MODELING AND ANALYSIS OF HAMMER OF IMPACT TESTING MACHINE: A REVIEW
|
|
|
- Leonard Hutchinson
- 9 years ago
- Views:
Transcription
1 Int. J. Mech. Eng. & Rob. Res Chandrashekhar J Shende et al., 2015 Review Article ISSN Vol. 4, No. 1, January IJMERR. All Rights Reserved MODELING AND ANALYSIS OF HAMMER OF IMPACT TESTING MACHINE: A REVIEW Chandrashekhar J Shende 1 *, A R Sahu 2 and A V Deshmukh 3 *Corresponding Author: Chandrashekhar J Shende, [email protected] The Impact Testing Machine is very important for testing and calculating the impact energy required to bent or to break the different types of materials by conducting Charpy and Izod test. The aim of the project is to model, and analyse hammer of Impact Testing Machine. 3-dimensional model of hammer of impact testing machine will be created corresponding to the practical dimensions using PRO-E software and using ANSYS software the analysis of hammer will be done. It will very beneficial for proper use of machine to find out energy require to break or bent the particular type of material in engineering field. Different principles for interaction with users having wide ranges of experiences and knowledge will be discussed. Comprehensive set of packages for modelling, identification, analysis, simulation, and design will be described. Problems associated with structuring, portability, maintainability and extensibility will be discussed. Keywords: Pro-E Creo-parametric, Ansys workbench, FEM analysis, Simulation INTRODUCTION The Impact Testing Machine is very important for testing and calculating the impact energy required to bent or to break the different types of materials by conducting Charpy and Izod test. The aim of the project is to model, Assemble, Drafting and analyze the parts of Impact Testing Machine. 3-dimensional model of impact testing machine is created corresponding to the practical dimensions using PRO-E software and using ANSYS software the analysis of different parts of the machine is done. Use of interactive software for designing, modelling, and analysis of parts of impact testing machine is done for development of Impact Testing Machine. It is very beneficial for proper use in an engineering work. Different principles for interaction with users having wide ranges of experiences and knowledge are discussed. Comprehensive set of packages for modelling, identification, Analysis, simulation, and design are 1 CAD/CAM, Shri Shankarprasad Agnihotri College of Engg., Wardha. 2 Mechanical Engg., B.D.C.O.E., Sewagram, Wardha. 3 Mechanical Engg., Shri Shankarprasad Agnihotri College of Engg, Wardha. 350
2 described. Problems associated with structuring, portability, maintainability and extensibility are discussed. An impact testing machine that constrains relative s motion and reduce friction between moving parts to only the desired motion. Impact testing is of enormous importance. A collision between two objects can often result in damage to one or both of them. The damage might be a scratch, crack, fracture or break. Scientists need to know about how materials and products behave under impact and the magnitude of forces they can resist. Izod Impact Test Specimens Izod test specimens vary depending on what material is being tested. Metallic samples tend to be square in cross section, while polymeric test specimens are often rectangular, being struck parallel to the long axis of the rectangle. In the Izod test, the specimen is held on one end and is free on the other end. This way it forms a cantilever beam. Izod test sample usually have a V-notch cut into them, although Figure 1: Impact Testing Machine specimens with no notch as also used on occasion. Charpy Impact Test The principle of the test differs from that of the Izod test in that the test piece is tested as a beam supported at each end; a notch is cut across the middle of one face, and the striker hits the opposite face directly behind the notch. When the results of a number of tests performed in different temperatures are plotted, ductile-to-brittle transition curves, may be obtained. As the temperature is reduced through the transition range, the fracture surface changes from one having a fibrous or silky appearance with much distortion at the sides, to one of completely crystalline appearance with negligible distortion. There is a strong correlation between the energy absorbed and the proportion of the crosssection which suffers deformation in fracture, and the fracture surface is frequently described in terms of the percentage of its area which is crystalline in appearance. Typical fracture appearances with crystallinity increases as the temperature are reduced. LITERATURE REVIEW The Charpy impact test, also known as the Charpy V-notch test, is a standardized high strain-rate test which determines the amount of energy absorbed by a material during fracture. This absorbed energy is a measure of a given material s notch toughness and acts as a tool to study temperaturedependent ductile-brittle transition. It is widely applied in industry, since it is easy to prepare and conduct and results can be obtained quickly and cheaply. A disadvantage is that some results are only comparative (Talukdar et al., 2001). 351
