Main Points. Scheduling policy: what to do next, when there are multiple threads ready to run. Definitions. Uniprocessor policies
|
|
|
- Marjorie Green
- 9 years ago
- Views:
Transcription
1 Scheduling
2 Main Points Scheduling policy: what to do next, when there are multiple threads ready to run Or multiple packets to send, or web requests to serve, or Definitions response time, throughput, predictability Uniprocessor policies FIFO, round robin, optimal multilevel feedback as approximation of optimal Multiprocessor policies Affinity scheduling, gang scheduling Queueing theory Can you predict a system s response time?
3 Example You manage a web site, that suddenly becomes wildly popular. Do you? Buy more hardware? Implement a different scheduling policy? Turn away some users? Which ones? How much worse will performance get if the web site becomes even more popular?
4 Definitions Task/Job User request: e.g., mouse click, web request, shell command, Latency/response time How long does a task take to complete? Throughput How many tasks can be done per unit of time? Overhead How much extra work is done by the scheduler? Fairness How equal is the performance received by different users? Predictability How consistent is the performance over time?
5 More Definitions Workload Set of tasks for system to perform Preemptive scheduler If we can take resources away from a running task Work-conserving Resource is used whenever there is a task to run For non-preemptive schedulers, work-conserving is not always better Scheduling algorithm takes a workload as input decides which tasks to do first Performance metric (throughput, latency) as output Only preemptive, work-conserving schedulers to be considered
6 More Definitions Workload Set of tasks for system to perform Preemptive scheduler If we can take resources away from a running task Work-conserving Resource is used whenever there is a task to run For non-preemptive schedulers, work-conserving is not always better Scheduling algorithm takes a workload as input decides which tasks to do first Performance metric (throughput, latency) as output Only preemptive, work-conserving schedulers to be considered
7 First In First Out (FIFO) Schedule tasks in the order they arrive Continue running them until they complete or give up the processor Example: memcached Facebook cache of friend lists, On what workloads is FIFO particularly bad?
8 Shortest Job First (SJF) Always do the task that has the shortest remaining amount of work to do Often called Shortest Remaining Time First (SRTF) Suppose we have five tasks arrive one right after each other, but the first one is much longer than the others Which completes first in FIFO? Next? Which completes first in SJF? Next?
9 FIFO vs. SJF
10 Shortest Job First Claim: SJF is optimal for average response time Why? For what workloads is FIFO optimal? Pessimal? Does SJF have any downsides?
11 Starvation and Sample Bias Suppose you want to compare FIFO and SJF on some sequence of arriving tasks Compute average response time as the average for tasks that start/end in some window Is this valid or invalid?
12 Round Robin Each task gets resource for a fixed period of time (time quantum) If task doesn t complete, it goes back in line Need to pick a time quantum What if time quantum is too long? Infinite? What if time quantum is too short? One instruction?
13 Round Robin
14 Round Robin head Ready queue head Ready queue B C D E C D E A running running A (a) A in execution B (b) A completes its time share Proportionality: turnaround (time spent in the system) proportional to task length Response time upperbounded by the number of processes # ready processes * time share
15 Round Robin head Ready queue head Ready queue B C D E C D E running running A B (a) A in execution head Ready queue E B C A running D (c) reactivation of A
16 Round Robin End of time share signaled by the timer Timer interrupt causes the activation of the scheduler The scheduler restarts the timer Scheduler takes over also in case of suspension of the running process Reassigns the CPU and restarts timer In current systems time share around msec
