Holland s GA Schema Theorem
|
|
|
- Randall Wilkerson
- 9 years ago
- Views:
Transcription
1 Holland s GA Schema Theorem v Objective provide a formal model for the effectiveness of the GA search process. v In the following we will first approach the problem through the framework formalized by Holland [1] and popularized by Goldberg [2]. v This concentrates on providing a model for the expectation of schema survival, where this naturally represents a limitation in itself. v We will then move on to consider further drawbacks of the original Schema Theorem and some of the recent attempts to provide more representative Schema Theorems. v Consider the case of a canonical GA, Binary alphabet; Fixed length individuals of equal length, l; Fitness Proportional Selection; Single Point Crossover; Gene wise mutation. v Definition 1 Schema, H. A schema is a subset of the space of all possible individuals for which all the genes match the template for schema H. v If A denotes the alphabet of gene alleles then A» * is the schema alphabet, where * is the wild card symbol matching any allele value. E.g. for the binary alphabet A Œ {0, 1, *} where * Œ {0, 1} Example v For a binary individual with the gene sequence { }, then it follows that one (of many) matching schema might have the form, H = [* 1 1 * 0 * *] v The schema H = [0 1 * 1 *] identifies the chromosome set, v Needless to say, not all schema are created equal, thus, 1 * * * * * * does not tell us as much as 0 1 * *
2 v Moreover, schema 1 * * * * * 0 spans the entire length of an individual whereas 1 * 1 * * * * does not. v Definition 2 Schema Order, o(h). Schema order, o( ), is the number of non * genes in schema H. Example, o(* * * 0 * * *) = 1 v Definition 3 Schema Defining Length, d(h). Schema Defining Length, d(h), is the distance between first and last non * gene in schema H. Example, d(* * * 0 * * *) = 4 4 = 0 v Note For cardinality, k, there are (k + 1) l schema in string of length l. We are now in a position to incrementally introduce the effect of the various selection and search operators associated with the above definition for the special case of a canonical GA with binary genes. Selection Operators Fitness Proportional Selection v Essentially all that we are attempting to model is the probability that individual, h, samples schema, H, or P(h Œ H) v There are several ways of modeling this. Consider the following two part model, Probability of selection µ number of instances of schema H in the population; Probability of selection µ average fitness of schema H relative to the average fitness of all individuals in the population. Thus, (Number of individuals matching (Mean fitness of individuals matching P(h Œ H) = schema H at generation t) schema H) (Mean fitness of individuals in the (Population Size) population) 2
3 or, P(h Œ H) = m( H, t) f ( H, t) Mf ( t) where m(h, t) is the number of instances of schema H at generation t. v Lemma 1 Under fitness proportional selection the expected number of instances of schema H at time t is, v Implication, E[m(H, t + 1)] = M P(h Œ H) = m(h,t) f (H,t) f (t) Schemas with fitness greater (lower) than the average population fitness are likely to account for proportionally more (less) of the population at the next generation. Strictly speaking for accurate estimates of expectation and probability the population size should be infinite. Search Operators Single point crossover v Reproduction does nothing to improve the fitness of individuals in a population. (Single point) Crossover was the first of two search operators introduced to modify the distribution of schema in the population. In his original work, Holland concentrated on modeling the lower bound alone [1]. v Consider the following individual, h, two matching schema, H 1, H 2 and crossover point between 3 rd and 4 th gene, or, h = H 1 = * 0 1 * * * 0 H 2 = * 0 1 * * * * v Observations, Schema H 1 will naturally be broken by the location of the crossover operator unless the second parent is able to repair the disrupted gene. Schema H 2 emerges unaffected and is therefore independent of the second parent. Schema with long defining length are more likely to be disrupted by single point crossover than schema using short defining lengths. v Lemma 2 Under single point crossover, the (lower bound) probability of schema H surviving at generation t is, P(H survives) = 1 P (H does not survive) 3
