AI: A Modern Approach, Chpts. 3-4 Russell and Norvig
|
|
|
- Mavis Lane
- 9 years ago
- Views:
Transcription
1 AI: A Modern Approach, Chpts. 3-4 Russell and Norvig Sequential Decision Making in Robotics CS 599 Geoffrey Hollinger and Gaurav Sukhatme (Some slide content from Stuart Russell and HweeTou Ng) Spring,
2 2 Decision Making Problem
3 Problem types Deterministic, fully observable Agent knows exactly which state it will be in solution is a sequence Non-observable Agent may have no idea where it is solution (if any) is a sequence Partially observable observations provide new information about current state solution is a contingent plan or a policy often interleave search, execution Unknown state space exploration problem 3
4 Vacuum world Observable, start in #5. [Right; Suck] Non-observable, start in: {1;2;3; 4;5;6;7;8} e.g., Right goes to {2;4;6;8} [Right; Suck; Left; Suck] Partially observable, start in #5, suck can dirty a clean carpet, local sensing only [Right; if dirt then Suck] Possible actions: left, right, suck 4
5 Vacuum world state space 5 States: Successor function: Actions: Goal test: Path cost:
6 Vacuum world state space 6 States: cross product of dirtiness and robot locations Successor function: Left/Right changes location, suck changes dirtiness Actions: Left, Right, Suck, NoOp Goal test: no dirt Path cost: 1 per action (0 for NoOp)
7 7 Non-observable vacuum world
8 8-puzzle state space 8 States: State transition Actions: Goal test: Path cost:
9 [Note: optimal solution of n-puzzle family is NP-hard] 8-puzzle state space 9 States: integer locations of tiles (ignore intermediate positions) State transitions: tile locations change Actions: move tile left, right, up, down Goal test: goal state (given) Path cost: 1 per move
10 Basic tree search algorithm Basic idea: offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states) 10
11 Search strategies A strategy is defined by picking the order of node expansion 11 Strategies are evaluated along the following dimensions: Completeness: does it always find a solution if one exists? Time complexity: number of nodes generated/expanded Space complexity: maximum number of nodes in memory Optimality: does it always find a least-cost solution? Time and space complexity are measured in terms of b: maximum branching factor of the search tree d: depth of the least-cost solution m:maximum depth of the state space (may be 1) For instance, a strategy might have time or space complexity O(bd) or O(b d )
12 Uninformed search strategies Breadth-first search Uniform-cost search Depth-first search Depth-limited search Iterative deepening search b = branching factor d = solution depth l = depth limit m = max tree depth C* = cost of optimal ε = min action cost 12
13 Avoiding repeated states Key idea: Maintaining a closed list can be exponentially more efficient 13
14 Best-first search Idea: use an evaluation function for each node estimate of desirability Expand most desirable unexpanded node Implementation: fringe is a queue sorted in decreasing order of desirability Special cases: Greedy search A* search 14
15 Map of Romania Straight line distances provide estimate of cost to goal 15
16 Greedy search Evaluation function h(n) (heuristic) estimate of cost from n to the closest goal E.g., h SLD (n) = straight-line distance from n to Bucharest Greedy search expands the node that appears to be closest to goal
17 Greedy search Complete: No Can get stuck in loops Complete in finite space with repeated-state checking Time: O(b m ) but better with a good heuristic Space: O(b m ) keeps all nodes in memory Optimal: No 17
18 A* search Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n) g(n) = cost so far to reach n h(n) = estimated cost to goal from n f(n) = estimated total cost of path through n to goal A* search uses an admissible heuristic i.e., h(n) h*(n) where h*(n) is the true cost from n. (Also require h(n) 0, so h(g) = 0 for any goal G.) e.g., h SLD (n) never overestimates the actual road distance One dirty trick Inflating the heuristic 18
19 A* example 393= = =
20 A* Optimality proof Suppose some suboptimal goal G 2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G. f(g 2 ) = g(g 2 ) since h(g 2 ) = 0 g(g 2 ) > g(g) since G 2 is suboptimal f(g) = g(g) since h(g) = 0 f(g 2 ) > f(g) from above h(n) h*(n) since h is admissible g(n) + h(n) g(n) + h * (n) f(n) f(g) 20 Hence f(g 2 ) > f(n), and A * will not have selected G 2 for expansion
21 A* Optimality proof Complete: Yes unless there are infinitely many nodes with f f(g) Time: Exponential in [relative error in h * length of soln.] Space: Keeps all nodes in memory Optimal: Yes A* expands all nodes with f(n) < C A* expands some nodes with f(n) = C A* expands no nodes with f(n) > C 21
22 Admissible heuristics E.g., for the 8-puzzle: h 1 (n) = number of misplaced tiles h 2 (n) = total Manhattan distance (i.e., no. of squares from desired location of each tile) 22 If h 2 (n) h 1 (n) for all n (both admissible) then h 2 dominates h 1 and is better for search Given any admissible heuristics h a, h b, h(n) = max(h a (n); h b (n)), is also admissible and dominates h a, h b
