How Placing Limitations on the Size of Personal Networks Changes the Structural Properties of Complex Networks
|
|
|
- Shonda Robertson
- 10 years ago
- Views:
Transcription
1 How Placing Limitations on the Size of Personal Networks Changes the Structural Properties of Complex Networks Somayeh Koohborfardhaghighi, Jörn Altmann Technology Management, Economics, and Policy Program Seoul National University Seoul, Korea 1 6 th International Workshop on Web Intelligence & Communities, Seoul 2014
2 Table of content Introduction Problem Description Research Question Research Contribution Theoretical Background Proposed network formation model Experimental Results Conclusion 2
3 Introduction The person to person interactions between all of the individuals in our society form a large social network of people with interesting features (i.e., six degree of separation). These days, such interactions have been extended through social mediaand virtual communities Recent studies have shown that the six degrees of separation has shrunk, due to social networking tools (e.g., Facebook). Existing research on small world theory focused only on calculating the average shortest path length of networks that utilize all the existing connections among people [1, 6]. 3
4 Problem Description We can argue that the technology is shrinking our world. However, the maintenance of our personal network is not costless. It requires spending time and effort to maintain relationships. Two types or relationships can be distinguished: Talking about people you know is about revealing your social circle in the society and the people you meet in your daily life. Talking about people you trust is about revealing your personal preferences in different contexts. If we want to forward critical information from a start point to a target point in another part of the network, we cannot utilize all the existing connections. There is a limit on how many close friends one can have compared to known people. 4
5 Research Question We ask how a limitation in the number of trusted contacts impacts the structural properties of the entire network. We investigate the extent, to which a limitation on the size of personal networks (i.e., having a few trusted friends only) leads to an increase in the average shortest path length of the entire network. 5
6 Research Contribution We propose the following features that a network growth model should incorporate: Variability in individual patterns of behavior: The establishment of links of different types needs to be considered due to the difference of behavior of people in social environments. Different rate of variability of new node entrance and link establishments: The rate, at which people join a network, is different than the rate of link creation among existing ones. Limitations on the size of personal networks: The number of trusted contacts is smaller than the number of known contacts. Proposed features distinguish our analysis of the network s average path length from previous analyses in literature. 6
7 Theoretical Background Stanley Milgram, in his famous experiments [3, 4], was interested in computing the distance distribution of the acquaintance graph. The famous small world theory of personal relationships comprises the idea of being connected to any other person by a chain of only five people in average (i.e., six degree of separation). Backstrom et al. repeated Milgram s experiment by using the entire Facebook network and reported the observed average distance of 4.74, corresponding to 3.74 intermediaries or degree of separation [1]. The small world theory has been criticized with respect to some issues (e.g., low success rate in some experiments) [5]. 7
8 Proposed Network Formation Model We conduct a multi agent based simulation in Netlogo [13] The proposed model is a generative model based on the ideas that individual pattern of behavior in social environment is the key. This model can generate a network, in which the members follow the classical preferential attachment (i.e., attractiveness of each individuals is modeled by existing attachments [15, 16]) for connecting to other users. Furthermore, the users in this model have the ability to create potential links. 8
9 Proposed Network Formation Model Interactions among people of a network can be regarded as dynamic processes, which lead to changes in its structural properties. Dynamic processes in turn can be categorized into two groups: (1) the process, which occurs during the growth of a network and represents the tendency of new users to establish links to other members upon entry into the network; (2) the process, which occur among existing users of a network in order to establish links between them. (a) the first category includes the establishment of potential links of a Friend Of A Friend type (FOAF type) with social distance equal to 1; and (b) the second category includes the establishment of random potential links with other users, who are present in the network. 9
10 Model Parameters Simulation Parameters We considered three parameters (i.e., P GM, P FOAF and P RAN ) in our network formation model, The value of P GM determines the rate of a network growth. P FOAF and P RAN represent the rate of establishing potential links of FOAF and Random type. The value of P RAN is assumed to be equal to 1 P FOAF. These parameters have values in the range [0, 1]. Structural Properties of Networks In this paper, we analyze one of the main structural properties of a network, called average shortest path length (AVL). The shortest path length (AVL) is defined as the shortest distance between node pairs in a network 10
11 Result[1/4] 11 Changes in AVL with respect to the preferential attachment growth model are shown. The x axis depicts the simulation period, while the y axis represents the AVL value.