4 a priori selected threshold of applying crossover. v Comment, or, 1- d(h) l -1 P diff (H,t) Where P diff (H, t) is the probability that the second parent does not match schema H; and p c is the In the special case of the worst case lower bound P diff (H, t) = 1. Search Operators Gene wise Mutation v Mutation is applied gene by gene. v In order for schema H to survive, all non * genes in the schema much remain unchanged. v Probability of not changing a gene is, v Require that all o(h) non * genes survive, or (1 p m ) (1 p m ) o(h) v Typically the probability of applying the mutation operator, p m, << 1, thus (1 p m ) o(h) ª 1 o(h) p m v Lemma 3 Under gene wise mutation, the (lower bound) probability of an order o(h) schema H surviving at generation t is, v Theorem 1 The Schema Theorem [1, 2] 1 o(h) p m The expected number of schema H at generation t + 1 when using a canonical GA with proportional selection, single point crossover and gene wise mutation (where the latter are applied at rates p c and p m ) is, v Comments, E[m(H, t + 1)] m(h,t) f (H,t) f (t) Ï d(h) 1- p c 1- l p (H,t) - o(h)p Ì diff m Ó The theorem is described in terms of expectation, thus strictly speaking is only true for the case of a population with an infinite number of members. In the case of finite population sizes the significance of population drift plays an increasingly important role [3]. The above form is naturally specific to the selection and search operators under which it was derived. A more generic form for the Schema Theorem might take the form, E[m(H, t + 1)] m(h, t) a(h, t) {1 b(h, t)} 4
5 Where a(h, t) is the selection coefficient and b(h, t) is the transcription error [4]. This makes the various contributions more explicit. Specifically for schema H to survive then, or, f (H,t) f (t) a(h, t) {1 b(h, t)} Ï d(h) 1- p c 1- l p (H,t) - o(h)p Ì diff m Ó This is the basis for the observation that short (defining length), low order schema of above average population fitness will be favored by canonical GAs, or the Building Block Hypothesis [1, 2]. Problems v The Schema Theorem as defined by Holland represented a mile stone in the development of Genetic Algorithms in particular and latter in the development of corresponding theorems for Genetic Programming. However, it has also several significant shortcomings which have lead to more modern approaches to theorems for Genetic Algorithms. Consider the following, Only the worst-case scenario is considered. No positive effects of the search operators are considered. This has lead to the development of Exact Schema Theorems [5]; The theorem concentrates on the number of schema surviving not which schema survive. Such considerations have been addressed by the utilization of Markov chains to provide models of behavior associated with specific individuals in the population [6]. Claims of exponential increases in fit schema i.e., if the expectation operator of Theorem References 1 is ignored and the effects of crossover and mutation discounted, the following result was popularized by Goldberg [2], m(h, t + 1) (1 + c) m(h, t), where c is the constant by which fit schema are always fitter than the population average. Unfortunately, this is rather misleading as the average population fitness will tend to increase with t, thus population and fitness of remaining schema will tend to converge with increasing time. [1] J.H. Holland, (1998) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to biology, control and artificial intelligence. MIT Press, ISBN (NB original printing 1975). 5
6 [2] D.E., Goldberg, (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, ISBN [3] Rodgers A., Prugel-Bennett A. (1999) Genetic Drift in GA Selection Schemes, IEEE Transactions on Evolutionary Computation. 3(4), pp [4] C.R. Reeves, J.E. Rowe (2003) Genetic Algorithms Principles and Perspectives. Kluwer Academic Pub. ISBN [5] C. Stephens, H. Waelbroeck (1998) Effective Degrees of Freedom in Genetic Algorithms, Physical review: E, 57(3), pp [6] Vose M.D., Nix A. (1992) Modeling Genetic Algorithms with Markov Chains, Annals of Mathematics and Artificial Intelligence, 5, pp
A Non-Linear Schema Theorem for Genetic Algorithms
A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland
The Influence of Binary Representations of Integers on the Performance of Selectorecombinative Genetic Algorithms
The Influence of Binary Representations of Integers on the Performance of Selectorecombinative Genetic Algorithms Franz Rothlauf Working Paper 1/2002 February 2002 Working Papers in Information Systems
Introduction To Genetic Algorithms
1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: [email protected] References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization
Genetic Algorithms and Sudoku
Genetic Algorithms and Sudoku Dr. John M. Weiss Department of Mathematics and Computer Science South Dakota School of Mines and Technology (SDSM&T) Rapid City, SD 57701-3995 [email protected] MICS 2009
Comparison of Major Domination Schemes for Diploid Binary Genetic Algorithms in Dynamic Environments
Comparison of Maor Domination Schemes for Diploid Binary Genetic Algorithms in Dynamic Environments A. Sima UYAR and A. Emre HARMANCI Istanbul Technical University Computer Engineering Department Maslak
A Robust Method for Solving Transcendental Equations
www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,
Numerical Research on Distributed Genetic Algorithm with Redundant
