SIR ISAAC NEWTON ( )
|
|
|
- Madlyn Short
- 9 years ago
- Views:
Transcription
1 SIR ISAAC NEWTON ( ) PCES 1.1 Born in the small village of Woolsthorpe, Newton quickly made an impression as a student at Cambridge- he was appointed full Prof. there The young Newton in 1669, at the age of 27! He remained there until 1696, when he moved to London to work at the Royal Mint, where he worked for 30 yrs, and reformed the British monetary system. Trinity College in Cambridge (refectory at left) High Table inside the refectory, with Henry VIII
2 NEWTONIAN DYNAMICS (I) Although Newton published his complete theory in 1686, some of the important ideas in it date back to the period , when he left Cambridge to spend the period of the plague at his mother s home, Woolsthorpe Manor in Lincolnshire (see right). His reasons for delaying have interested historians ever since (see course notes). In 3 volumes the Principia set forth the basic ideas and rules of Newtonian dynamics, and the law of gravitation, followed by a detailed analysis of their consequences. This involved a derivation of the dynamics of planets and comets, showing their motion would be that of a conic section (ellipse, parabola, hyperbola). Then there was a lengthy analysis of fluid and gas mechanics, & of the rotation of the earth, its shape, tides, and atmosphere. This hardly exhausts the material in a book of over 500 pages, with in parts very involved mathematical derivations. Apart from the mathematical formulation of the dynamics, Newton also introduced a number of assumptions about the structure of space, time, and matter. Chief amongst these: (i) In complete contrast to all prevailing ideas, he supposed space was empty and absolute (as was time). (ii) the gravitational force acted at a distance, through empty space. PCES 1.2
3 NEWTONIAN DYNAMICS (II) As everyone learns in high school, Newton came up with his laws of dynamics and his law of gravitation, and this changed the world. The basic results were summed up as follows: PCES 1.3 (A) The laws of dynamics were (1) Every body continues in a state of uniform (ie., unaccelerated) motion unless acted upon by a force. (2) The force F and acceleration a of a body with mass m are related by F = ma (3) For every force acting on a body, there will be an equal and opposite reactive force acting somewhere. (B) The universal law of Gravitation: that between any mass m 1 and another mass m 2 separated by a distance r, there will be an attractive force F = G m 1 m 2 where G is a constant (now called the constant of gravitation ). In addition to these laws (which he did not really formulate in this way), Newton also gave arguments for the existence of what he called Absolute space & Absolute time. These assumptions caused debate even at that time (particularly with Leibniz) and turned out to be inessential to the theory- however the points raised are very important (see notes, and also Newton s scholium, reprinted in the supplementary notes). r 2
4 NEWTONIAN DYNAMICS (III) To unpack Newtonian dynamics means looking at the assumptions which underlie their formulation- in particular, the meaning attached to lengths, times, masses, and forces, and how they were supposed to defined in the real world. These assumptions raise a number of subtle Questions, particularly when one is dealing with non-inertial (ie., accelerated) frames of reference. PCES 1.4 Just as important is knowing how to use these laws to understand the motion of objects, of fluid & gas mechanics, etc This is part of the education of, eg., a modern engineer. Naturally the first applications by Newton and later by others was to simple problems like planetary and comet motion, the shape of the earth, etc. As an example, consider the dynamics of comets, which in those days were considered to be rather mysterious. Extensive observations of these had been accumulated since Tycho, and the English Astronomer Royal Flamsteed was one of the authorities on cometary movements- his picture of their orbits is shown below. This nicely illustrates the huge gap in understanding that was bridged by Newton s work- a by-product of his law of Gravitation was that the comets must follow conic section orbits (ellipses, parabolae, hyperbolae), with calculable deviations coming from their interactions with the planets. The picture of Newton s is from a letter he wrote to Flamsteed. Using Newton s ideas his friend Halley predicted the return of the famous comet in 76 yrs. Edmund Halley ( ) Flamsteed s picture Newton s picture
5 NEWTON: OPTICAL RESEARCH PCES 1.5 Newton s 2 nd reflector (1671) Newton began his optical work very early- already in 1670 he had presented his reflecting telescope to the Royal Societythese use a mirror to gather light instead of a lens. Such telescopes would later revolutionize 20 th century astronomy. However at the time Refraction of white light by a prism his most noted result was the demonstration of the composition of light spectra, using multiple prisms. By recombining light of different colours, (as shown below) he was able to understand a great deal about the nature of colour perception. For Newton this was a classical example of the experimental philosophy in action. Newton believed that light was made up of tiny particles (light corpuscles ) which obeyed the same dynamics as ordinary matter. His ideas on this are a little obscure- for more details see the notes. Certain facts about light propagation had to be explained in any reasonable theory- the laws of reflection and refraction (including the way in which the amplitudes of these varied with angle of incidence on a boundary between 2 media), the difference in these angles for different colours, and the nature of the colours. As we saw previously, there was also a competing theory- the wave theory of Huyghens.