23 Which heuristics are admissible? Consider an 8-connected grid Euclidean distance to goal Manhattan distance to goal Euclidean distance divided by 2 Euclidean distance times 2 Distance to goal along optimal path Which heuristics dominate? 23
24 Relaxed problems Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem If the rules of the 8-puzzle are relaxed so that a tile can move anywhere then h 1 (n) gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square then h 2 (n) gives the shortest solution Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem 24
25 Relaxed version of TSP Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once Minimum spanning tree can be computed in O(n 2 ) and is a lower bound on the shortest (open) tour This also leads to a factor 2 approximation algorithm (much more on this later) 25
26 Fun questions Iterative deepening A* with a zero heuristic reduces to? A* with a zero heuristic and uniform costs reduces to? 26
27 Important things to understand Completeness Optimality Time/space complexity State and action spaces State transitions Full, partial, and non-observability Informed/admissible heuristics Relaxed problems To look up if you don t understand: Complexity classes (NP-hard, etc.) 27
Informed search algorithms. Chapter 4, Sections 1 2 1
Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)
Problem solving and search
Problem solving and search hapter 3 hapter 3 1 eminders ssignment 0 due 5pm today ssignment 1 posted, due 2/9 ection 105 will move to 9-10am starting next week hapter 3 2 Outline Problem-solving agents
Measuring the Performance of an Agent
25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational
CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139
CS91.543 MidTerm Exam 4/1/2004 Name: KEY Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 % INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs.
An Introduction to The A* Algorithm
An Introduction to The A* Algorithm Introduction The A* (A-Star) algorithm depicts one of the most popular AI methods used to identify the shortest path between 2 locations in a mapped area. The A* algorithm
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
Search methods motivation 1
Suppose you are an independent software developer, and your software package Windows Defeater R, widely available on sourceforge under a GNU GPL license, is getting an international attention and acclaim.
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
6.852: Distributed Algorithms Fall, 2009. Class 2
.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
A Note on Maximum Independent Sets in Rectangle Intersection Graphs
A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada [email protected] September 12,
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
SOLVING PROBLEMS BY SEARCHING
3 SOLVING PROBLEMS BY SEARCHING In which we see how an agent can find a sequence of actions that achieves its goals, when no single action will do. PROBLEM SOLVING AGENT The simplest agents discussed in
Chapter 6. Decoding. Statistical Machine Translation
Chapter 6 Decoding Statistical Machine Translation Decoding We have a mathematical model for translation p(e f) Task of decoding: find the translation e best with highest probability Two types of error
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:
CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313]
CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313] File Structures A file is a collection of data stored on mass storage (e.g., disk or tape) Why on mass storage? too big to fit
Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
Chapter 2: Intelligent Agents
Chapter 2: Intelligent Agents Outline Last class, introduced AI and rational agent Today s class, focus on intelligent agents Agent and environments Nature of environments influences agent design Basic
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Chapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013
Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually
Teaching Introductory Artificial Intelligence with Pac-Man
Teaching Introductory Artificial Intelligence with Pac-Man John DeNero and Dan Klein Computer Science Division University of California, Berkeley {denero, klein}@cs.berkeley.edu Abstract The projects that
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
Regular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
Lecture 4 Online and streaming algorithms for clustering
CSE 291: Geometric algorithms Spring 2013 Lecture 4 Online and streaming algorithms for clustering 4.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Incremental Routing Algorithms For Dynamic Transportation Networks
UCGE Reports Number 20238 Department of Geomatics Engineering Incremental Routing Algorithms For Dynamic Transportation Networks (URL: http://www.geomatics.ucalgary.ca/research/publications/gradtheses.html)
Analysis of Micromouse Maze Solving Algorithms
1 Analysis of Micromouse Maze Solving Algorithms David M. Willardson ECE 557: Learning from Data, Spring 2001 Abstract This project involves a simulation of a mouse that is to find its way through a maze.