Numerical Research on Distributed Genetic Algorithm with Redundant Binary Number 1 Sayori Seto, 2 Akinori Kanasugi 1,2 Graduate School of Engineering, Tokyo Denki University, Japan [email protected],
Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve
Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Outline Selection methods Replacement methods Variation operators Selection Methods
A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0
212 International Conference on System Engineering and Modeling (ICSEM 212) IPCSIT vol. 34 (212) (212) IACSIT Press, Singapore A Binary Model on the Basis of Imperialist Competitive Algorithm in Order
Alpha Cut based Novel Selection for Genetic Algorithm
Alpha Cut based Novel for Genetic Algorithm Rakesh Kumar Professor Girdhar Gopal Research Scholar Rajesh Kumar Assistant Professor ABSTRACT Genetic algorithm (GA) has several genetic operators that can
Row Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
Genetic Algorithm Based Interconnection Network Topology Optimization Analysis
Genetic Algorithm Based Interconnection Network Topology Optimization Analysis 1 WANG Peng, 2 Wang XueFei, 3 Wu YaMing 1,3 College of Information Engineering, Suihua University, Suihua Heilongjiang, 152061
Lab 4: 26 th March 2012. Exercise 1: Evolutionary algorithms
Lab 4: 26 th March 2012 Exercise 1: Evolutionary algorithms 1. Found a problem where EAs would certainly perform very poorly compared to alternative approaches. Explain why. Suppose that we want to find
LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
A Brief Study of the Nurse Scheduling Problem (NSP)
A Brief Study of the Nurse Scheduling Problem (NSP) Lizzy Augustine, Morgan Faer, Andreas Kavountzis, Reema Patel Submitted Tuesday December 15, 2009 0. Introduction and Background Our interest in the
A Comparison of Genotype Representations to Acquire Stock Trading Strategy Using Genetic Algorithms
2009 International Conference on Adaptive and Intelligent Systems A Comparison of Genotype Representations to Acquire Stock Trading Strategy Using Genetic Algorithms Kazuhiro Matsui Dept. of Computer Science
CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT
77 CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT 6.1 INTRODUCTION The idea of evolutionary computing was introduced by (Ingo Rechenberg 1971) in his work Evolutionary strategies.
Evolutionary Turing in the Context of Evolutionary Machines
Evolutionary Turing in the Context of Evolutionary Machines Mark Burgin Eugene Eberbach Dept. of Mathematics Dept. of Eng. and Science University of California Rensselaer Polytechnic Institute 405 Hilgard
ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013
Transistor Level Fault Finding in VLSI Circuits using Genetic Algorithm Lalit A. Patel, Sarman K. Hadia CSPIT, CHARUSAT, Changa., CSPIT, CHARUSAT, Changa Abstract This paper presents, genetic based algorithm
Genetic Algorithm Performance with Different Selection Strategies in Solving TSP
Proceedings of the World Congress on Engineering Vol II WCE, July 6-8,, London, U.K. Genetic Algorithm Performance with Different Selection Strategies in Solving TSP Noraini Mohd Razali, John Geraghty
A Parallel Processor for Distributed Genetic Algorithm with Redundant Binary Number
A Parallel Processor for Distributed Genetic Algorithm with Redundant Binary Number 1 Tomohiro KAMIMURA, 2 Akinori KANASUGI 1 Department of Electronics, Tokyo Denki University, [email protected]
Evolutionary Detection of Rules for Text Categorization. Application to Spam Filtering
Advances in Intelligent Systems and Technologies Proceedings ECIT2004 - Third European Conference on Intelligent Systems and Technologies Iasi, Romania, July 21-23, 2004 Evolutionary Detection of Rules
CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING
60 CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING 3.1 INTRODUCTION Optimal short-term hydrothermal scheduling of power systems aims at determining optimal hydro and thermal generations
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
A Fast Computational Genetic Algorithm for Economic Load Dispatch
A Fast Computational Genetic Algorithm for Economic Load Dispatch M.Sailaja Kumari 1, M.Sydulu 2 Email: 1 [email protected] 1, 2 Department of Electrical Engineering National Institute of Technology,
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm
24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider
Programming Risk Assessment Models for Online Security Evaluation Systems
Programming Risk Assessment Models for Online Security Evaluation Systems Ajith Abraham 1, Crina Grosan 12, Vaclav Snasel 13 1 Machine Intelligence Research Labs, MIR Labs, http://www.mirlabs.org 2 Babes-Bolyai
Symbol Tables. Introduction
Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The
Genetic Algorithm. Tom V. Mathew Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai-400076.