6 NEWTON S LEGACY PCES 1.6 I. Newton, around 1700 Only 2 of Newton s contemporaries were really able to understand the full implications of his work. Leibniz was not only one of the most important mathematicians of all time, but also a central figure in the development of rationalist philosophy (see course notes). His relations with Newton were very bad, because of the dispute over priority in the invention of the calculus. Of more interest to us now was their debate over the existence of absolute space and action at a G.W. Leibniz ( ) distance, conducted between Leibniz & Newton s proxy Clarke. The problems raised by Leibniz would not be fully solved until Einstein s general theory of relativity (1916). In the same way the points raised by Huyghens, concerning both the question of action at a distance, and the nature of light, would not be solved until the 20 th century. These questions are central to the whole of physics. Nevertheless the change wrought by Newton s work was colossal. Quite apart from the formulation of what is now called Classical Mechanics (whose subsequent application changed the course of history), Newton s work wrought a huge change in the way we thought about the world and our relation to it. C, Huyghens ( )
2 ISAAC NEWTON BIOGRAPHY 780L
2 ISAAC NEWTON BIOGRAPHY 780L ISAAC NEWTON PHYSICS, GRAVITY & LAWS OF MOTION Born January 4, 1643 Lincolnshire, England Died March 31, 1727 London, England By Cynthia Stokes Brown, adapted by Newsela Sir
Isaac Newton & the Newtonian Age
Newton By William Blake ~1800 Ch 5 pg. 91-95 ++ Lecture 3 Isaac Newton & the Newtonian Age If I have ever made any valuable discoveries, it has been owing more to patient attention, than to any other talent.
2 ISAAC NEWTON BIOGRAPHY 1000L
2 ISAAC NEWTON BIOGRAPHY 1000L ISAAC NEWTON PHYSICS, GRAVITY & LAWS OF MOTION Born January 4, 1643 Lincolnshire, England Died March 31, 1727 London, England By Cynthia Stokes Brown, adapted by Newsela
Freely Falling Bodies & Uniformly Accelerated Motion
Physics Trinity Valley School Page 1 Lesson 24 Galileo, Freely Falling Bodies & Uniformly Accelerated Motion Galileo argued that a freely falling body is undergoing uniform acceleration. Its speed is increasing
What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating
What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in
Unit 8 Lesson 2 Gravity and the Solar System
Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY
1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell
Planetary Orbit Simulator Student Guide
Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.
Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope
Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets
1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"
Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was
From Aristotle to Newton
From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers
Chapter 7 Newton s Laws of Motion
Chapter 7 Newton s Laws of Motion 7.1 Force and Quantity of Matter... 1 Example 7.1 Vector Decomposition Solution... 3 7.1.1 Mass Calibration... 4 7.2 Newton s First Law... 5 7.3 Momentum, Newton s Second
Newton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1
Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time
Isaac Newton s (1642-1727) Laws of Motion
Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First
The Two-Body Problem
The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic
READING COMPREHENSION I SIR ISAAC NEWTON
READING COMPREHENSION I SIR ISAAC NEWTON Sir Isaac Newton (1642-1727) was an English scientist who made great contributions to physics, optics, maths and astronomy. He is known for his Three Laws of Motion
Gravitation and Newton s Synthesis
Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass
2. Orbits. FER-Zagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose
Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014
Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Disclaimer We do not know what will be discovered. This is the reason we perform experiments. This is the reason scientific research
Newton s Law of Universal Gravitation
Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.
