Storage Tank Protection Using Volatile Corrosion Inhibitors
|
|
|
- Miles Gibson
- 9 years ago
- Views:
Transcription
1 Storage Tank Protection Using Volatile Corrosion Inhibitors Boris A. Miksic, Alla Y. Furman, Margarita A. Kharshan Cortec Corporation 4119 White Bear Parkway St. Paul, MN Fax: Tim Whited Praxair Services, Inc Reed Court Broomfield, CO Fax: ABSTRACT Research and fieldwork show that vapor phase corrosion inhibitors (VpCIs) by themselves or in combination with cathodic protection can be used for the protection of the bottoms of the above ground storage tanks (AST s) [7]. Vapor phase corrosion inhibitors are compounds which are transported in a closed system to the site of corrosion by volatilization or diffusion from a source. Protection occurs by the adsorption of the VpCI molecules at the metal surface. VpCIs are especially useful in protecting metal surfaces that are difficult to reach. Cathodic protection is the traditional method of the corrosion control of the storage tanks. Two commercially available corrosion inhibitors were investigated for their performance in combination with cathodic protection. The result of this study was analyzed and a product for that application was suggested. The performance of this product was confirmed by several corrosion and electrochemical methods. 1. INTRODUCTION Metallic corrosion cost the United States is about $276 billion a year [1]. Approximately one third of the cost of corrosion ($100 billion) is avoidable and could be saved by using corrosion resistant materials and the application of state-of-the-art corrosion control technologies. Vapor phase corrosion inhibitors or volatile corrosion inhibitors (VpCIs) belong to the organic type inhibitors. They adsorb on the metal surface and suppress metal dissolution and reduction reactions. These affect both anodic and cathodic processes. Organic amines and carboxylates are typical examples of this class. Vapor phase corrosion inhibitors posses moderately high vapor pressure and can prevent corrosion without applying VpCI directly to the metal surface [1-3].
2 The advantage of VpCIs is that the volatilized molecules can reach hard-to-reach spaces. When reaches the metal VpCI attaches to it by the active group. Vapor pressure is a critical parameter in VpCI effectiveness. The most favorable range of the pressure is Pa at the room temperature. Too low pressure leads to the slow establishment of the protective layer; if the pressure is too high, VpCI effectiveness will be limited to a short time [1-3]. The effectiveness of VpCIs also depends on their adsorption energy on the metal. It was found that amine type of VpCI are capable of forming the protective layer for up to three months, and, as a rule, low molecular weight amines are more inclined to desorption than high molecular weight amines. Vapor phase corrosion inhibitors are able to protect from corrosion not only when used as a packaging aids, or in electrical and electronic enclosures, but also in many situations when metal equipment is exposed to the harsh atmospheric conditions. For example, VpCI can be successfully used for protection under the thermal insulation [4]. For this investigation a section of carbon steel pipe covered with wet calcium silicate thermal insulation material was treated by injection of VpCI in the metal/insulation interface. The test conditions were 200 F (93 C) surface temperature and 5psig steam pressure, maintained by continuous water injection at 5ml/hr. After 6 months, the following results were found: control pipe was approximately 80% covered with build-up of corrosion whereas pipe treated with VpCI was approximately 5% corroded at the two of the water injection points. Field results show that 20 precipitators, treated with VpCI and then wrapped in thermo-insulation together with associated equipment, had been transported by river and stored for 1 year with no or minimal corrosion [4]. Corrosion protection of fuel storage tanks is a very important task - failures are extremely costly, including loss of the fuel tank, which can additionally contaminate the environment, high repair cost, and effect on projects which depend on prompt fuel delivery. Cost effective and dependable long-term corrosion protection has been provided by VpCI technology for single and double bottom above-ground storage tanks. Starting from 1986 there were many cases of preventing bottoms of the storage tanks from corrosion by adding Vapor phase Corrosion Inhibitors. For single bottom tanks, VpCIs were added to sand on which storage tanks were positioned, and for double bottom tanks - in the space between bottoms. Different application\ methods were developed for the protection of new and used tanks. The results of applications have been reported in [6]. The most vulnerable part of the storage tanks is the bottom [6]. According to [6], VpCIs were used for the protection of the bottom storage tanks operated by Conoco Oil Co. VpCI powder was mixed with gravel and sand. Corrosion was monitored over a 2 years period. It was later confirmed that VpCI protected the bottom of those tanks against corrosion for over 15 years after application. A special dispensing system for this application was developed, and this type of protection was incorporated into standard for corrosion control of new and existing tank bottoms. For new tanks, after a sub-base of sand and gravel is spread, VpCI powder is applied at the rate of kg/100 m² (2-4 lb/100 ft²). It is mixed into the base with simple hand tools. The tank bottom is then laid out and fabricated as normal [6]. When tanks are being refurbished and new bottoms plates are welded in, VpCI are spread under the plate. When it is possible, VpCIs should be distributed in the adjacent areas. Another approach is to inject a 5% solution of VpCI in the under bottom section of the storage tanks. For the new installation double bottom tanks it is recommended to spread VpCI powder at the rate of 1 to 2 kg/10 m² (2 to 4 lb/100 ft²). The spacer and the second bottom are then welded in place. For protection of existing tanks, VpCI powder should be carefully blown into the voids to provide uniform distribution. Alternately, VpCI solution may be pumped into the voids and either left there or drained [6]. Recent