Genetic Algorithm Tom V. Mathew Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai-400076. 1 Introduction Genetic Algorithms are
Introduction to Schema Theory
Introduction to Schema Theory A survey lecture of pessimistic & exact schema theory William C. Liles R. Paul Wiegand [email protected] [email protected] ECLab George Mason University EClab - Summer Lecture
Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects
Journal of Computer Science 2 (2): 118-123, 2006 ISSN 1549-3636 2006 Science Publications Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Alaa F. Sheta Computers
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Multiobjective Multicast Routing Algorithm
Multiobjective Multicast Routing Algorithm Jorge Crichigno, Benjamín Barán P. O. Box 9 - National University of Asunción Asunción Paraguay. Tel/Fax: (+9-) 89 {jcrichigno, bbaran}@cnc.una.py http://www.una.py
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
STUDY ON APPLICATION OF GENETIC ALGORITHM IN CONSTRUCTION RESOURCE LEVELLING
STUDY ON APPLICATION OF GENETIC ALGORITHM IN CONSTRUCTION RESOURCE LEVELLING N.Satheesh Kumar 1,R.Raj Kumar 2 PG Student, Department of Civil Engineering, Kongu Engineering College, Perundurai, Tamilnadu,India
Genetic Algorithm Approach for Risk Reduction of Information Security
Genetic Algorithm Approach for Risk Reduction of Information Security Alireza Tamjidyamcholo and Rawaa Dawoud Al-Dabbagh Artificial Intelligence Department Faculty of Computer Science and IT University
The Binary Genetic Algorithm
CHAPTER 2 The Binary Genetic Algorithm 2.1 GENETIC ALGORITHMS: NATURAL SELECTION ON A COMPUTER If the previous chapter whet your appetite for something better than the traditional optimization methods,
HYBRID GENETIC ALGORITHM PARAMETER EFFECTS FOR OPTIMIZATION OF CONSTRUCTION RESOURCE ALLOCATION PROBLEM. Jin-Lee KIM 1, M. ASCE
1560 HYBRID GENETIC ALGORITHM PARAMETER EFFECTS FOR OPTIMIZATION OF CONSTRUCTION RESOURCE ALLOCATION PROBLEM Jin-Lee KIM 1, M. ASCE 1 Assistant Professor, Department of Civil Engineering and Construction
1 Error in Euler s Method
1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of
On line construction of suffix trees 1
(To appear in ALGORITHMICA) On line construction of suffix trees 1 Esko Ukkonen Department of Computer Science, University of Helsinki, P. O. Box 26 (Teollisuuskatu 23), FIN 00014 University of Helsinki,
DEALING WITH THE DATA An important assumption underlying statistical quality control is that their interpretation is based on normal distribution of t
APPLICATION OF UNIVARIATE AND MULTIVARIATE PROCESS CONTROL PROCEDURES IN INDUSTRY Mali Abdollahian * H. Abachi + and S. Nahavandi ++ * Department of Statistics and Operations Research RMIT University,
Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes
International Archive of Applied Sciences and Technology Volume 3 [2] June 2012: 47-57 ISSN: 0976-4828 Society of Education, India Website: www.soeagra.com/iaast/iaast.htm Original Article Efficient Genetic
HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE
HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington [email protected] Varghese S. Jacob University of Texas at Dallas [email protected]
Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 International Research Publications House http://www. irphouse.com /ijict.htm Implementation
Turing Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,
Optimization in Strategy Games: Using Genetic Algorithms to Optimize City Development in FreeCiv
Abstract Optimization in Strategy Games: Using Genetic Algorithms to Optimize City Development in FreeCiv Ian Watson,, Ya Chuyang, Wei Pan & Gary Chen There is a growing demand for the use of AI techniques
Design of Web Ranking Module using Genetic Algorithm