Exercise: Estimating the Mass of Jupiter Difficulty: Medium
Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
4. Discuss the information as a class (transparency key)
Teacher: Sherry Tipps-Holder Grade: 8 Subject: World History/ Lesson designed for inclusion in unit on Scientific Revolution Essential Question: What were the major contributions/innovations of the who
1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)
1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector
The University of Texas at Austin. Gravity and Orbits
UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the
Vocabulary - Understanding Revolution in. our Solar System
Vocabulary - Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar
Lecture 17 Newton on Gravity
Lecture 17 Newton on Gravity Patrick Maher Philosophy 270 Spring 2010 Introduction Outline of Newton s Principia Definitions Axioms, or the Laws of Motion Book 1: The Motion of Bodies Book 2: The Motion
Astronomy 1140 Quiz 1 Review
Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality
DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: [email protected] Abstract: There are many longstanding
Class 2 Solar System Characteristics Formation Exosolar Planets
Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System
When Isaac Newton was born the day was December 25, 1642 by the Julian calendar that was still in
ISAAC NEWTON When Isaac Newton was born the day was December 25, 1642 by the Julian calendar that was still in use in England at the time. (With the adoption of the Gregorian calendar, the birthday of
The orbit of Halley s Comet
The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What
PHY1020 BASIC CONCEPTS IN PHYSICS I
PHY1020 BASIC CONCEPTS IN PHYSICS I Jackson Levi Said 14 lectures/tutorials/past paper session Project on one of the interesting fields in physics (30%) Exam in January/February (70%) 1 The Course RECOMMENDED
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
A long time ago, people looked
Supercool Space Tools! By Linda Hermans-Killam A long time ago, people looked into the dark night sky and wondered about the stars, meteors, comets and planets they saw. The only tools they had to study
Science@ESA vodcast series. Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia
Science@ESA vodcast series Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia Available to download from http://sci.esa.int/gaia/vodcast Hello, I m Rebecca Barnes and welcome to the Science@ESA
Making a reflector telescope
Making a reflector telescope telescope built by Sir Isaac Newton Replica of the first reflector Nowadays, professional astronomers use another type of telescope that is different to the first telescope
Tips for Selecting Your First Telescope
Tips for Selecting Your First Telescope Selecting your first telescope can be a daunting task. There are so many to choose from. This guide will give you some important facts that you will find useful
The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:
Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section
1 SCIENCE AND NATURAL PHILOSOPHY BEFORE THE 17 TH CENTURY
1 SCIENCE AND NATURAL PHILOSOPHY BEFORE THE 17 TH CENTURY FOR TEACHERS Lesson Title: Science and Natural Philosophy Before the Seventeenth Century Area of Learning: chronology, states of affairs Aims.
Chapter 3 The Science of Astronomy
Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar
Penn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:
GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant
Newton s Laws of Motion
Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off
Appendix A: Science Practices for AP Physics 1 and 2
Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world
Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
Theory of electrons and positrons
P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Lecture 4: Newton s Laws
Lecture 4: Newton s Laws! Laws of motion! Reference frames! Law of Gravity! Momentum and its conservation Sidney Harris This week: continue reading Chapter 3 of text 2/6/15 1 Newton s Laws & Galilean Relativity!
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
Newton s Law of Universal Gravitation
12.1 Newton s Law of Universal Gravitation SECTION Explain Kepler s laws. Describe Newton s law of universal gravitation. Apply Newton s law of universal gravitation quantitatively. KEY TERMS OUTCOMES
What Do You Think? For You To Do GOALS
Activity 2 Newton s Law of Universal Gravitation GOALS In this activity you will: Explore the relationship between distance of a light source and intensity of light. Graph and analyze the relationship
What Would Newton Do?
What Would Newton Do? David Tong Adams Society, November 2012 This talk is partly about physics, but partly about the history of physics. While the physics in the talk speaks for itself, the history needs
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81 Lecture Note JOURNAL OF Engineering Science and Technology Review www.jestr.org Time of flight and range of the motion of a projectile
How To Understand The Theory Of Gravity
Newton s Law of Gravity and Kepler s Laws Michael Fowler Phys 142E Lec 9 2/6/09. These notes are partly adapted from my Physics 152 lectures, where more mathematical details can be found. The Universal
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
Beginning of the Universe Classwork 6 th Grade PSI Science
Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All
Name: Date: Goals: to discuss the composition, components, and types of comets; to build a comet and test its strength and reaction to light
Name: Date: 17 Building a Comet 17.1 Introduction Comets represent some of the earliest material left over from the formation of the solar system, and are therefore of great interest to planetary astronomers.