17 Round Robin vs. FIFO Assuming zero-cost time slice, is Round Robin always better than FIFO?
18 Round Robin vs. FIFO
19 Round Robin vs. Fairness Is Round Robin always fair?
20 Mixed Workload Two kind of processes: CPU-bound long CPU bursts with sparse I/O I/O bound short CPU bursts with frequent I/O
21 Mixed Workload
22 Max-Min Fairness How do we balance a mixture of repeating tasks: Some I/O bound, need only a little CPU Some compute bound, can use as much CPU as they are assigned One approach: maximize the minimum allocation given to a task Schedule the smallest task first, then split the remaining time using max-min
23 Multi-level Feedback Queue (MFQ) Goals: Responsiveness Low overhead Starvation freedom Some tasks are high/low priority Fairness (among equal priority tasks) Not perfect at any of them! Used in Linux (and probably Windows, MacOS)
24 MFQ Set of Round Robin queues Each queue has a separate priority High priority queues have short time slices Low priority queues have long time slices Scheduler picks first thread in highest priority queue Round robin in each queue Tasks start in highest priority queue If time slice expires, task drops one level
25 MFQ
26 MFQ Issues with MFQ: Starvation: If all the upper queues are always full of I/O-bound processes A process may change its habits : from CPU-bound to I/O-bound and vice-versa Need for policies to raise up the priority of: I/O bound processes CPU-bound processes that are starving MFQ usually combined with dynamic priorities
27 Example: scheduling in Windows
28 Example: scheduling in Windows A new thread starts with priority 8 Priority raised up if : thread reactivated after I/O operation (disk : +1, Serial line: +6, Keyboard: +8, Audio card: +8, ) thread reactivated after waiting on a mutex/semaphore (+1 if in background, +2 if in foreground) Thread didn t run for a given amount of time (priority goes to 15 for two time shares) Priority lowered if thread uses all time share (-1) When a window goes in foreground the time share of its threads is enlarged
29 Example: scheduling in Windows Inversion of priority A (12) A waiting on sem A (12) A executes wait(sem) and waits running C (8) Sem Sem ready; Should execute signal(sem) But does not have the CPU B (15) (4) 1) 2)
30 Uniprocessor Summary FIFO is simple and minimizes overhead. If tasks are variable in size, then FIFO can have very poor average response time. If tasks are equal in size, FIFO is optimal in terms of average response time. Considering only the processor, SJF is optimal in terms of average response time. SJF is pessimal in terms of variance in response time.
31 Uniprocessor Summary If tasks are variable in size, Round Robin approximates SJF. If tasks are equal in size, Round Robin will have very poor average response time. Tasks that intermix processor and I/O benefit from SJF and can do poorly under Round Robin. Max-min fairness can improve response time for I/O-bound tasks. Round Robin and Max-min fairness both avoid starvation. By manipulating the assignment of tasks to priority queues, an MFQ scheduler can achieve a balance between responsiveness, low overhead, and fairness.
CPU Scheduling. Basic Concepts. Basic Concepts (2) Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems
Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems Based on original slides by Silberschatz, Galvin and Gagne 1 Basic Concepts CPU I/O Burst Cycle Process execution
Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts
Objectives Chapter 5: CPU Scheduling Introduce CPU scheduling, which is the basis for multiprogrammed operating systems Describe various CPU-scheduling algorithms Discuss evaluation criteria for selecting
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms
Objectives. Chapter 5: Process Scheduling. Chapter 5: Process Scheduling. 5.1 Basic Concepts. To introduce CPU scheduling
Objectives To introduce CPU scheduling To describe various CPU-scheduling algorithms Chapter 5: Process Scheduling To discuss evaluation criteria for selecting the CPUscheduling algorithm for a particular
CPU Scheduling Outline
CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different
Announcements. Basic Concepts. Histogram of Typical CPU- Burst Times. Dispatcher. CPU Scheduler. Burst Cycle. Reading
Announcements Reading Chapter 5 Chapter 7 (Monday or Wednesday) Basic Concepts CPU I/O burst cycle Process execution consists of a cycle of CPU execution and I/O wait. CPU burst distribution What are the
Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run
SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run
Scheduling Algorithms
Scheduling Algorithms List Pros and Cons for each of the four scheduler types listed below. First In First Out (FIFO) Simplicity FIFO is very easy to implement. Less Overhead FIFO will allow the currently
CPU Scheduling. CPU Scheduling
CPU Scheduling Electrical and Computer Engineering Stephen Kim ([email protected]) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling
ICS 143 - Principles of Operating Systems
ICS 143 - Principles of Operating Systems Lecture 5 - CPU Scheduling Prof. Nalini Venkatasubramanian [email protected] Note that some slides are adapted from course text slides 2008 Silberschatz. Some
Job Scheduling Model
Scheduling 1 Job Scheduling Model problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run for theith job, we have an arrival timea i and a run
Chapter 5 Process Scheduling
Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling
4003-440/4003-713 Operating Systems I. Process Scheduling. Warren R. Carithers ([email protected]) Rob Duncan ([email protected])
4003-440/4003-713 Operating Systems I Process Scheduling Warren R. Carithers ([email protected]) Rob Duncan ([email protected]) Review: Scheduling Policy Ideally, a scheduling policy should: Be: fair, predictable
CPU Scheduling. Core Definitions
CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases
Scheduling 0 : Levels. High level scheduling: Medium level scheduling: Low level scheduling
Scheduling 0 : Levels High level scheduling: Deciding whether another process can run is process table full? user process limit reached? load to swap space or memory? Medium level scheduling: Balancing
Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum
Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods
OPERATING SYSTEMS SCHEDULING
OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform
Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d
Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling
Operating Systems Lecture #6: Process Management
Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013
Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.
Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:
Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:
Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations
OS OBJECTIVE QUESTIONS
OS OBJECTIVE QUESTIONS Which one of the following is Little s formula Where n is the average queue length, W is the time that a process waits 1)n=Lambda*W 2)n=Lambda/W 3)n=Lambda^W 4)n=Lambda*(W-n) Answer:1
Operating System: Scheduling
Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting
Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/
Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille [email protected] Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching
Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition
Chapter 5: CPU Scheduling Silberschatz, Galvin and Gagne 2009 Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating
Process Scheduling. Process Scheduler. Chapter 7. Context Switch. Scheduler. Selection Strategies
Chapter 7 Process Scheduling Process Scheduler Why do we even need to a process scheduler? In simplest form, CPU must be shared by > OS > Application In reality, [multiprogramming] > OS : many separate
CPU Scheduling. CSC 256/456 - Operating Systems Fall 2014. TA: Mohammad Hedayati
CPU Scheduling CSC 256/456 - Operating Systems Fall 2014 TA: Mohammad Hedayati Agenda Scheduling Policy Criteria Scheduling Policy Options (on Uniprocessor) Multiprocessor scheduling considerations CPU
Introduction. Scheduling. Types of scheduling. The basics
Introduction In multiprogramming systems, when there is more than one runable (i.e., ready), the operating system must decide which one to activate. The decision is made by the part of the operating system
Processor Scheduling. Queues Recall OS maintains various queues
Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time
2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput
Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?
CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS
CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into
CPU Scheduling. Multitasking operating systems come in two flavours: cooperative multitasking and preemptive multitasking.
CPU Scheduling The scheduler is the component of the kernel that selects which process to run next. The scheduler (or process scheduler, as it is sometimes called) can be viewed as the code that divides
CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads.
CPU Scheduling CPU Scheduling 101 The CPU scheduler makes a sequence of moves that determines the interleaving of threads. Programs use synchronization to prevent bad moves. but otherwise scheduling choices
PROCESS SCHEDULING ALGORITHMS: A REVIEW
Volume No, Special Issue No., May ISSN (online): -7 PROCESS SCHEDULING ALGORITHMS: A REVIEW Ekta, Satinder Student, C.R. College of Education, Hisar, Haryana, (India) Assistant Professor (Extn.), Govt.
Operating Systems, 6 th ed. Test Bank Chapter 7
True / False Questions: Chapter 7 Memory Management 1. T / F In a multiprogramming system, main memory is divided into multiple sections: one for the operating system (resident monitor, kernel) and one
A Group based Time Quantum Round Robin Algorithm using Min-Max Spread Measure
A Group based Quantum Round Robin Algorithm using Min-Max Spread Measure Sanjaya Kumar Panda Department of CSE NIT, Rourkela Debasis Dash Department of CSE NIT, Rourkela Jitendra Kumar Rout Department
Operating Systems Concepts: Chapter 7: Scheduling Strategies
Operating Systems Concepts: Chapter 7: Scheduling Strategies Olav Beckmann Huxley 449 http://www.doc.ic.ac.uk/~ob3 Acknowledgements: There are lots. See end of Chapter 1. Home Page for the course: http://www.doc.ic.ac.uk/~ob3/teaching/operatingsystemsconcepts/
A Review on Load Balancing In Cloud Computing 1
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12333-12339 A Review on Load Balancing In Cloud Computing 1 Peenaz Pathak, 2 Er.Kamna
CS4410 - Fall 2008 Homework 2 Solution Due September 23, 11:59PM
CS4410 - Fall 2008 Homework 2 Solution Due September 23, 11:59PM Q1. Explain what goes wrong in the following version of Dekker s Algorithm: CSEnter(int i) inside[i] = true; while(inside[j]) inside[i]
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann [email protected] Universität Paderborn PC² Agenda Multiprocessor and
