Inc., Cary, NC
Simulation Models for Business Planning and Economic Forecasting Donald Erdman, SAS Institute Inc., Cary, NC ABSTRACT Simulation models are useful in many diverse fields. This paper illustrates the use
Executive Master of Public Administration. QUANTITATIVE TECHNIQUES I For Policy Making and Administration U6311, Sec. 003
INSTRUCTORS: Executive Master of Public Administration PROFESSOR Stuart E. Ward TEACHING ASSISTANT Nupur Kumar E-Mail: [email protected] [email protected] Office Phone# 212.854.5941 212-663-7515 Cell:
Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page
Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*
COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) 2 Fixed Rates Variable Rates FIXED RATES OF THE PAST 25 YEARS AVERAGE RESIDENTIAL MORTGAGE LENDING RATE - 5 YEAR* (Per cent) Year Jan Feb Mar Apr May Jun
Travelers Analytics: U of M Stats 8053 Insurance Modeling Problem
Travelers Analytics: U of M Stats 8053 Insurance Modeling Problem October 30 th, 2013 Nathan Hubbell, FCAS Shengde Liang, Ph.D. Agenda Travelers: Who Are We & How Do We Use Data? Insurance 101 Basic business
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009
HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Introduction 2. A General Formulation 3. Truncated Normal Hurdle Model 4. Lognormal
Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
Monte Carlo Simulation
1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: [email protected] web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging
The Study of Chinese P&C Insurance Risk for the Purpose of. Solvency Capital Requirement
The Study of Chinese P&C Insurance Risk for the Purpose of Solvency Capital Requirement Xie Zhigang, Wang Shangwen, Zhou Jinhan School of Finance, Shanghai University of Finance & Economics 777 Guoding
SAS Certificate Applied Statistics and SAS Programming
SAS Certificate Applied Statistics and SAS Programming SAS Certificate Applied Statistics and Advanced SAS Programming Brigham Young University Department of Statistics offers an Applied Statistics and
Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL
Paper SA01-2012 Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL ABSTRACT Analysts typically consider combinations
STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
Proposal to Reduce Opening Hours at the Revenues & Benefits Coventry Call Centre
Proposal to Reduce Opening Hours at the Revenues & Benefits Coventry Call Centre Proposal To change the opening hours of the Revenues & Benefits Call Centre to 9am until 5pm Monday to Friday with effect
VI. Introduction to Logistic Regression
VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models
SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria
Paper SA01_05 SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria Dennis J. Beal, Science Applications International Corporation, Oak Ridge, TN
Predicting Customer Default Times using Survival Analysis Methods in SAS
Predicting Customer Default Times using Survival Analysis Methods in SAS Bart Baesens [email protected] Overview The credit scoring survival analysis problem Statistical methods for Survival
Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market
Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market W. Hürlimann 1 Abstract. We consider the dynamic stable benchmark rate model introduced in Verlaak et al. (005),
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
How To Build A Predictive Model In Insurance
The Do s & Don ts of Building A Predictive Model in Insurance University of Minnesota November 9 th, 2012 Nathan Hubbell, FCAS Katy Micek, Ph.D. Agenda Travelers Broad Overview Actuarial & Analytics Career
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8
Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138 Exhibit 8 Case 2:08-cv-02463-ABC-E Document 1-4 Filed 04/15/2008 Page 2 of 138 Domain Name: CELLULARVERISON.COM Updated Date: 12-dec-2007
i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September
OMBU ENTERPRISES, LLC. Process Metrics. 3 Forest Ave. Swanzey, NH 03446 Phone: 603-209-0600 Fax: 603-358-3083 E-mail: OmbuEnterprises@msn.
OMBU ENTERPRISES, LLC 3 Forest Ave. Swanzey, NH 03446 Phone: 603-209-0600 Fax: 603-358-3083 E-mail: [email protected] Process Metrics Metrics tell the Process Owner how the process is operating.
ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? 1. INTRODUCTION
ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? SAMUEL H. COX AND YIJIA LIN ABSTRACT. We devise an approach, using tobit models for modeling annuity lapse rates. The approach is based on data provided
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
Pricing Alternative forms of Commercial insurance cover. Andrew Harford
Pricing Alternative forms of Commercial insurance cover Andrew Harford Pricing alternative covers Types of policies Overview of Pricing Approaches Total claim cost distribution Discounting Cash flows Adjusting
Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry
Paper 12028 Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry Junxiang Lu, Ph.D. Overland Park, Kansas ABSTRACT Increasingly, companies are viewing
Approximation of Aggregate Losses Using Simulation
Journal of Mathematics and Statistics 6 (3): 233-239, 2010 ISSN 1549-3644 2010 Science Publications Approimation of Aggregate Losses Using Simulation Mohamed Amraja Mohamed, Ahmad Mahir Razali and Noriszura
Variable Selection for Health Care Demand in Germany
Variable Selection for Health Care Demand in Germany Zhu Wang Connecticut Children s Medical Center University of Connecticut School of Medicine [email protected] July 23, 2015 This document
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Pricing Alternative forms of Commercial Insurance cover
Pricing Alternative forms of Commercial Insurance cover Prepared by Andrew Harford Presented to the Institute of Actuaries of Australia Biennial Convention 23-26 September 2007 Christchurch, New Zealand
Sales Forecast for Pickup Truck Parts:
Sales Forecast for Pickup Truck Parts: A Case Study on Brake Rubber Mojtaba Kamranfard University of Semnan Semnan, Iran [email protected] Kourosh Kiani Amirkabir University of Technology Tehran,
Statistical Analysis of Life Insurance Policy Termination and Survivorship
Statistical Analysis of Life Insurance Policy Termination and Survivorship Emiliano A. Valdez, PhD, FSA Michigan State University joint work with J. Vadiveloo and U. Dias Session ES82 (Statistics in Actuarial
Detection of changes in variance using binary segmentation and optimal partitioning
Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the
Model Fitting in PROC GENMOD Jean G. Orelien, Analytical Sciences, Inc.
Paper 264-26 Model Fitting in PROC GENMOD Jean G. Orelien, Analytical Sciences, Inc. Abstract: There are several procedures in the SAS System for statistical modeling. Most statisticians who use the SAS
Predicting Customer Churn in the Telecommunications Industry An Application of Survival Analysis Modeling Using SAS
Paper 114-27 Predicting Customer in the Telecommunications Industry An Application of Survival Analysis Modeling Using SAS Junxiang Lu, Ph.D. Sprint Communications Company Overland Park, Kansas ABSTRACT
Department of Epidemiology and Public Health Miller School of Medicine University of Miami
Department of Epidemiology and Public Health Miller School of Medicine University of Miami BST 630 (3 Credit Hours) Longitudinal and Multilevel Data Wednesday-Friday 9:00 10:15PM Course Location: CRB 995
Operational Risk Modeling Analytics
Operational Risk Modeling Analytics 01 NOV 2011 by Dinesh Chaudhary Pristine (www.edupristine.com) and Bionic Turtle have entered into a partnership to promote practical applications of the concepts related
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort [email protected] Motivation Location matters! Observed value at one location is
RISKY LOSS DISTRIBUTIONS AND MODELING THE LOSS RESERVE PAY-OUT TAIL
Review of Applied Economics, Vol. 3, No. 1-2, (2007) : 1-23 RISKY LOSS DISTRIBUTIONS AND MODELING THE LOSS RESERVE PAY-OUT TAIL J. David Cummins *, James B. McDonald ** & Craig Merrill *** Although an
Modeling the Implied Volatility Surface. Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003
Modeling the Implied Volatility Surface Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003 This presentation represents only the personal opinions of the author and not those of Merrill
Model Selection and Claim Frequency for Workers Compensation Insurance
Model Selection and Claim Frequency for Workers Compensation Insurance Jisheng Cui, David Pitt and Guoqi Qian Abstract We consider a set of workers compensation insurance claim data where the aggregate
Master s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
Enhanced Vessel Traffic Management System Booking Slots Available and Vessels Booked per Day From 12-JAN-2016 To 30-JUN-2017
From -JAN- To -JUN- -JAN- VIRP Page Period Period Period -JAN- 8 -JAN- 8 9 -JAN- 8 8 -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- -JAN- 8-JAN- 9-JAN- -JAN- -JAN- -FEB- : days
SAS Syntax and Output for Data Manipulation:
Psyc 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling Within-Person Change The models for this example come from Hoffman (in preparation) chapter 5. We will be examining
10/27/14. Consumer Credit Risk Management. Tackling the Challenges of Big Data Big Data Analytics. Andrew W. Lo
The Challenge of Consumer Credit Risk Management Consumer Credit Risk Management $3T of consumer credit outstanding as of 8/13 $840B of it is revolving consumer credit Average credit card debt as of 10/13:
Probability Calculator
Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Testing, Monitoring, and Dating Structural Changes in Exchange Rate Regimes
Testing, Monitoring, and Dating Structural Changes in Exchange Rate Regimes Achim Zeileis http://eeecon.uibk.ac.at/~zeileis/ Overview Motivation Exchange rate regimes Exchange rate regression What is the
The Probit Link Function in Generalized Linear Models for Data Mining Applications
Journal of Modern Applied Statistical Methods Copyright 2013 JMASM, Inc. May 2013, Vol. 12, No. 1, 164-169 1538 9472/13/$95.00 The Probit Link Function in Generalized Linear Models for Data Mining Applications
Measuring the Return on Marketing Investment
Measuring the Return on Marketing Investment E. Craig Stacey, Ph.D. Outline Measuring the Return on Marketing Investment 1 The Need for Marketing Accountability 2 A Framework for Marketing Productivity
STOCHASTIC ANALYTICS. Chris Jermaine Rice University [email protected]
STOCHASTIC ANALYTICS Chris Jermaine Rice University [email protected] 1 What Is Meant by Stochastic Analytics? 2 What Is Meant by Stochastic Analytics? It is actually a relatively little-used term (to date!)
