A = πr 2. , the area changes in m2
|
|
|
- Rolf Richards
- 9 years ago
- Views:
Transcription
1 1 Related Rates So,what sarelatedratewordproblem? Inthese type of word problems two quantities are related somehow, like area and radius of a circle. The area, A, and radius, r, ofacirclearerelatehroughthe formula A = πr 2 As the radius changes in say m s, the area changes in m2 s. That is, the rate at which the radius changes effects the rate at which the area changes. The rates are related, hence, the title. The derivative comes into play because we are talking about rates of change and we can think of the tangent slope as the instantaneous rate of change of a function. Now, if we differentiate the function, A = πr 2, with respect to r we get da dr =2πr but there is no reference to time here. Where s the per second part? What we have is a formula that relates the change in radius to the change in area but doesn t relate the rates. To introduce a time component we differentiate the equation, A = πr 2, with respect to time. In a sense we are considering radius and area to be functions of time. To illustrate this, consider the function rewritten
2 as A(t) =π [r(t)] 2 and differentiate it with respect to time using the chain rule. That results in da(t) =2π [r(t)] dr(t) Normally we would skip the formality of rewriting the equation and our end result would be da =2πrdr This is the formula that relates the rate of change of the area, da, with the rate of change of the radius, dr da m2. Notice that the units for are sec because the da part is area and is measured in metres 2 and the is time measured in seconds in this case. The units for dr m would therefore be sec. Let s do two examples to illustrate the related rate idea in use. Example Q? A spherical balloon is loosing air at a rate of 2 cm3 min. How fast is the radius of the balloon shrinking when the radius is 3 m? A. The first sentence tells us how the volume is changing, that is dv = 2. Notice that we make it negative because the balloon s volume is shrinking, the change is negative. The question wants us to
3 find dr. First we must decide how the volume and the radius are related. We use the volume of a sphere formula. V = 4 3 πr3 Now differentiate that formula with respect to time to get dv = 4 3 π3r2dr =4πr 2dr Now substitute dv = 2,r = 3into the equation and solve for dr. Therefore dr = 1 18π 2=4π(3) 2dr dr = 1 18π cm min. Example Q? The water in a cylindrical glass is rising at arateof1 cm sec. Theradiusoftheglassis2cm. What is the rate at which water is being poured into the glass? A. The formula for the volume of a cylinder is V = πr 2 h where h is the height and r is the radius. This is
4 the formula that relates volume and height. We want the rate of change of volume, dv. Differentiating the above formula with respect to time involves the product rule because both radius and height can be thought of as functions of time. This yields dv =2πrdr h + πr2dh Note that we know that the radius is constant so we could have treated it as such but the math will take care of it. We now set dh dr =1, =0and r =2to get dv =2π(2)(0)h + π2 2 (1) =4π Therefore the volume is increasing at 4π cm3 sec. So, when I see a word problem, how do I know it s a related rate problem? The word rate is usually there, but also the presence of units like m cm3 s or min could signal a related rate question. Then you write the function that relates the variables in question, differentiate it with respect to time, substitute for the known quantities and solve for the one left over unknown. Remember to include units in your answer. Also look at the examples in section 4.1 of the text.
5 Section 4.1, #1-3, 5-12, 15, 18, 21, 27 Submit # 6, 12, 18 on Monday. Use the odd number questions to verify that you know what you are doing.
6 Example 1 Oil spills from an Exxon tanker in a huge circular slick. The radius of the slick is increasing 10 m min.how fast is the area of the slick increasing 1 hour after the spill started? Example 2 A canoe is being pulled into a dock by a rope attached to the bow and passing thru a pulley on the dock that is 1 metre higher than the bow of the canoe. If the rope is being pulled in at a rate of 1 m s, how fast is the canoe approaching the dock when it is 8 m from the dock? Can we create a function that relates speed of the canoe with the distance from the dock? Example 3 I was in lock at the canal near Pittsford has a trapezoidal cross section that is 30 feet at the bottom and 40 feet at the top. The total height is 40 feet. The lock is 60 feet long. If my boat is dropping at 1 ft min at the halfway point, how fast is the water being drained from the lock?
7 Example 4 Sound intensity various inversely with the square of the distance from the speaker stacks. Decibels are measured withe the equation I D =log What is the rate of change of the decibel levels as I walk away from the speaker stack at 3 m s when I am 10m away. I 0
MTH 125 3.7 Related Rates
Objectives MTH 15 3.7 Related Rates Finding Related Rates We have seen how the Chain Rule can be used to find dy/dx implicitly. Another important use of the Chain Rule is to find the rates of change of
Math 113 HW #7 Solutions
Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e
ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone.