3 experience of using of VpCI for the protection of the above ground storage tanks is described in the paper [6]. Another case is corrosion protection of 17 large diameter double-bottom ASTs with VpCI slurry. VpCI was installed four to five years ago ( ) and measurements indicate very good corrosion protection and no significant depletion of inhibitor. In this application VpCI slurry was injected into interstitial space. The space was filled with the VpCI slurry and held full for about 60 days. The telltale pipes were then uncapped and the slurry was allowed to drain to the level of the telltale pipes. Cathodic protection (CP) is a technique to control the corrosion by making the surface of the metal a cathode of an electrical cell. Since corrosion takes place at the anode of an electrical cell, cathodic surfaces stay protected. Presently cathodic protection (CP) is applied to prevent corrosion of those tanks. Cathodic protection can be accomplished in two ways: by using the sacrificial metal (zinc, aluminum, magnesium) anodes or by applying a cathodic potential to metal equipment from the power source - impressed current cathodic protection. In both cases, corrosion control is achieved by keeping the electrochemical potential of the metal at a level when corrosion transferred from the corroding structure and moved to an anode(s). In oil/ natural gas production, CP is used to protect external surfaces of burred and submerged piping, well casing, tank bottoms, offshore structures and the internal surfaces of liquid handling tanks and vessels. The criteria of the successful cathodic protection are either the level of the electrochemical potential, which should be: -0.85V vs. copper/copper sulfate, or V, V and V vs. saturated KCl calomel, silver/silver chloride, and high purity zinc, respectively [8-9]. The common causes of failures of CP are bad connections or passivation of the surface of sacrificial anodes. The goal of this paper is to show the advantages of the use of VpCI for the bottom tank protection in addition to, pr instead of, cathodic protection Outdoor Experiment 2. EXPERIMENTAL This experiment was performed to find maximum distance of VpCI action. At the ground level a box space, filled with sand, was prepared. The dimensions of this box space were: 3 (L) x 3 (W) x 2 (D) (90 x 90 x 60 cm). A plastic pipe with cuts, containing the corrosion inhibitor, served as the VpCI source. This pipe was buried at the depth of 1 ft. ( m) in sand and preconditioning was achieved over a 30 day period. After 30 days preconditioning, the test coupons were placed in the sand box along the length at distances from the pipe ranging from 0 to 60 inches (0 150 cm), at a depth of 3-5 inches ( cm) (Figure 1). Corrosion rate was determined according to the formula [11]: Corrosion rate (mils/year) = (K W) / (A t Δ), where K = constant,
4 2.2 Indoor Experiment W = mass loss, grams; A = area of the metal coupon, centimeter squared; t = time, hours; Δ= density of the metal, grams per centimeter cubed Sand Test Two corrosion inhibitors, a VpCI and a conventional anodic inhibitor, were tested in presence of cathodic protection. The results were compared to control data, where measurements were conducted under the action of the cathodic protection but without corrosion inhibitor. Mixture was prepared: Play ground sand %; Tap water % Sodium Chloride - 0.3%; VpCI - 0.3%; Plastic containers were filled with this mixture. Pre-weighted panels made from carbon steel (SAE 1010) 5 cm x 9 cm by size, and zinc (99.9% Pure) 1 cm x 5 cm by size were inserted into the sand at the distance of 10 cm apart. In each container steel and zinc panels were electrically connected. The current in between steel and zinc panels was measured by Multimeter DM-8600, manufactured by A.W. Sperry Co. After 12 days panels were removed from the sand and their weight loss was determined (Table 1) Electrochemical Evaluation Combination of the VpCI and CP action, when CP is provided by impressed current, was studied using the following methodology. Potentiostat Versastat manufactured by EG&G with software 352 SoftCorr 111, three electrode electrochemical cell, saturated Calomel electrode (SCE) as a reference; high density graphite as a counter electrode, and carbon steel SAE 1018 working electrodes were utilized for the study. Based on normal practice [10], a cathodic potential of 900 mv (SCE) was applied to carbon steel electrode and current corresponding to this potential was measured. To evaluate the difference in the behavior of different inhibitors applied in combination with CP, potentiodynamic polarization curves and corrosion potentials of zinc and carbon steel were measured. All electrochemical measurements were conducted in 3% sodium chloride electrolyte; corrosion inhibitors were added at concentration level of 0.5% by weight. The scan rate of the potential in potentiodynamic studies was 0.5 mv/s. 2.3 Field Application The reduction in corrosion rate achieved by application of VpCI technology for the corrosion protection of the existing tank bottoms on underside of a double-bottom tank upper floor and on a single-bottom tank with an HDPE secondary containment liner are described in [7]. The results of the treatment were measured by electrical resistance corrosion rate probes.