3 The test was developed around 1900 by S. B. Russell (1898, American) and G. Charpy (1901, French) (Fernandez-Cantelia et al., 2002) The test became known as the Charpy test in the early 1900s due to the technical contributions and standardization efforts by Georges Charpy. The test was pivotal in understanding the fracture problems of ships during WWII (Bimal Kumar Panigrahi and Surendra Kumar Jain, 2002; and Mustafa Ozgur et al., 2008). Today it is utilized in many industries for testing materials, for example the construction of pressure vessels and bridges to determine how storms will affect the materials used (Bimal Kumar Panigrahi and Surendra Kumar Jain, 2002; and Ajit Roy et al., 2008). Talukdar et al. (2001) studied the effect of fatigue damage in En-8 grade heat treated steel (annealed and hardened and tempered), under different cyclic loading properties. The results indicate higher fracture toughness and impact toughness in hardened-and-tempered steel than in annealed steel. Cyclic hardening and softening occurs in both the hardened-andtempered as well as the annealed steel. With the increase of peak stress and number of fatigue cycles, the hardened-and-tempered steels. The results are discussed in terms of dislocations, slip bands, and their density, microstructure, and fracture morphology. Fernandez et al. (2002) studied the dynamic behavior of three different fiber fabric composite laminates by testing notched specimens in an instrumented Charpy machine. The registered impact force and displacement at the specimen hammer contact point were used to evaluate Mode-I fracture energy and dynamic fracture toughness. The changes in fracture toughness due to impact velocity, crack size and stacking sequence of the specimen were investigated with different degrees of aging conditions. Aging was found to significantly affect the dynamic fracture toughness, but had less effect on the static fracture toughness. Bimal and Surendra (2002) wvaluated that Charpy V-notch impact toughness of 600 MPa yield stress TMT rebars alloyed with copper, phosphorus, chromium and molybdenum. Subsize Charpy specimens were machined from the rebar keeping the tempered martensite rim intact. The copper-phosphorus rebars showed toughness of 35 J at room temperature. The toughness of coppermolybdenum and copper-chromium rebars was 52 J. The lower toughness of phosphorus steel was attributed to solid solution strengthening and segregation of phosphorus to grain boundaries. Due to superior corrosion resistance, copper phosphorus TMT rebar was a candidate material in the construction sector. Mustafa (2008) investigated the impactfatigue properties of unidirectional carbon fibre reinforced polyetherimide (PEI) composites. Low velocity repeated impacts wereperformed by using pendulum type instrumented impact tester (Ceast, Resil 25) at energylevels ranging J. Samples were prepared according to ISO 180 and subjected to repeat low velocity impacts up to fracture by the hammer. Results of repeated impact study were reported in terms of peak load (Fmax), absorbed energy (Emax) and number of repeated impacts. An analytical model to describe the life time of composite materials subjected to repeated impact loadings was presented. 352
4 Ajit (2008) investigated the impact resistance of silicon (Si)-containing modified 9Cr-1Mo steels within a temperature regime of -40 to 44 C using the Charpy method. The results indicated that the energies absorbed in fracturing the tested specimens were substantially lower at temperatures of -40, 25, and 75C compared to those at elevated temperatures. Lower impact energies and higher Ductile-to-Brittle Transition Temperatures (DBTTs) were observed with the steels containing 1.5 and 1.9 wt.% Si. The steels containing higher Si levels exhibited both ductile and brittle failures at elevated temperatures. However, at lower temperatures, brittle failures characterized by cleavage and inter granular cracking were observed for all four tested materials. Figure 3: Finite Element Meshed Body of Hammer of Impact Machine CAD MODEL OF HAMMER OF EXISTING IMPCAT MACHINE Figure 2: CAD Model of Existing Impact Machine CONCLUSION We have planned to perform impact test using different materials, at different temperatures by changing angle of impact for example at 450, 600, 750. FEM analysis is also planned for the hammer of impact machine and also trying to find out the failures in the hammer. If possible, by changing design of hammer of impact testing machine, weight and cost can be reduced. 353
5 REFERENCES 1. Ajit Roy, Pankaj Kumar and Debajyoti Maitra (2008), The Effect of Silicon Content on Impact Oughness of T91 Grade Steels, Journal of Materials Engineering and Performance, Vol. 37, pp Bimal Kumar Panigrahi and Surendra Kumar Jain (2002), Impact Toughness of High Strength Low Alloy TMT Reinforcement Ribbed Bar, Bull. Mater. Sci., Vol. 25, No. 4, pp Fernandez-Cantelia, Arguellesa A, Vinaa J, Ramulub M and Kobayashib A S (2002), Dynamic Fracture Toughness Measurements in Composites by Instrumented Charpy Testing: Influence of Aging, Composites Science and Technology, Vol. 62, pp Mustafa Ozgur Bora, Onur Coban, Tamer Sinmazcelic, Ismail Curgul and Volkan Gunay (2008), On the Life Time Prediction of Repeatedly Impacted Thermoplastic Matrix Composites, Materials and Design, Vol. 30, pp Talukdar P, Sen S K and Ghosh A K (2001), Metallurgical and Material Transaction, Vol. 32A, pp
Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.
IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester
The mechanical properties of metal affected by heat treatment are:
Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.
LABORATORY EXPERIMENTS TESTING OF MATERIALS
LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
Materials Issues in Fatigue and Fracture
Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Finite Life 5.4 Summary FCP 1 5.1 Fundamental Concepts Structural metals Process of fatigue A simple view
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
PROPERTIES OF MATERIALS
1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
Full Density Properties of Low Alloy Steels
Full Density Properties of Low Alloy Steels Michael L. Marucci & Arthur J. Rawlings Hoeganaes Corporation, Cinnaminson, NJ Presented at PM 2 TEC2005 International Conference on Powder Metallurgy and Particulate
Impact testing ACTIVITY BRIEF
ACTIVITY BRIEF Impact testing The science at work Impact testing is of enormous importance. A collision between two objects can often result in damage to one or both of them. The damage might be a scratch,
Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)
Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate
ATI 2205 ATI 2205. Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)
ATI 2205 Duplex Stainless Steel (UNS S31803 and S32205) GENERAL PROPERTIES ATI 2205 alloy (UNS S31803 and/or S32205) is a nitrogen-enhanced duplex stainless steel alloy. The nitrogen serves to significantly
THE DUCTILE TO BRITTLE TRANSITION
THE DUCTILE TO BRITTLE TRANSITION Introduction Body centered cubic metals lose most of the fracture resistance and ductility when temperature is lowered to below the ductile to brittle transition temperature.
Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter
Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter Neelesh V K Mr. Manjunath M V Mr. Devaraj Dept. of Mechanical Engineering Asst prof, Dept. of Mechanical Engineering Asst
HEAT TREATMENT OF STEEL
HEAT TREATMENT OF STEEL Heat Treatment of Steel Most heat treating operations begin with heating the alloy into the austenitic phase field to dissolve the carbide in the iron. Steel heat treating practice
Description of mechanical properties
ArcelorMittal Europe Flat Products Description of mechanical properties Introduction Mechanical properties are governed by the basic concepts of elasticity, plasticity and toughness. Elasticity is the
ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-
Standard Specification for Wrought High Strength Ferritic Steel Butt Welding Fittings 1. Scope :- 1.1 This specification covers wrought high strength ferritic steel butt-welding fitting of seamless and
Figure 1: Typical S-N Curves
Stress-Life Diagram (S-N Diagram) The basis of the Stress-Life method is the Wohler S-N diagram, shown schematically for two materials in Figure 1. The S-N diagram plots nominal stress amplitude S versus
University of Portland School of Engineering LABORATORY OUTLINE: TENSILE TESTING OF STEEL & ALUMINUM ALLOYS (ASTM E8)
TENSILE TESTING OF STEEL & ALUMINUM ALLOYS (ASTM E8) To carry out a standard tensile test on specimens of a hot rolled steel (AISI 1045), Type 2024- T351 aluminum, polymers (UHMW-PE, acrylic) and, from
Properties of Materials
CHAPTER 1 Properties of Materials INTRODUCTION Materials are the driving force behind the technological revolutions and are the key ingredients for manufacturing. Materials are everywhere around us, and
Stress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?
Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility
Fatigue of Metals Copper Alloys. Samuli Heikkinen 26.6.2003
Fatigue of Metals Copper Alloys Samuli Heikkinen 26.6.2003 T 70 C Temperature Profile of HDS Structure Stress amplitude 220 MPa Stress Profile of HDS Structure CLIC Number of Cycles f = 100 Hz 24 hours
Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners
Analysis of Slotted Counter Sunk (35NCD16 Steel) Aerospace Fasteners A R Abelin Roy Deptt. of ME, Govt. Engineering College, Thrissur, India Christopher Solomon S MMD VSSC, ISRO Thiruvananthapuram, India
A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior
A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior Kum-Chul, Oh 1, Sang-Woo Cha 1 and Ji-Ho Kim 1 1 R&D Center, Hyundai Motor Company
X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE.