12 Result[2/4] Limitations on the size of personal networks significantly changes the average path lengths among individuals. Changes in AVL with respect to the preferential attachment growth model for different sizes of the personal networks. The x axis shows the simulation period, while the y axis represents the AVL 12
13 Result[3/4] Similar trend As before, however, reduction in the percentage of random links increases the AVL. Changes in AVL with respect to the preferential attachment growth model for different sizes of the personal networks. The x axis shows the simulation period, while the y axis represents the AVL 13
14 Result[4/4] Increases the AVL is move visible as a result of reduction in the percentage of random links Changes in AVL with respect to the preferential attachment growth model for different sizes of the personal networks. The x axis shows the simulation period, while the y axis represents the AVL 14
15 Conclusion Although we agree upon the fact that our world is getting smaller and smaller, there is also a limit to how many close friends one can keep and count on. Besides, having a high number of friends does not necessarily increase our trust circles. In order to keep the boundary for our relationships, we usually determine features and patterns that distinguish a friend and a trusted contact. In addition to this, any personal network in the real world comes with the cost of maintaining the individual connections. Maintenance of our personal network is not costless. It requires spending time and effort. 15
16 Conclusion We conducted numerical simulations to calculate and compare the average shortest path length of individuals within the generated network. The model was tested with forty configurations It was observed that, in addition to a different rate of variability in individual patterns of behavior in social environments, the limitations on the size of personal networks significantly changes the average path lengths among individuals. As clearly observed, the network s average path length had a significantly smaller value, if the size of the personal networks has been set to a large value. Therefore, limitations on the size of personal networks lead to an increase in AVL value. 16
17 17
18 Reference [1]Backstrom, L., Boldi, P., Rosa, M., Ugander, J., & Vigna, S. (2012, June). Four degrees of separation. In Proceedings of the 3rd Annual ACM Web Science Conference (pp ). ACM. DOI= [2] Dunbar, R. I. M Neocortex size as a constraint on group size in primates. Journal of Human Evolution 22 (6): DOI= (92)90081 J [3] Milgram, S The small world problem. Psychology today, 2(1), DOI= [4] Travers, J., and Milgram, S An experimental study of the small world problem. Sociometry, DOI= [5] Kleinfeld, J Could it be a big world after all? The six degrees of separation myth. Society, April, 12. [6] Ugander, J., Karrer, B., Backstrom, L., and Marlow, C The anatomy of the facebook social graph. arxiv preprint arxiv: [7] Dodds, P. S., Muhamad, R, and Watts, D. J An exper imental study of search in global social networks. Science, 301(5634), DOI= [8] Aristotle, Rackham, H., and Watt, S The Nicomache an Ethics. Ware, Hertfordshire: Wordsworth. [9] Gilbert, N Putting the Social into Social Simulation. Keynote address to the First World Social Simulation Con ference, Kyoto. [10] Watts, D. J., and Strogatz, S. H Collective dynamics of small world networks. nature, 393(6684), DOI= [11] Amaral, L. A. N., Scala, A., Barthélémy, M., and Stanley, H. E Classes of small world networks. Proceedings of the National Academy of Sciences, 97(21), DOI= [12] Barthélemy, M Crossover from scale free to spatial networks. EPL (Europhysics Letters), 63(6), 915. DOI= [13] Wilensky U, NetLogo: center for connected learning and computer based modeling Northwestern University, Evanston, IL. [14] Albert, R., and Barabási, A. L Statistical mechanics of complex networks. Reviews of modern physics, 74(1), 47. DOI= [15] Barabási, A. L., and Albert, R Emergence of scaling in random networks. Science, 286(5439), DOI= [16] Barabási, A. L., Albert, R., and Jeong, H Mean field theory for scale free random networks. Physica A: Statistical Mechanics and its Applications, 272(1), DOI= (99) [17] Bishop, C. M., and Lasserre, J Generative or discrimi native? Getting the best of both worlds. Bayesian Statistics, 8,
Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging
Mathematical Problems in Engineering, Article ID 578713, 6 pages http://dx.doi.org/10.1155/2014/578713 Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of
Sociology 323: Social networks