8. Volumes of Cones How can you find the volume of a cone? You already know how the volume of a pyramid relates to the volume of a prism. In this activity, you will discover how the volume of a cone relates
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
The small increase in x is. and the corresponding increase in y is. Therefore
Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that
a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.
MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during
Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
Calculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
The GED math test gives you a page of math formulas that
Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding
A Resource for Free-standing Mathematics Qualifications
To find a maximum or minimum: Find an expression for the quantity you are trying to maximise/minimise (y say) in terms of one other variable (x). dy Find an expression for and put it equal to 0. Solve
Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)
Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.
Basic Math for the Small Public Water Systems Operator
Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the
3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.
BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's
MCA Formula Review Packet
MCA Formula Review Packet 1 3 4 5 6 7 The MCA-II / BHS Math Plan Page 1 of 15 Copyright 005 by Claude Paradis 8 9 10 1 11 13 14 15 16 17 18 19 0 1 3 4 5 6 7 30 8 9 The MCA-II / BHS Math Plan Page of 15
B = 1 14 12 = 84 in2. Since h = 20 in then the total volume is. V = 84 20 = 1680 in 3
45 Volume Surface area measures the area of the two-dimensional boundary of a threedimensional figure; it is the area of the outside surface of a solid. Volume, on the other hand, is a measure of the space
Perimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby
Characteristics of the Four Main Geometrical Figures
Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.
Calculus (6th edition) by James Stewart
Calculus (6th edition) by James Stewart Section 3.8- Related Rates 9. If and find when and Differentiate both sides with respect to. Remember that, and similarly and So we get Solve for The only thing
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
SURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
Cylinder Volume Lesson Plan
Cylinder Volume Lesson Plan Concept/principle to be demonstrated: This lesson will demonstrate the relationship between the diameter of a circle and its circumference, and impact on area. The simplest
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
Version 005 Exam Review Practice Problems NOT FOR A GRADE alexander (55715) 1. Hence
Version 005 Eam Review Practice Problems NOT FOR A GRADE aleander 5575 This print-out should have 47 questions Multiple-choice questions may continue on the net column or page find all choices before answering
Geometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
Geometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
GCSE Revision Notes Mathematics. Volume and Cylinders
GCSE Revision Notes Mathematics Volume and Cylinders irevise.com 2014. All revision notes have been produced by mockness ltd for irevise.com. Email: [email protected] Copyrighted material. All rights reserved;
Calculating the Surface Area of a Cylinder
Calculating the Measurement Calculating The Surface Area of a Cylinder PRESENTED BY CANADA GOOSE Mathematics, Grade 8 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A Housekeeping
Solids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
18.01 Single Variable Calculus Fall 2006
MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Unit : Derivatives A. What
All I Ever Wanted to Know About Circles
Parts of the Circle: All I Ever Wanted to Know About Circles 1. 2. 3. Important Circle Vocabulary: CIRCLE- the set off all points that are the distance from a given point called the CENTER- the given from
= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).
Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
Mathematics (Project Maths Phase 1)
2012. M128 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination, 2012 Sample Paper Mathematics (Project Maths Phase 1) Paper 2 Ordinary Level Time: 2 hours, 30
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
Lesson 21. Circles. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 1 Circles Objectives Understand the concepts of radius and diameter Determine the circumference of a circle, given the diameter or radius Determine
a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships
CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS
CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change
Section 6.4: Work. We illustrate with an example.
Section 6.4: Work 1. Work Performed by a Constant Force Riemann sums are useful in many aspects of mathematics and the physical sciences than just geometry. To illustrate one of its major uses in physics,
SURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.
Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles
Student Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief
Math 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
Mathematics (Project Maths)
2010. M128 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Mathematics (Project Maths) Paper 2 Ordinary Level Monday 14 June Morning 9:30 12:00 300 marks Examination
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
Perimeter is the length of the boundary of a two dimensional figure.
Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.
Application of Function Composition
Math Objectives Given functions f and g, the student will be able to determine the domain and range of each as well as the composite functions defined by f ( g( x )) and g( f ( x )). Students will interpret
Unit 7 The Number System: Multiplying and Dividing Integers
Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
CALCULATING THE SIZE OF AN ATOM
Ch 100: Fundamentals of Chemistry 1 CALCULATING THE SIZE OF AN ATOM Introduction: The atom is so very small that only highly sophisticated instruments are able to measure its dimensions. In this experiment
YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS - SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! YOU MUST
GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book
GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18
Active Calculus & Mathematical Modeling Activities and Voting Questions Carroll College MA 122. Carroll College Mathematics Department
Active Calculus & Mathematical Modeling Activities and Voting Questions Carroll College MA 122 Carroll College Mathematics Department Last Update: June 2, 2015 2 To The Student This packet is NOT your
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are
MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010
MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic
Finding Volume of Rectangular Prisms
MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of three-dimensional composite shapes.
Geometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
Area, Perimeter, Volume and Pythagorean Theorem Assessment
Area, Perimeter, Volume and Pythagorean Theorem Assessment Name: 1. Find the perimeter of a right triangle with legs measuring 10 inches and 24 inches a. 34 inches b. 60 inches c. 120 inches d. 240 inches
Perimeter. 14ft. 5ft. 11ft.
Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine
Gauss Formulation of the gravitational forces
Chapter 1 Gauss Formulation of the gravitational forces 1.1 ome theoretical background We have seen in class the Newton s formulation of the gravitational law. Often it is interesting to describe a conservative
SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
12 Surface Area and Volume
12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids
Lesson 1: Introducing Circles
IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed
Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.
Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and
Volume ESSENTIAL QUESTION. How can you use volume to solve real-world problems? Real-World Video. my.hrw.com MODULE. LESSON 13.1 Volume of Cylinders
Volume? MODULE ESSENTIAL QUESTION How can you use volume to solve real-world problems? 13 LESSON 13.1 Volume of Cylinders LESSON 13.2 Volume of Cones LESSON 13.3 Volume of Spheres Image Credits: LOOK Die
The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- Area = 1 2 D x d CIRCLE.
Revision - Areas Chapter 8 Volumes The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- SQUARE RECTANGE RHOMBUS KITE B dd d D D Area = 2 Area = x B
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
MATH 110 Landscape Horticulture Worksheet #4
MATH 110 Landscape Horticulture Worksheet #4 Ratios The math name for a fraction is ratio. It is just a comparison of one quantity with another quantity that is similar. As a Landscape Horticulturist,
Grade 8 Mathematics Measurement: Lesson 6
Grade 8 Mathematics Measurement: Lesson 6 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
Solving Equations With Fractional Coefficients
Solving Equations With Fractional Coefficients Some equations include a variable with a fractional coefficient. Solve this kind of equation by multiplying both sides of the equation by the reciprocal of
PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
Math 115 Extra Problems for 5.5
Math 115 Extra Problems for 5.5 1. The sum of two positive numbers is 48. What is the smallest possible value of the sum of their squares? Solution. Let x and y denote the two numbers, so that x + y 48.
Area of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
Volume. Volume of Cylinders 8.6.A, 8.7.A. Volume of Cones 8.6.B, 8.7.A. Volume of Spheres 8.7.A ESSENTIAL QUESTION
? Volume 9 MODULE ESSENTIAL QUESTION How can you use volume to solve real-world problems? LESSON 9.1 Volume of Cylinders 8.6.A, 8.7.A LESSON 9.2 Volume of Cones 8.6.B, 8.7.A LESSON 9. Volume of Spheres
Applications for Triangles
Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given
G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
Kristen Kachurek. Circumference, Perimeter, and Area Grades 7-10 5 Day lesson plan. Technology and Manipulatives used:
Kristen Kachurek Circumference, Perimeter, and Area Grades 7-10 5 Day lesson plan Technology and Manipulatives used: TI-83 Plus calculator Area Form application (for TI-83 Plus calculator) Login application
Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
Math-in-CTE Sample Automotive Lesson
Math-in-CTE Sample Automotive Lesson Piston Displacement Lesson Title: Piston Displacement Lesson #: AT07 Occupational Area: Automotive Technology CTE Concept(s): Piston Displacement Math Concept(s): Formula
CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.
TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has
GAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement
GAP CLOSING 2D Measurement GAP CLOSING 2D Measurement Intermeditate / Senior Facilitator s Guide 2-D Measurement Diagnostic...4 Administer the diagnostic...4 Using diagnostic results to personalize interventions...4
To define concepts such as distance, displacement, speed, velocity, and acceleration.
Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at
Maximum and minimum problems. Information sheet. Think about
Maximum and minimum problems This activity is about using graphs to solve some maximum and minimum problems which occur in industry and in working life. The graphs can be drawn using a graphic calculator
Circumference CHAPTER. www.ck12.org 1
www.ck12.org 1 CHAPTER 1 Circumference Here you ll learn how to find the distance around, or the circumference of, a circle. What if you were given the radius or diameter of a circle? How could you find
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124
Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/
Chapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
Chapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
Section 7.2 Area. The Area of Rectangles and Triangles
Section 7. Area The Area of Rectangles and Triangles We encounter two dimensional objects all the time. We see objects that take on the shapes similar to squares, rectangle, trapezoids, triangles, and