TM A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS METALLURGICAL SPECIAL STEELS INNOVATION RESEARCH SERVICE DEVELOPMENT Enhancing your performance THE INDUSTRIAL ENVIRONMENT
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening
Strengthening The ability of a metal to deform depends on the ability of dislocations to move Restricting dislocation motion makes the material stronger Mechanisms of strengthening in single-phase metals:
CH 6: Fatigue Failure Resulting from Variable Loading
CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).
EFFECT OF HARDNESS VARIATION ON SURFACE INTEGRITY OF CARBURIZED P20 STEEL
Copyright 2013 by ABCM EFFECT OF HARDNESS VARIATION ON SURFACE INTEGRITY OF CARBURIZED P20 STEEL Franciele Litvin [email protected] Larissa França Madeira Manfrinato [email protected]
STRAIN-LIFE (e -N) APPROACH
CYCLIC DEFORMATION & STRAIN-LIFE (e -N) APPROACH MONOTONIC TENSION TEST AND STRESS-STRAIN BEHAVIOR STRAIN-CONTROLLED TEST METHODS CYCLIC DEFORMATION AND STRESS-STRAIN BEHAVIOR STRAIN-BASED APPROACH TO
North American Stainless
North American Stainless Flat Products Stainless Steel Sheet T409 INTRODUCTION NAS 409 is an 11% chromium, stabilized ferritic stainless steel. It is not as resistant to corrosion or high-temperature oxidation
Standard Specification for Stainless Steel Bars and Shapes 1
Designation: A 276 06 Standard Specification for Stainless Steel Bars and Shapes 1 This standard is issued under the fixed designation A 276; the number immediately following the designation indicates
Experiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types
CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS
7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length
Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel
Paper 28-1-434 Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 414 Steel Copyright 28 SAE International Nisha Cyril and Ali Fatemi The University
Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole
Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole Mr.V.G.Aradhye 1, Prof.S.S.Kulkarni 2 1 PG Scholar, Mechanical department, SKN Sinhgad
CORRELATION BETWEEN HARDNESS AND TENSILE PROPERTIES IN ULTRA-HIGH STRENGTH DUAL PHASE STEELS SHORT COMMUNICATION
155 CORRELATION BETWEEN HARDNESS AND TENSILE PROPERTIES IN ULTRA-HIGH STRENGTH DUAL PHASE STEELS SHORT COMMUNICATION Martin Gaško 1,*, Gejza Rosenberg 1 1 Institute of materials research, Slovak Academy
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet AISI 316 UNS S31600 EN 1.4401 AISI 316L UNS S31630 EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response
Heat Treatment of Steel
Heat Treatment of Steel Steels can be heat treated to produce a great variety of microstructures and properties. Generally, heat treatment uses phase transformation during heating and cooling to change
FATIGUE CONSIDERATION IN DESIGN
FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure
Structural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan
Heat Treatment of Aluminum Foundry Alloys Fred Major Rio Tinto Alcan OUTLINE Basics of Heat Treatment (What is happening to the metal at each step). Atomic Structure of Aluminum Deformation Mechanisms
Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth
Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing
Engine Bearing Materials
Engine Bearing Materials Dr. Dmitri Kopeliovich (Research & Development Manager) The durable operation of an engine bearing is achieved if its materials combine high strength (load capacity, wear resistance,
FEM analysis of the forming process of automotive suspension springs
FEM analysis of the forming process of automotive suspension springs Berti G. and Monti M. University of Padua, DTG, Stradella San Nicola 3, I-36100 Vicenza (Italy) [email protected], [email protected].