lavaan: an R package for structural equation modeling
lavaan: an R package for structural equation modeling Yves Rosseel Department of Data Analysis Belgium Utrecht April 24, 2012 Yves Rosseel lavaan: an R package for structural equation modeling 1 / 20 Overview
Share of Dealership Profits. Auto Lending Abuses: The Pitfalls of Financing Cars. Car Lending Abuses. The Trust Tax.
Share of Dealership Profits 70.0% 60.0% Auto Lending Abuses: The Pitfalls of Financing Cars 50.0% 40.0% 30.0% Presentation of Chris Kukla NC State Bar Legal Assistance for Military Personnel Meeting October
Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes
Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, Discrete Changes JunXuJ.ScottLong Indiana University August 22, 2005 The paper provides technical details on
Operational Value-at-Risk in Case of Zero-inflated Frequency
Operational Value-at-Risk in Case of Zero-inflated Frequency 1 Zurich Insurance, Casablanca, Morocco Younès Mouatassim 1, El Hadj Ezzahid 2 & Yassine Belasri 3 2 Mohammed V-Agdal University, Faculty of
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover
Logistic Regression (a type of Generalized Linear Model)
Logistic Regression (a type of Generalized Linear Model) 1/36 Today Review of GLMs Logistic Regression 2/36 How do we find patterns in data? We begin with a model of how the world works We use our knowledge
Reject Inference in Credit Scoring. Jie-Men Mok
Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business
Is log ratio a good value for measuring return in stock investments
Is log ratio a good value for measuring return in stock investments Alfred Ultsch Databionics Research Group, University of Marburg, Germany, Contact: [email protected] Measuring the rate
Problem of Missing Data
VASA Mission of VA Statisticians Association (VASA) Promote & disseminate statistical methodological research relevant to VA studies; Facilitate communication & collaboration among VA-affiliated statisticians;
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Linear Algebra Slide 1 of
PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE
PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE BY P.D. ENGLAND AND R.J. VERRALL ABSTRACT This paper extends the methods introduced in England & Verrall (00), and shows how predictive
The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network
, pp.67-76 http://dx.doi.org/10.14257/ijdta.2016.9.1.06 The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network Lihua Yang and Baolin Li* School of Economics and
CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA
Examples: Mixture Modeling With Longitudinal Data CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA Mixture modeling refers to modeling with categorical latent variables that represent subpopulations
Package SHELF. February 5, 2016
Type Package Package SHELF February 5, 2016 Title Tools to Support the Sheffield Elicitation Framework (SHELF) Version 1.1.0 Date 2016-01-29 Author Jeremy Oakley Maintainer Jeremy Oakley
Statistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural
Multiple Choice: 2 points each
MID TERM MSF 503 Modeling 1 Name: Answers go here! NEATNESS COUNTS!!! Multiple Choice: 2 points each 1. In Excel, the VLOOKUP function does what? Searches the first row of a range of cells, and then returns
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
Hierarchical Insurance Claims Modeling
Hierarchical Insurance Claims Modeling Edward W. Frees University of Wisconsin Emiliano A. Valdez University of New South Wales 02-February-2007 y Abstract This work describes statistical modeling of detailed,