Online Courses for High School Students 1-888-972-6237
Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
Physical Principle of Formation and Essence of Radio Waves
Physical Principle of Formation and Essence of Radio Waves Anatoli Bedritsky Abstract. This article opens physical phenomena which occur at the formation of the radio waves, and opens the essence of the
Orbital Dynamics with Maple (sll --- v1.0, February 2012)
Orbital Dynamics with Maple (sll --- v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published
Binary Stars. Kepler s Laws of Orbital Motion
Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.
Section 1 Gravity: A Force of Attraction
Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
Chapter 1 Mach s Principle and the Concept of Mass
Chapter 1 Mach s Principle and the Concept of Mass Inertia originates in a kind of interaction between bodies. Albert Einstein [1] In theoretical physics, especially in inertial and gravitational theories,
englishforeveryone.org Name Date
englishforeveryone.org Name Date Advanced Critical Reading - Hubble 5 10 15 20 25 30 35 40 The 32,000 word novella The Time Machine by H.G. Wells, published in 1895, is generally credited with popularizing
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
The Next Generation Science Standards (NGSS) Correlation to. EarthComm, Second Edition. Project-Based Space and Earth System Science
The Next Generation Science Standards (NGSS) Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS Copyright 2013 Achieve, Inc. All rights reserved. Correlation to,
Appropriate space vocabulary for Primary School
Appropriate space vocabulary for Primary School Stuff Looks like Gas Dust Rock Liquid Fatter (moon) Thinner (moon) Faster Slower Hot Cold Material Shape Straight at (an object) Direct (light) Indirect
STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
Physics 40 Lab 1: Tests of Newton s Second Law
Physics 40 Lab 1: Tests of Newton s Second Law January 28 th, 2008, Section 2 Lynda Williams Lab Partners: Madonna, Hilary Clinton & Angie Jolie Abstract Our primary objective was to test the validity
How Gravitational Forces arise from Curvature
How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Name Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
Unit 5: Space Exploration
Unit 5: Space Exploration Topic 1: Our Eyes Only Define FRAME OF REFERENCE: a set of axes of any kind that is used to describe the positions or motions of things Define CONSTELLATIONS: groupings of stars
The Crafoord Prize 2005
I N F O R M A T I O N F O R T H E P U B L I C The Royal Swedish Academy of Sciences has decided to award the Crafoord Prize in Astronomy 2005 to James Gunn, Princeton University, USA, James Peebles, Princeton
CPO Science and the NGSS
CPO Science and the NGSS It is no coincidence that the performance expectations in the Next Generation Science Standards (NGSS) are all action-based. The NGSS champion the idea that science content cannot
PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA
PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by
Cosmological Arguments for the Existence of God S. Clarke
Cosmological Arguments for the Existence of God S. Clarke [Modified Fall 2009] 1. Large class of arguments. Sometimes they get very complex, as in Clarke s argument, but the basic idea is simple. Lets
Einstein s Theory of Special Relativity Made Relatively Simple!
Einstein s Theory of Special Relativity Made Relatively Simple! by Christopher P. Benton, PhD Young Einstein Albert Einstein was born in 1879 and died in 1955. He didn't start talking until he was three,
The Sun and Solar Energy
I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives
The Expanding Universe
Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the
The Gravitational Field
The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř [email protected] Martin Klejch [email protected] F. X. Šalda Grammar School, Liberec
Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Calculus: Module 17. Motion in a straight line
1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 10 11 1 A guide for teachers Years 11 and 1 Calculus: Module 17 Motion in a straight line Motion in a straight line A guide for teachers (Years
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
Part I. Student Laboratory Manuals
Part I Student Laboratory Manuals 1 GK 4. The Gravitational Constant G 4.1 Introduction Gravitation, or gravity, is one of the four fundamental interactions of nature 1, giving rise to attractive forces
A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY *
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY * Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected]
GRADE 8 SCIENCE INSTRUCTIONAL TASKS. Gravity
GRADE 8 SCIENCE INSTRUCTIONAL TASKS Gravity Grade-Level Expectations The exercises in these instructional tasks address content related to the following science grade-level expectation(s): ESS-M-C3 Relate