Design of Web Ranking Module using Genetic Algorithm Vikas Thada Research Scholar Dr.K.N.M. University Newai, India Vivek Jaglan, Ph.D Asst.Prof(CSE),ASET Amity University Gurgaon, India ABSTRACT Crawling
A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem
American Journal of Industrial and Business Management, 2016, 6, 774-789 Published Online June 2016 in SciRes. http://www.scirp.org/journal/ajibm http://dx.doi.org/10.4236/ajibm.2016.66071 A Study of Crossover
Solving Banana (Rosenbrock) Function Based on Fitness Function
Available online at www.worldscientificnews.com WSN 6 (2015) 41-56 EISSN 2392-2192 Solving Banana (Rosenbrock) Function Based on Fitness Function Lubna Zaghlul Bashir 1,a, Rajaa Salih Mohammed Hasan 2,b
Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
GRID SEARCHING Novel way of Searching 2D Array
GRID SEARCHING Novel way of Searching 2D Array Rehan Guha Institute of Engineering & Management Kolkata, India Abstract: Linear/Sequential searching is the basic search algorithm used in data structures.
Improved Multiprocessor Task Scheduling Using Genetic Algorithms
From: Proceedings of the Twelfth International FLAIRS Conference. Copyright 999, AAAI (www.aaai.org). All rights reserved. Improved Multiprocessor Task Scheduling Using Genetic Algorithms Michael Bohler
Background knowledge-enrichment for bottom clauses improving.
Background knowledge-enrichment for bottom clauses improving. Orlando Muñoz Texzocotetla and René MacKinney-Romero Departamento de Ingeniería Eléctrica Universidad Autónoma Metropolitana México D.F. 09340,
Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15
Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population
A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms
A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms MIGUEL CAMELO, YEZID DONOSO, HAROLD CASTRO Systems and Computer Engineering Department Universidad de los
Genetic programming with regular expressions
Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange [email protected] 2009-03-23 Pattern discovery Pattern discovery: Recognizing patterns that characterize
A Genetic-Fuzzy Logic Based Load Balancing Algorithm in Heterogeneous Distributed Systems
A Genetic-Fuzzy Logic Based Load Balancing Algorithm in Heterogeneous Distributed Systems Kun-Ming Yu *, Ching-Hsien Hsu and Chwani-Lii Sune Department of Computer Science and Information Engineering Chung-Hua
Application of Genetic Algorithm to Scheduling of Tour Guides for Tourism and Leisure Industry
Application of Genetic Algorithm to Scheduling of Tour Guides for Tourism and Leisure Industry Rong-Chang Chen Dept. of Logistics Engineering and Management National Taichung Institute of Technology No.129,
Improving the Performance of a Computer-Controlled Player in a Maze Chase Game using Evolutionary Programming on a Finite-State Machine
Improving the Performance of a Computer-Controlled Player in a Maze Chase Game using Evolutionary Programming on a Finite-State Machine Maximiliano Miranda and Federico Peinado Departamento de Ingeniería
New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers
Proceedings of the 5th WSEAS Int Conf on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 0-, 006 363 New binary representation in Genetic Algorithms for solving
Hidden Markov Models in Bioinformatics. By Máthé Zoltán Kőrösi Zoltán 2006
Hidden Markov Models in Bioinformatics By Máthé Zoltán Kőrösi Zoltán 2006 Outline Markov Chain HMM (Hidden Markov Model) Hidden Markov Models in Bioinformatics Gene Finding Gene Finding Model Viterbi algorithm
Optimization of Preventive Maintenance Scheduling in Processing Plants
18 th European Symposium on Computer Aided Process Engineering ESCAPE 18 Bertrand Braunschweig and Xavier Joulia (Editors) 2008 Elsevier B.V./Ltd. All rights reserved. Optimization of Preventive Maintenance
Evolutionary SAT Solver (ESS)