Real-Time Scheduling 1 / 39
Real-Time Scheduling 1 / 39 Multiple Real-Time Processes A runs every 30 msec; each time it needs 10 msec of CPU time B runs 25 times/sec for 15 msec C runs 20 times/sec for 5 msec For our equation, A
A Comparative Study of CPU Scheduling Algorithms
IJGIP Journal homepage: www.ifrsa.org A Comparative Study of CPU Scheduling Algorithms Neetu Goel Research Scholar,TEERTHANKER MAHAVEER UNIVERSITY Dr. R.B. Garg Professor Delhi School of Professional Studies
Understanding Linux on z/vm Steal Time
Understanding Linux on z/vm Steal Time June 2014 Rob van der Heij [email protected] Summary Ever since Linux distributions started to report steal time in various tools, it has been causing
REDUCING TIME: SCHEDULING JOB. Nisha Yadav, Nikita Chhillar, Neha jaiswal
Journal Of Harmonized Research (JOHR) Journal Of Harmonized Research in Engineering 1(2), 2013, 45-53 ISSN 2347 7393 Original Research Article REDUCING TIME: SCHEDULING JOB Nisha Yadav, Nikita Chhillar,
Konzepte von Betriebssystem-Komponenten. Linux Scheduler. Valderine Kom Kenmegne [email protected]. Proseminar KVBK Linux Scheduler Valderine Kom
Konzepte von Betriebssystem-Komponenten Linux Scheduler Kenmegne [email protected] 1 Contents: 1. Introduction 2. Scheduler Policy in Operating System 2.1 Scheduling Objectives 2.2 Some Scheduling
Syllabus MCA-404 Operating System - II
Syllabus MCA-404 - II Review of basic concepts of operating system, threads; inter process communications, CPU scheduling criteria, CPU scheduling algorithms, process synchronization concepts, critical
Module 6. Embedded System Software. Version 2 EE IIT, Kharagpur 1
Module 6 Embedded System Software Version 2 EE IIT, Kharagpur 1 Lesson 30 Real-Time Task Scheduling Part 2 Version 2 EE IIT, Kharagpur 2 Specific Instructional Objectives At the end of this lesson, the
Linux Process Scheduling Policy
Lecture Overview Introduction to Linux process scheduling Policy versus algorithm Linux overall process scheduling objectives Timesharing Dynamic priority Favor I/O-bound process Linux scheduling algorithm
Operating System Tutorial
Operating System Tutorial OPERATING SYSTEM TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Operating System Tutorial An operating system (OS) is a collection
Efficiency of Batch Operating Systems
Efficiency of Batch Operating Systems a Teodor Rus [email protected] The University of Iowa, Department of Computer Science a These slides have been developed by Teodor Rus. They are copyrighted materials
Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses
Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Advanced scheduling issues Multilevel queue scheduling Multiprocessor scheduling issues Real-time scheduling Scheduling in Linux Scheduling algorithm
Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note:
Chapter 7 OBJECTIVES Operating Systems Define the purpose and functions of an operating system. Understand the components of an operating system. Understand the concept of virtual memory. Understand the
ò Paper reading assigned for next Thursday ò Lab 2 due next Friday ò What is cooperative multitasking? ò What is preemptive multitasking?
Housekeeping Paper reading assigned for next Thursday Scheduling Lab 2 due next Friday Don Porter CSE 506 Lecture goals Undergrad review Understand low-level building blocks of a scheduler Understand competing
Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5
77 16 CPU Scheduling Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5 Until now you have heard about processes and memory. From now on you ll hear about resources, the things operated upon
Scheduling policy. ULK3e 7.1. Operating Systems: Scheduling in Linux p. 1
Scheduling policy ULK3e 7.1 Goals fast process response time good throughput for background jobs avoidance of process starvation reconciliation of needs of low- and high-priority processes Operating Systems:
A LECTURE NOTE ON CSC 322 OPERATING SYSTEM I DR. S. A. SODIYA
A LECTURE NOTE ON CSC 322 OPERATING SYSTEM I BY DR. S. A. SODIYA 1 SECTION ONE 1.0 INTRODUCTION TO OPERATING SYSTEMS 1.1 DEFINITIONS OF OPERATING SYSTEMS An operating system (commonly abbreviated OS and
OPERATING SYSTEM - VIRTUAL MEMORY