5 For this experiment, VpCI slurry was prepared by mixing of 600 pounds of VpCI powder with 900 gallons of water. A manifold assembly was built to allow flow of the slurry into telltale pipes. The distribution of the slurry during application was thoroughly controlled. Corrosion rate data were measured before application of the VpCI and then each 2 weeks after application until stabilization of rate was achieved. It was found that application of VpCI gradually reduced the corrosion rate and finally after 56 days the reduction reached 67-76% of the initial corrosion rate Outdoor Test 3. RESULTS The coupons situated closer to the VpCI source experienced a lower corrosion rate (Figure 2). One can see that corrosion rate of the coupon placed at a distance of 48 inches (125 cm) from vapor phase corrosion inhibitor source is lower than that of the coupon located at the distance of 60 inches (150 cm). Probably, under the described conditions, the vapor phase corrosion inhibitor migrates through the sand for a distance (L): 45 inches (125 cm) < L < 60 inches (150 cm) Indoor Test Sand Test The results are presented in the Table 1. This test shows that the presence of the corrosion inhibitor affects the corrosion rate of both metals. Conventional corrosion inhibitor raised corrosion rate of zinc sacrificial anode almost two times and the corrosion rate of steel in more than three times comparing to the Control. At the same time VpCI lowers corrosion rate of electrically connected zinc and steel. Table 1 - Corrosion Rate of Electrically Connected Carbon Steel and Zinc Material Weight loss, g Weight loss, g Current in Zn-Steel circuit, na Zn Steel VpCI 0.5 < Conventional anodic Inhibitor Control* *Inhibitor was not added to sand Electrochemical Evaluation The results presented in the Table 2 were obtained in 3% NaCl solution with and without inhibitor added. Electrochemical potential of the working electrode made from carbon steel SAE 1018 was -900 mv vs. calomel saturated reference electrode. Table 2 - Potentiostatic Test Material Current at -900 mv, µk/cm³ 0.5% VpCI % Conventional Corrosion Inhibitor Control (3% NaCl) 27.2 These results show that the level of current which corresponds to this potential depends on the type of the inhibitor in solution. VpCI when added to the solution inhibits the cathodic reaction and
6 subsequently lowers the level of cathodic current at given potential. Addition of the conventional anodic inhibitor causes the opposite results it raises the current corresponding to this potential. Table 3* - Corrosion Potential of Carbon Steel SAE 1018 and Zinc in 3%NaCl Solution Containing Corrosion Inhibitors Material Ecorr, mv, Difference in the electrochemical potentials Ecorr., mv, Zn Carbon Steel of Carbon Steel and Zinc, mv 0.5%VpCI % Conventional Corrosion Inhibitor Control (3%NaCl) *Obtained from the polarization curves Data presented in Table 3 show that corrosion potentials of carbon steel and zinc in 3% NaCl electrolyte containing VpCI and in the control are close. It confirms film-forming mechanism of corrosion protection of VpCI inhibitors. According to this mechanism adsorption of VpCI on the metal does not cause the shift of corrosion potential because it effects both anodic and cathodic reaction. It also shows that the difference in the electrochemical potentials of carbon steel and zinc remain sufficient for use of the zinc as an effective cathode in that system. At the same time presence of the conventional anodic corrosion inhibitor in the system affects the corrosion potentials of metals in a way when electrical connection with zinc will not polarize carbon steel to the cathodic potential sufficient for its protection [8, 9, 10] Field Test [7] Table 4 - Application of VpCI to a Double-Tank Interstitial Space Date Probe # Calculated Mils/Year Corrosion Rate Decrease in Corrosion Rate Original corrosion rate after 13 days (control) 12/16/04 P P P P Corrosion rate 21 days after inhibitor installation 1/6/05 P % P % P % P % Corrosion rate 56 days after inhibitor installation 2/10/05 P % P % P % P % 4. DISCUSSION The results of outdoor testing are in a good agreement with the field results reported in [6,7]. They show that VpCI protects metal from corrosion when the source is more than 4 ft (1.2m) from the metal surface. Corrosion rate of carbon steel protected by VpCI is 2-3 times lower comparing to non-protected. In combination with cathodic protection, different corrosion inhibitors act differently. According to indoor corrosion test data (Table 1), VpCI improves the condition of both metal in studied galvanic