Ninth LACCEI Latin American and Caribbean Conference (LACCEI 2011), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-5, 2011,
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,
Management Science Letters
Management Science Letters 4 (2014) 905 912 Contents lists available at GrowingScience Management Science Letters homepage: www.growingscience.com/msl Measuring customer loyalty using an extended RFM and
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)
Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,
USING GENETIC ALGORITHM IN NETWORK SECURITY
USING GENETIC ALGORITHM IN NETWORK SECURITY Ehab Talal Abdel-Ra'of Bader 1 & Hebah H. O. Nasereddin 2 1 Amman Arab University. 2 Middle East University, P.O. Box: 144378, Code 11814, Amman-Jordan Email:
PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM
PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM Md. Shahjahan Kabir 1, Kh. Mohaimenul Kabir 2 and Dr. Rabiul Islam 3 1 Dept. of CSE, Dhaka International University, Dhaka, Bangladesh
Architectural Design for Space Layout by Genetic Algorithms
Architectural Design for Space Layout by Genetic Algorithms Özer Ciftcioglu, Sanja Durmisevic and I. Sevil Sariyildiz Delft University of Technology, Faculty of Architecture Building Technology, 2628 CR
GARY J. KOEHLER. Biography. The Foundation for The Gator Nation
Warrington College of Business Administration 335 Stuzin Hall Department of Information Systems and Operations Management PO Box 117169 Gainesville, FL 32611-7169 352-846-2090 352-392-5438 Fax GARY J.
Inventory Optimization in Efficient Supply Chain Management
International Journal of Computer Applications in Engineering Sciences [VOL I, ISSUE IV, DECEMBER 2011] [ISSN: 2231-4946] Inventory Optimization in Efficient Supply Chain Management S.R. Singh 1, Tarun
A Hybrid Tabu Search Method for Assembly Line Balancing
Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 443 A Hybrid Tabu Search Method for Assembly Line Balancing SUPAPORN
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem
The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem Alex Rogers Adam Prügel-Bennett Image, Speech, and Intelligent Systems Research Group, Department of Electronics and Computer Science,
CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM
CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma
Mathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
What is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
Universal Turing Machine: A Model for all Computational Problems
Universal Turing Machine: A Model for all Computational Problems Edward E. Ogheneovo Lecturer I, Dept of Computer Science, University of Port Harcourt, Port Harcourt Nigeria. ABSTRACT: Turing machines
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
Automatic parameter regulation for a tracking system with an auto-critical function
Automatic parameter regulation for a tracking system with an auto-critical function Daniela Hall INRIA Rhône-Alpes, St. Ismier, France Email: [email protected] Abstract In this article we propose
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
Evaluation of Crossover Operator Performance in Genetic Algorithms With Binary Representation
Evaluation of Crossover Operator Performance in Genetic Algorithms with Binary Representation Stjepan Picek, Marin Golub, and Domagoj Jakobovic Faculty of Electrical Engineering and Computing, Unska 3,
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
A HYBRID GENETIC ALGORITHM FOR THE MAXIMUM LIKELIHOOD ESTIMATION OF MODELS WITH MULTIPLE EQUILIBRIA: A FIRST REPORT
New Mathematics and Natural Computation Vol. 1, No. 2 (2005) 295 303 c World Scientific Publishing Company A HYBRID GENETIC ALGORITHM FOR THE MAXIMUM LIKELIHOOD ESTIMATION OF MODELS WITH MULTIPLE EQUILIBRIA:
Lecture 1. Basic Concepts of Set Theory, Functions and Relations
September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2