OPERATING SYSTEM - VIRTUAL MEMORY http://www.tutorialspoint.com/operating_system/os_virtual_memory.htm Copyright tutorialspoint.com A computer can address more memory than the amount physically installed
Analysis and Comparison of CPU Scheduling Algorithms
Analysis and Comparison of CPU Scheduling Algorithms Pushpraj Singh 1, Vinod Singh 2, Anjani Pandey 3 1,2,3 Assistant Professor, VITS Engineering College Satna (MP), India Abstract Scheduling is a fundamental
Introduction. Application Performance in the QLinux Multimedia Operating System. Solution: QLinux. Introduction. Outline. QLinux Design Principles
Application Performance in the QLinux Multimedia Operating System Sundaram, A. Chandra, P. Goyal, P. Shenoy, J. Sahni and H. Vin Umass Amherst, U of Texas Austin ACM Multimedia, 2000 Introduction General
Devices and Device Controllers
I/O 1 Devices and Device Controllers network interface graphics adapter secondary storage (disks, tape) and storage controllers serial (e.g., mouse, keyboard) sound co-processors... I/O 2 Bus Architecture
EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun
EECS 750: Advanced Operating Systems 01/28 /2015 Heechul Yun 1 Recap: Completely Fair Scheduler(CFS) Each task maintains its virtual time V i = E i 1 w i, where E is executed time, w is a weight Pick the
Why Relative Share Does Not Work
Why Relative Share Does Not Work Introduction Velocity Software, Inc March 2010 Rob van der Heij rvdheij @ velocitysoftware.com Installations that run their production and development Linux servers on
Analysis of Job Scheduling Algorithms in Cloud Computing
Analysis of Job Scheduling s in Cloud Computing Rajveer Kaur 1, Supriya Kinger 2 1 Research Fellow, Department of Computer Science and Engineering, SGGSWU, Fatehgarh Sahib, India, Punjab (140406) 2 Asst.Professor,
Task Scheduling for Multicore Embedded Devices
Embedded Linux Conference 2013 Task Scheduling for Multicore Embedded Devices 2013. 02. 22. Gap-Joo Na ([email protected]) Contents 2 What is multicore?? 1. Multicore trends 2. New Architectures 3. Software
Job Scheduling for MapReduce
UC Berkeley Job Scheduling for MapReduce Matei Zaharia, Dhruba Borthakur *, Joydeep Sen Sarma *, Scott Shenker, Ion Stoica RAD Lab, * Facebook Inc 1 Motivation Hadoop was designed for large batch jobs
10.04.2008. Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details
Thomas Fahrig Senior Developer Hypervisor Team Hypervisor Architecture Terminology Goals Basics Details Scheduling Interval External Interrupt Handling Reserves, Weights and Caps Context Switch Waiting
Multiprogramming. IT 3123 Hardware and Software Concepts. Program Dispatching. Multiprogramming. Program Dispatching. Program Dispatching
IT 3123 Hardware and Software Concepts Operating Systems II October 26 Multiprogramming Two or more application programs in memory. Consider one CPU and more than one program. This can be generalized to
CS 377: Operating Systems. Outline. A review of what you ve learned, and how it applies to a real operating system. Lecture 25 - Linux Case Study
CS 377: Operating Systems Lecture 25 - Linux Case Study Guest Lecturer: Tim Wood Outline Linux History Design Principles System Overview Process Scheduling Memory Management File Systems A review of what
Linux scheduler history. We will be talking about the O(1) scheduler
CPU Scheduling Linux scheduler history We will be talking about the O(1) scheduler SMP Support in 2.4 and 2.6 versions 2.4 Kernel 2.6 Kernel CPU1 CPU2 CPU3 CPU1 CPU2 CPU3 Linux Scheduling 3 scheduling
Operating Systems 4 th Class
Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science
ò Scheduling overview, key trade-offs, etc. ò O(1) scheduler older Linux scheduler ò Today: Completely Fair Scheduler (CFS) new hotness
Last time Scheduling overview, key trade-offs, etc. O(1) scheduler older Linux scheduler Scheduling, part 2 Don Porter CSE 506 Today: Completely Fair Scheduler (CFS) new hotness Other advanced scheduling
This tutorial will take you through step by step approach while learning Operating System concepts.
About the Tutorial An operating system (OS) is a collection of software that manages computer hardware resources and provides common services for computer programs. The operating system is a vital component
Table of Contents. Cisco How Does Load Balancing Work?