Experiment: Heat Treatment - Quenching & Tempering
Experiment: Heat Treatment - Quenching & Tempering Objectives 1) To investigate the conventional heat treatment procedures, such as quenching and annealing, used to alter the properties of steels. SAE
WJM Technologies excellence in material joining
Girish P. Kelkar, Ph.D. (562) 743-7576 [email protected] www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient
Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139
Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 5 Heat Treatment of Plain Carbon and Low
Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking
Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking R. E. Ricker, M. R. Stoudt, and D. J. Pitchure Materials Performance Group Metallurgy Division
The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
COMPARISON OF STRESS BETWEEN WINKLER-BACH THEORY AND ANSYS FINITE ELEMENT METHOD FOR CRANE HOOK WITH A TRAPEZOIDAL CROSS-SECTION
COMPARISON OF STRESS BETWEEN WINKLER-BACH THEORY AND ANSYS FINITE ELEMENT METHOD FOR CRANE HOOK WITH A TRAPEZOIDAL CROSS-SECTION Yogesh Tripathi 1, U.K Joshi 2 1 Postgraduate Student, 2 Associate Professor,
9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE
9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE A machine part or structure will, if improperly designed and subjected to a repeated reversal or removal of an applied load, fail at a stress much lower than
Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng
Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics
Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA
Development of a High Performance Nickel-Free P/M Steel Bruce Lindsley Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA Abstract A developmental nickel-free P/M steel containing
SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS
Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.
SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL
W.-T. Tsai, I.-H. Lo Department of Materials Science and Engineering National Cheng Kung University Tainan, Taiwan SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL ABSTRACT
Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 1
Designation: A 2/A 2M 04a e1 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 1 This standard is issued
CHAPTER 6 WEAR TESTING MEASUREMENT
84 CHAPTER 6 WEAR TESTING MEASUREMENT Wear is a process of removal of material from one or both of two solid surfaces in solid state contact. As the wear is a surface removal phenomenon and occurs mostly
AUSTENITIC STAINLESS DAMASCENE STEEL
AUSTENITIC STAINLESS DAMASCENE STEEL Damasteel s austenitic stainless Damascene Steel is a mix between types 304L and 316L stainless steels which are variations of the 18 percent chromium 8 percent nickel
2.0 External and Internal Forces act on structures
2.0 External and Internal Forces act on structures 2.1 Measuring Forces A force is a push or pull that tends to cause an object to change its movement or shape. Magnitude, Direction, and Location The actual
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES
CO-MAT-TECH 2005 TRNAVA, 20-21 October 2005 INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES Jiří MALINA 1+2, Hana STANKOVÁ 1+2, Jaroslav DRNEK 3, Zbyšek NOVÝ 3, Bohuslav MAŠEK
, Yong-Min Kwon 1 ) , Ho-Young Son 1 ) , Jeong-Tak Moon 2 ) Byung-Wook Jeong 2 ) , Kyung-In Kang 2 )
Effect of Sb Addition in Sn-Ag-Cu Solder Balls on the Drop Test Reliability of BGA Packages with Electroless Nickel Immersion Gold (ENIG) Surface Finish Yong-Sung Park 1 ), Yong-Min Kwon 1 ), Ho-Young
North American Stainless
North American Stainless Flat Products Stainless Steel Grade Sheet 430 (S43000)/ EN 1.4016 Introduction: SS430 is a low-carbon plain chromium, ferritic stainless steel without any stabilization of carbon
Solution for Homework #1
Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen
TARIFF CODE and updates standard
TARIFF CODE and updates standard No HS CODE AHTN CODE PRODUCT DESCRIPTION PRODUCT TYPE STANDARDS IDENTIFIED 7207 Semi finished products of iron or non alloy steel Containing by weight less than 0.25% of
Section 4: NiResist Iron
Section 4: NiResist Iron Section 4 Ni-Resist Description of Grades...4-2 201 (Type 1) Ni-Resist...4-3 202 (Type 2) Ni-Resist...4-6 Stock Listings...4-8 4-1 Ni-Resist Description of Grades Ni-Resist Dura-Bar
FRETTING FATIGUE OF STEELS WITH IFFERENT STRENGTH
FRETTING FATIGUE OF STEELS WITH IFFERENT STRENGTH Václav LINHART, Martin ČIPERA, Dagmar MIKULOVÁ SVÚM, a.s., Podnikatelská 565, 190 11 Praha 9- Běchovice,Czech Republic Abstract The investigation of fretting
Simulation of Residual Stresses in an Induction Hardened Roll
2.6.4 Simulation of Residual Stresses in an Induction Hardened Roll Ludwig Hellenthal, Clemens Groth Walzen Irle GmbH, Netphen-Deuz, Germany CADFEM GmbH, Burgdorf/Hannover, Germany Summary A heat treatment
MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY
MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal
North American Stainless
North American Stainless Flat Product Stainless Steel Grade Sheet 316 (S31600)/EN 1.4401 316L (S31603)/ EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic stainless
Tensile Testing Laboratory
Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental
Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system
MATEC Web of Conferences 6, 06002 (2013) DOI: 10.1051/matecconf/20130606002 C Owned by the authors, published by EDP Sciences, 2013 Experimental assessment of concrete damage due to exposure to high temperature
Technical Data BLUE SHEET. Martensitic. stainless steels. Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES APPLICATIONS PRODUCT FORM
Technical Data BLUE SHEET Allegheny Ludlum Corporation Pittsburgh, PA Martensitic Stainless Steels Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES Allegheny Ludlum Types 410, 420, 425 Modified, and
INTERACTION OF LIQUID MOTION ON MOBILE TANK STRUCTURE
Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011 INTERACTION OF LIQUID MOTION ON MOBILE TANK STRUCTURE Mariusz Domaga a, Edward Lisowski Cracow University of Technology, Department of Mechanical
THE INFLUENCE OF STEEL GRADE AND STEEL HARDNESS ON TOOL LIFE WHEN MILLING IN HARDENED TOOL STEEL
THE INFLUENCE OF STEEL GRADE AND STEEL HARDNESS ON TOOL LIFE WHEN MILLING IN HARDENED TOOL STEEL S. Gunnarsson, B. Högman and L. G. Nordh Uddeholm Tooling AB Research and Development 683 85 Hagfors Sweden
ROLLED STAINLESS STEEL PLATES, SECTIONS AND BARS
STANDARD FOR CERTIFICATION No. 2.9 ROLLED STAINLESS STEEL PLATES, SECTIONS AND BARS OCTOBER 2008 Veritasveien 1, NO-1322 Høvik, Norway Tel.: +47 67 57 99 00 Fax: +47 67 57 99 11 FOREWORD (DNV) is an autonomous
Chapter Outline: Phase Transformations in Metals
Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations
A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature
A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature Dennis W. Norwich, P.E. SAES Memry Corporation, Bethel, CT Abstract
Tensile Testing of Steel
C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format
METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing
M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol
14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit
Fracture and strain rate behavior of airplane fuselage materials under blast loading
EPJ Web of Conferences 6, 6 42017 (2010) DOI:10.1051/epjconf/20100642017 Owned by the authors, published by EDP Sciences, 2010 Fracture and strain rate behavior of airplane fuselage materials under blast
Appendice Caratteristiche Dettagliate dei Materiali Utilizzati
Appendice Caratteristiche Dettagliate dei Materiali Utilizzati A.1 Materiale AISI 9840 UNI 38NiCrMo4 AISI 9840 Steel, 650 C (1200 F) temper, 25 mm (1 in.) round Material Notes: Quenched, 540 C temper,
Lecture 18 Strain Hardening And Recrystallization
-138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing
Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance.
Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. The chemical composition and the very latest in production technique make the property profile
Effect of Temperature and Aging Time on 2024 Aluminum Behavior
Proceedings of the XIth International Congress and Exposition June 2-5, 2008 Orlando, Florida USA 2008 Society for Experimental Mechanics Inc. Effect of Temperature and Aging Time on 2024 Aluminum Behavior
Durcomet 100 CD4MCuN. Bulletin A/7l
Durcomet 100 CD4MCuN Bulletin A/7l Durcomet 100 Introduction Durcomet 100 is a duplex stainless steel produced to ASTM specification A995 or A890, Grade CD4MCuN (1B). It is indicated by the Flowserve casting
ALLOY 2205 DATA SHEET
ALLOY 2205 DATA SHEET UNS S32205, EN 1.4462 / UNS S31803 GENERAL PROPERTIES ////////////////////////////////////////////////////// //// 2205 (UNS designations S32205 / S31803) is a 22 % chromium, 3 % molybdenum,
GENERAL PROPERTIES //////////////////////////////////////////////////////
ALLOY 625 DATA SHEET //// Alloy 625 (UNS designation N06625) is a nickel-chromium-molybdenum alloy possessing excellent resistance to oxidation and corrosion over a broad range of corrosive conditions,
Valve Steel. Valve Steel
Valve Steel Valve Steel BÖHLER-UDDEHOLM Precision Strip AB is one of the world s leading manufacturers of high quality strip steel. More than a century s experience of cold rolling has given us a unique
Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV
Module 34 Heat reatment of steel IV Lecture 34 Heat reatment of steel IV 1 Keywords : Austenitization of hypo & hyper eutectoid steel, austenization temperature, effect of heat treatment on structure &
EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS
EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS Michael L. Marucci and Francis G. Hanejko Hoeganaes Corporation Cinnaminson, NJ 08077 - USA Abstract Fe-Cu-C