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
Efficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case.
Algorithms Efficiency of algorithms Computational resources: time and space Best, worst and average case performance How to compare algorithms: machine-independent measure of efficiency Growth rate Complexity
- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time
Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary
Cpt S 223. School of EECS, WSU
The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring
Smart Graphics: Methoden 3 Suche, Constraints
Smart Graphics: Methoden 3 Suche, Constraints Vorlesung Smart Graphics LMU München Medieninformatik Butz/Boring Smart Graphics SS2007 Methoden: Suche 2 Folie 1 Themen heute Suchverfahren Hillclimbing Simulated
CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
Graph/Network Visualization
Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: Telecommunication systems, Internet and WWW, Retailers distribution networks knowledge representation
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
cs171 HW 1 - Solutions
1. (Exercise 2.3 from RN) For each of the following assertions, say whether it is true or false and support your answer with examples or counterexamples where appropriate. (a) An agent that senses only
Lecture 6 Online and streaming algorithms for clustering
CSE 291: Unsupervised learning Spring 2008 Lecture 6 Online and streaming algorithms for clustering 6.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line
Scheduling Single Machine Scheduling. Tim Nieberg
Scheduling Single Machine Scheduling Tim Nieberg Single machine models Observation: for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe
Vector storage and access; algorithms in GIS. This is lecture 6
Vector storage and access; algorithms in GIS This is lecture 6 Vector data storage and access Vectors are built from points, line and areas. (x,y) Surface: (x,y,z) Vector data access Access to vector
Complete Solution of the Eight-Puzzle and the Benefit of Node Ordering in IDA*
Complete Solution of the Eight-Puzzle and the Benefit of Node Ordering in IDA* Alexander Reinefeld Paderborn Center for Parallel Computing Waxburger Str. 100, D-33095 Paderborn, Germany Abstract The 8-puzzle
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
Notes from Week 1: Algorithms for sequential prediction
CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 22-26 Jan 2007 1 Introduction In this course we will be looking
Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R
Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent
Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction
Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach
THE APPLICATION OF ARTIFICIAL INTELLIGENCE TO SOLVE A PHYSICAL PUZZLE. Dana Cremer
THE APPLICATION OF ARTIFICIAL INTELLIGENCE TO SOLVE A PHYSICAL PUZZLE Dana Cremer Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master
14.1 Rent-or-buy problem
CS787: Advanced Algorithms Lecture 14: Online algorithms We now shift focus to a different kind of algorithmic problem where we need to perform some optimization without knowing the input in advance. Algorithms
Game playing. Chapter 6. Chapter 6 1
Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.
Review D: Potential Energy and the Conservation of Mechanical Energy
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)
Week_11: Network Models
Week_11: Network Models 1 1.Introduction The network models include the traditional applications of finding the most efficient way to link a number of locations directly or indirectly, finding the shortest
Chapter 2 Intelligent Agents
1 Chapter 2 Intelligent Agents CS 461 Artificial Intelligence Pinar Duygulu Bilkent University, Spring 2008 Slides are mostly adapted from AIMA Outline 2 Agents and environments Rationality PEAS (Performance
Chapter 11 Monte Carlo Simulation
Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important
Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit
Data Structures Page 1 of 24 A.1. Arrays (Vectors) n-element vector start address + ielementsize 0 +1 +2 +3 +4... +n-1 start address continuous memory block static, if size is known at compile time dynamic,
Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q...