Sociology 323: Social networks Matthew Salganik 145 Wallace Hall [email protected] Office Hours: Tuesday 2-4 Princeton University, Fall 2007 Introduction This course provides an introduction to social
Information Network or Social Network? The Structure of the Twitter Follow Graph
Information Network or Social Network? The Structure of the Twitter Follow Graph Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin Twitter, Inc. @seth_a_myers @aneeshs @pankaj @lintool ABSTRACT
Six Degrees of Separation in Online Society
Six Degrees of Separation in Online Society Lei Zhang * Tsinghua-Southampton Joint Lab on Web Science Graduate School in Shenzhen, Tsinghua University Shenzhen, Guangdong Province, P.R.China [email protected]
Temporal Dynamics of Scale-Free Networks
Temporal Dynamics of Scale-Free Networks Erez Shmueli, Yaniv Altshuler, and Alex Sandy Pentland MIT Media Lab {shmueli,yanival,sandy}@media.mit.edu Abstract. Many social, biological, and technological
ONLINE SOCIAL NETWORK ANALYTICS
ONLINE SOCIAL NETWORK ANALYTICS Course Syllabus ECTS: 10 Period: Summer 2013 (17 July - 14 Aug) Level: Master Language of teaching: English Course type: Summer University STADS UVA code: 460122U056 Teachers:
Graph Mining Techniques for Social Media Analysis
Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented
Introduction to Networks and Business Intelligence
Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological
An Interest-Oriented Network Evolution Mechanism for Online Communities
An Interest-Oriented Network Evolution Mechanism for Online Communities Caihong Sun and Xiaoping Yang School of Information, Renmin University of China, Beijing 100872, P.R. China {chsun.vang> @ruc.edu.cn
Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries
Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries Shin Morishima 1 and Hiroki Matsutani 1,2,3 1Keio University, 3 14 1 Hiyoshi, Kohoku ku, Yokohama, Japan 2National Institute
Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network
, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and
Scale-free user-network approach to telephone network traffic analysis
Scale-free user-network approach to telephone network traffic analysis Yongxiang Xia,* Chi K. Tse, WaiM.Tam, Francis C. M. Lau, and Michael Small Department of Electronic and Information Engineering, Hong
Course Syllabus. BIA658 Social Network Analytics Fall, 2013
Course Syllabus BIA658 Social Network Analytics Fall, 2013 Instructor Yasuaki Sakamoto, Assistant Professor Office: Babbio 632 Office hours: By appointment [email protected] Course Description This
Effects of node buffer and capacity on network traffic
Chin. Phys. B Vol. 21, No. 9 (212) 9892 Effects of node buffer and capacity on network traffic Ling Xiang( 凌 翔 ) a), Hu Mao-Bin( 胡 茂 彬 ) b), and Ding Jian-Xun( 丁 建 勋 ) a) a) School of Transportation Engineering,
Combining Spatial and Network Analysis: A Case Study of the GoMore Network
1. Introduction Combining Spatial and Network Analysis: A Case Study of the GoMore Network Kate Lyndegaard 1 1 Department of Geography, Penn State University, University Park, PA, USA Email: [email protected]
Towards Modelling The Internet Topology The Interactive Growth Model
Towards Modelling The Internet Topology The Interactive Growth Model Shi Zhou (member of IEEE & IEE) Department of Electronic Engineering Queen Mary, University of London Mile End Road, London, E1 4NS
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns
1 Six Degrees of Separation
Networks: Spring 2007 The Small-World Phenomenon David Easley and Jon Kleinberg April 23, 2007 1 Six Degrees of Separation The small-world phenomenon the principle that we are all linked by short chains
Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003
Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation
The Structure of Growing Social Networks
The Structure of Growing Social Networks Emily M. Jin Michelle Girvan M. E. J. Newman SFI WORKING PAPER: 2001-06-032 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily
Online Appendix to Social Network Formation and Strategic Interaction in Large Networks
Online Appendix to Social Network Formation and Strategic Interaction in Large Networks Euncheol Shin Recent Version: http://people.hss.caltech.edu/~eshin/pdf/dsnf-oa.pdf October 3, 25 Abstract In this
ModelingandSimulationofthe OpenSourceSoftware Community
ModelingandSimulationofthe OpenSourceSoftware Community Yongqin Gao, GregMadey Departmentof ComputerScience and Engineering University ofnotre Dame ygao,[email protected] Vince Freeh Department of ComputerScience
DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS
International Scientific Conference & International Workshop Present Day Trends of Innovations 2012 28 th 29 th May 2012 Łomża, Poland DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS Lubos Takac 1 Michal Zabovsky
PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 5 PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS Julian Sienkiewicz and Janusz
Algorithms for representing network centrality, groups and density and clustered graph representation
COSIN IST 2001 33555 COevolution and Self-organization In dynamical Networks Algorithms for representing network centrality, groups and density and clustered graph representation Deliverable Number: D06
The mathematics of networks
The mathematics of networks M. E. J. Newman Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109 1040 In much of economic theory it is assumed that economic agents interact,
Search for the optimal strategy to spread a viral video: An agent-based model optimized with genetic algorithms
Search for the optimal strategy to spread a viral video: An agent-based model optimized with genetic algorithms Michal Kvasnička 1 Abstract. Agent-based computational papers on viral marketing have been
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
Cognitive Science 29 (2005) 41 78 Copyright 2005 Cognitive Science Society, Inc. All rights reserved. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
http://www.elsevier.com/copyright
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing
arxiv:physics/0601033 v1 6 Jan 2006
Analysis of telephone network traffic based on a complex user network Yongxiang Xia, Chi K. Tse, Francis C. M. Lau, Wai Man Tam, Michael Small arxiv:physics/0601033 v1 6 Jan 2006 Department of Electronic
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
MINING COMMUNITIES OF BLOGGERS: A CASE STUDY
MINING COMMUNITIES OF BLOGGERS: A CASE STUDY ON CYBER-HATE Jennifer Xu Bentley College Waltham, MA, USA [email protected] Michael Chau University of Hong Kong Pokfulam, Hong Kong [email protected] Abstract
arxiv:physics/0607202v2 [physics.comp-ph] 9 Nov 2006
Stock price fluctuations and the mimetic behaviors of traders Jun-ichi Maskawa Department of Management Information, Fukuyama Heisei University, Fukuyama, Hiroshima 720-0001, Japan (Dated: February 2,
Component visualization methods for large legacy software in C/C++
Annales Mathematicae et Informaticae 44 (2015) pp. 23 33 http://ami.ektf.hu Component visualization methods for large legacy software in C/C++ Máté Cserép a, Dániel Krupp b a Eötvös Loránd University [email protected]
Six Degrees: The Science of a Connected Age. Duncan Watts Columbia University
Six Degrees: The Science of a Connected Age Duncan Watts Columbia University Outline The Small-World Problem What is a Science of Networks? Why does it matter? Six Degrees Six degrees of separation between
The Topology of Large-Scale Engineering Problem-Solving Networks
The Topology of Large-Scale Engineering Problem-Solving Networks by Dan Braha 1, 2 and Yaneer Bar-Yam 2, 3 1 Faculty of Engineering Sciences Ben-Gurion University, P.O.Box 653 Beer-Sheva 84105, Israel
Many systems take the form of networks, sets of nodes or
Community structure in social and biological networks M. Girvan* and M. E. J. Newman* *Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; Department of Physics, Cornell University, Clark Hall,
A Social Network perspective of Conway s Law
A Social Network perspective of Conway s Law Chintan Amrit, Jos Hillegersberg, Kuldeep Kumar Dept of Decision Sciences Erasmus University Rotterdam {camrit, jhillegersberg, kkumar}@fbk.eur.nl 1. Introduction
Data Exploration with GIS Viewsheds and Social Network Analysis
Data Exploration with GIS Viewsheds and Social Network Analysis Giles Oatley 1, Tom Crick 1 and Ray Howell 2 1 Department of Computing, Cardiff Metropolitan University, UK 2 Faculty of Business and Society,
Why Rumors Spread Fast in Social Networks
Why Rumors Spread Fast in Social Networks Benjamin Doerr 1, Mahmoud Fouz 2, and Tobias Friedrich 1,2 1 Max-Planck-Institut für Informatik, Saarbrücken, Germany 2 Universität des Saarlandes, Saarbrücken,
IC05 Introduction on Networks &Visualization Nov. 2009. <[email protected]>
IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration
ATM Network Performance Evaluation And Optimization Using Complex Network Theory
ATM Network Performance Evaluation And Optimization Using Complex Network Theory Yalin LI 1, Bruno F. Santos 2 and Richard Curran 3 Air Transport and Operations Faculty of Aerospace Engineering The Technical
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected]
The Network Structure of Hard Combinatorial Landscapes