Table of Contents How Does Load Balancing Work?...1 Document ID: 5212...1 Introduction...1 Prerequisites...1 Requirements...1 Components Used...1 Conventions...1 Load Balancing...1 Per Destination and
Performance Comparison of RTOS
Performance Comparison of RTOS Shahmil Merchant, Kalpen Dedhia Dept Of Computer Science. Columbia University Abstract: Embedded systems are becoming an integral part of commercial products today. Mobile
Lecture 36: Chapter 6
Lecture 36: Chapter 6 Today s topic RAID 1 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for
Scheduling algorithms for Linux
Scheduling algorithms for Linux Anders Peter Fugmann IMM-THESIS-2002-65 IMM Trykt af IMM, DTU Foreword This report is the result of a masters thesis entitled Scheduling algorithms for Linux. The thesis
Chapter 19: Real-Time Systems. Overview of Real-Time Systems. Objectives. System Characteristics. Features of Real-Time Systems
Chapter 19: Real-Time Systems System Characteristics Features of Real-Time Systems Chapter 19: Real-Time Systems Implementing Real-Time Operating Systems Real-Time CPU Scheduling VxWorks 5.x 19.2 Silberschatz,
1. Comments on reviews a. Need to avoid just summarizing web page asks you for:
1. Comments on reviews a. Need to avoid just summarizing web page asks you for: i. A one or two sentence summary of the paper ii. A description of the problem they were trying to solve iii. A summary of
Chapter 3. Operating Systems
Christian Jacob Chapter 3 Operating Systems 3.1 Evolution of Operating Systems 3.2 Booting an Operating System 3.3 Operating System Architecture 3.4 References Chapter Overview Page 2 Chapter 3: Operating
White Paper Perceived Performance Tuning a system for what really matters
TMurgent Technologies White Paper Perceived Performance Tuning a system for what really matters September 18, 2003 White Paper: Perceived Performance 1/7 TMurgent Technologies Introduction The purpose
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 26 Real - Time POSIX. (Contd.) Ok Good morning, so let us get
Case Study I: A Database Service
Case Study I: A Database Service Prof. Daniel A. Menascé Department of Computer Science George Mason University www.cs.gmu.edu/faculty/menasce.html 1 Copyright Notice Most of the figures in this set of
Chapter 2: OS Overview
Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:
Chapter 11 I/O Management and Disk Scheduling
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization
Operating System Aspects. Real-Time Systems. Resource Management Tasks
Operating System Aspects Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of
A Priority based Round Robin CPU Scheduling Algorithm for Real Time Systems
A Priority based Round Robin CPU Scheduling Algorithm for Real Time Systems Ishwari Singh Rajput Department of Computer Science and Engineering Amity School of Engineering and Technology, Amity University,
Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems
Lecture Outline Operating Systems Objectives Describe the functions and layers of an operating system List the resources allocated by the operating system and describe the allocation process Explain how
Lecture 3 Theoretical Foundations of RTOS
CENG 383 Real-Time Systems Lecture 3 Theoretical Foundations of RTOS Asst. Prof. Tolga Ayav, Ph.D. Department of Computer Engineering Task States Executing Ready Suspended (or blocked) Dormant (or sleeping)
Intel DPDK Boosts Server Appliance Performance White Paper
Intel DPDK Boosts Server Appliance Performance Intel DPDK Boosts Server Appliance Performance Introduction As network speeds increase to 40G and above, both in the enterprise and data center, the bottlenecks
CHAPTER 15: Operating Systems: An Overview
CHAPTER 15: Operating Systems: An Overview The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint
Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat
Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat Why Computers Are Getting Slower The traditional approach better performance Why computers are
Lecture 6: Interrupts. CSC 469H1F Fall 2006 Angela Demke Brown
Lecture 6: Interrupts CSC 469H1F Fall 2006 Angela Demke Brown Topics What is an interrupt? How do operating systems handle interrupts? FreeBSD example Linux in tutorial Interrupts Defn: an event external
CPS104 Computer Organization and Programming Lecture 18: Input-Output. Robert Wagner
CPS104 Computer Organization and Programming Lecture 18: Input-Output Robert Wagner cps 104 I/O.1 RW Fall 2000 Outline of Today s Lecture The I/O system Magnetic Disk Tape Buses DMA cps 104 I/O.2 RW Fall
Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic
Load Balancing in Distributed System Using FCFS Algorithm with RBAC Concept and Priority Scheduling
Website: www.ijrdet.com (ISSN 47-645(Online) Volume, Issue 6, December 4) Load Balancing in Distributed System Using FCFS Algorithm with RBAC Ccept and Priority Scheduling Geeta, Charanjit Singh M.Tech