Lecture 4 Scheduling 1 Single machine models: Maximum Lateness -12- Approximation ratio for EDD for problem 1 r j,d j < 0 L max structure of a schedule 0 Q 1100 11 00 11 000 111 0 0 1 1 00 11 00 11 00
SUPPLY CHAIN OPTIMIZATION MODELS IN THE AREA OF OPERATION
SUPPLY CHAIN OPTIMIZATION MODELS IN THE AREA OF OPERATION Tomáš DVOŘÁK, Martin VLKOVSKÝ Abstract: Main idea of this paper is to choose both suitable and applicable operations research methods for military
Algorithms are the threads that tie together most of the subfields of computer science.
Algorithms Algorithms 1 Algorithms are the threads that tie together most of the subfields of computer science. Something magically beautiful happens when a sequence of commands and decisions is able to
Regression Verification: Status Report
Regression Verification: Status Report Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung 2013-12-11 1/22 Introduction How to prevent regressions in software
Kenken For Teachers. Tom Davis [email protected] http://www.geometer.org/mathcircles June 27, 2010. Abstract
Kenken For Teachers Tom Davis [email protected] http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Random Map Generator v1.0 User s Guide
Random Map Generator v1.0 User s Guide Jonathan Teutenberg 2003 1 Map Generation Overview...4 1.1 Command Line...4 1.2 Operation Flow...4 2 Map Initialisation...5 2.1 Initialisation Parameters...5 -w xxxxxxx...5
Survey On: Nearest Neighbour Search With Keywords In Spatial Databases
Survey On: Nearest Neighbour Search With Keywords In Spatial Databases SayaliBorse 1, Prof. P. M. Chawan 2, Prof. VishwanathChikaraddi 3, Prof. Manish Jansari 4 P.G. Student, Dept. of Computer Engineering&
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
Introduction to Artificial Intelligence. Intelligent Agents
Introduction to Artificial Intelligence Intelligent Agents Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Agents and environments PEAS (Performance,
DEVELOPMENT OF A VULNERABILITY ASSESSMENT CODE FOR A PHYSICAL PROTECTION SYSTEM: SYSTEMATIC ANALYSIS OF PHYSICAL PROTECTION EFFECTIVENESS (SAPE)
DEVELOPMENT OF A VULNERABILITY ASSESSMENT CODE FOR A PHYSICAL PROTECTION SYSTEM: SYSTEMATIC ANALYSIS OF PHYSICAL PROTECTION EFFECTIVENESS (SAPE) SUNG SOON JANG *, SUNG-WOO KWAK, HOSIK YOO, JUNG-SOO KIM
Data Structures. Chapter 8
Chapter 8 Data Structures Computer has to process lots and lots of data. To systematically process those data efficiently, those data are organized as a whole, appropriate for the application, called a
Introduction to LAN/WAN. Network Layer
Introduction to LAN/WAN Network Layer Topics Introduction (5-5.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues Store-and-Forward Packet Switching Services
Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014
Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li Advised by: Dave Mount May 22, 2014 1 INTRODUCTION In this report we consider the implementation of an efficient
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
Chapter 13: Binary and Mixed-Integer Programming
Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:
Introduction to Scheduling Theory
Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France [email protected] November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
A Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
Learning to Search More Efficiently from Experience: A Multi-Heuristic Approach
Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015) Learning to Search More Efficiently from Experience: A Multi-Heuristic Approach Sandip Aine Indraprastha Institute
11. APPROXIMATION ALGORITHMS
11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005
Network File Storage with Graceful Performance Degradation
Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed
10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
Clustering UE 141 Spring 2013
Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or
CS/COE 1501 http://cs.pitt.edu/~bill/1501/
CS/COE 1501 http://cs.pitt.edu/~bill/1501/ Lecture 01 Course Introduction Meta-notes These notes are intended for use by students in CS1501 at the University of Pittsburgh. They are provided free of charge
Quiz for Chapter 1 Computer Abstractions and Technology 3.10
Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,
Lecture 18: Applications of Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 18: Applications of Dynamic Programming Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