The Network Structure of Hard Combinatorial Landscapes Marco Tomassini 1, Sebastien Verel 2, Gabriela Ochoa 3 1 University of Lausanne, Lausanne, Switzerland 2 University of Nice Sophia-Antipolis, France
Seismic vulnerability assessment of power transmission networks using complex-systems based methodologies
Seismic vulnerability assessment of power transmission networks using complex-systems based methodologies J.A. Buritica & S. Tesfamariam University of British Columbia Okanagan Campus, Kelowna, Canada
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality
PHYSICAL REVIEW E, VOLUME 64, 016132 Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality M. E. J. Newman Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu
14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)
Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,
Extracting Information from Social Networks
Extracting Information from Social Networks Aggregating site information to get trends 1 Not limited to social networks Examples Google search logs: flu outbreaks We Feel Fine Bullying 2 Bullying Xu, Jun,
Network Theory: 80/20 Rule and Small Worlds Theory
Scott J. Simon / p. 1 Network Theory: 80/20 Rule and Small Worlds Theory Introduction Starting with isolated research in the early twentieth century, and following with significant gaps in research progress,
The First Online 3D Epigraphic Library: The University of Florida Digital Epigraphy and Archaeology Project
Seminar on Dec 19 th Abstracts & speaker information The First Online 3D Epigraphic Library: The University of Florida Digital Epigraphy and Archaeology Project Eleni Bozia (USA) Angelos Barmpoutis (USA)
An Experimental Study of Search in Global Social Networks
An Experimental Study of Search in Global Social Networks Peter Sheridan Dodds, 1 Roby Muhamad, 2 Duncan J. Watts 1,2 * We report on a global social-search experiment in which more than 60,000 e-mail users
GENERATING AN ASSORTATIVE NETWORK WITH A GIVEN DEGREE DISTRIBUTION
International Journal of Bifurcation and Chaos, Vol. 18, o. 11 (2008) 3495 3502 c World Scientific Publishing Company GEERATIG A ASSORTATIVE ETWORK WITH A GIVE DEGREE DISTRIBUTIO JI ZHOU, XIAOKE XU, JIE
Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm
Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College
Today. Concepts. Semantics and Categorization. Functions of Categories. Bruner, Goodnow, & Austin (1956) Rules
Today Concepts Intro Psychology Georgia Tech Instructor: Dr. Bruce Walker Categories Prototypes Networks Imagery Thinking Functions of Categories Reduce complexity Determine appropriate actions Provides
Graph theoretic approach to analyze amino acid network
Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 31-37 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Graph theoretic approach to
What Is Probability?
1 What Is Probability? The idea: Uncertainty can often be "quantified" i.e., we can talk about degrees of certainty or uncertainty. This is the idea of probability: a higher probability expresses a higher
The architecture of complex weighted networks
The architecture of complex weighted networks A. Barrat*, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani* *Laboratoire de Physique Théorique (Unité Mixte de Recherche du Centre National de la Recherche
DYNAMIC Distributed Federated Databases (DDFD) Experimental Evaluation of the Performance and Scalability of a Dynamic Distributed Federated Database
Experimental Evaluation of the Performance and Scalability of a Dynamic Distributed Federated Database Graham Bent, Patrick Dantressangle, Paul Stone, David Vyvyan, Abbe Mowshowitz Abstract This paper
Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware
Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid Al-Ars, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology
Stock price fluctuations and the mimetic behaviors of traders
Physica A 382 (2007) 172 178 www.elsevier.com/locate/physa Stock price fluctuations and the mimetic behaviors of traders Jun-ichi Maskawa Department of Management Information, Fukuyama Heisei University,
Big Data : Big Gaps of Knowledge in the Field of Internet Science
International Journal of Internet Science 2012, 7 (1), 1 5 ISSN 1662-5544 IJIS.NET Big Data : Big Gaps of Knowledge in the Field of Internet Science Chris Snijders 1, Uwe Matzat 1, Ulf-Dietrich Reips 2,3
Using social network analysis in evaluating community-based programs: Some experiences and thoughts.
Using social network analysis in evaluating community-based programs: Some experiences and thoughts. Dr Gretchen Ennis Lecturer, Social Work & Community Studies School of Health Seminar Overview What is