7 couple: carbon steel and zinc. At the same time in the presence of the conventional anodic inhibitor cathodic protection of steel is less effective and causes noticeably higher corrosion rate of sacrificial anode. Cathodic current at the potential of -900 mv vs. calomel saturated reference electrode is lower than control in the presence of VpCI and higher in the presence of conventional corrosion inhibitor (Table 2). Inhibitors based on their chemical nature can affect positively or negatively the effectiveness of cathodic protection. Analyses of the obtained data show that combination of VpCI and cathodic protection provides better corrosion protection than cathodic protection by itself. However, not every inhibitor can be successfully used in combination with cathodic protection. Below are several reasons for non-compatibility of cathodic protection with certain inhibitors: - CP is provided by sacrificial anode, but inhibitor protects anode metal more effectively than it protects steel; in such a case CP is less effective. - CP is provided by impressed current; the level of the corrosion potential in the presence of inhibitor can be a factor. In case of strictly anodic inhibitors, (potential of carbon steel in their presence is shifted to more positive numbers), to maintain the required for CP level of potential can take higher level of impressed current than without inhibitor. - For both types of CP it is important that used inhibitor is stable under applied polarization conditions and doesn t undergo hydrolyses/electrolyses causing the generation of aggressive ions. 5. CONCLUSION 1. It is confirmed that VpCI provides very effective corrosion protection for the single and double bottom storage tanks. VpCI can be applied in the powder form or as slurry by mixing it with sand used for the installation of the tanks. 2. It is confirmed that VpCI provides protection to the metal located at least 1m from the VpCI source. 3. According to the testing data, VpCI is compatible with cathodic protection and when used in combination with it lowers the corrosion rate of both steel and zinc. VpCI can also lower the usage of the electric power necessary for the cathodic protection. 4. Not all types of the inhibitors can be used in combination with cathodic protection. Film-forming and cation-active types of inhibitors have a better chance for successful use with cathodic protection.
8 REFERENCES 1. CC Technologies and NACE International Studies. Project funded by FHWA. 2. B.A. Miksic, Use of Vapor Phase Inhibitors for Corrosion Protection of Metal Products, Paper #308, Corrosion 83, NACE, Houston, TX, B.A. Miksic, Some Aspects of Metal Protection by Vapor Phase Inhibitors, Journal-Anti- Corrosion, Methods & Materials, Sawell Publications, March 1975, p B.A. Miksic, Migratory VCI Inhibitors for Thermal Insulation. Presented at the Symposium Corrosion Under Wet Thermal Insulation at Corrosion/89, New Orleans 5. B.A. Miksic and R.H. Miller, Fundamental Principles of Corrosion Protection with Vapor Phase Inhibitors, 5 th European Symposium on Corrosion Inhibitors, European Federation of Corrosion, September 80, Italy 6. A. Gandhi, Storage Tank Bottom Protection Using Volatile Corrosion Inhibitors, Material Performance, 2001 (1), pp T. Whited, Corrosion Slowed On Tank Bottoms. Vapor Corrosion Inhibitors Used To Mitigate Corrosion Rate of a Double-Tank Interstitial Space, Pipeline & Gas Journal, June 2005, p NACE RPO Control of External Corrosion on Offshore Steel Pipelines 9. NACE RPO Control of External Corrosion on underground or Submerged Piping Systems/ Section 6, Criteria and other Considerations for Cathodic Protection. 10. H.G. Byars, Corrosion Control in Petroleum Production. NACE International. TPC Publication 5, p ASTM G Standard Practice for Laboratory Immersion Corrosion Testing of Metals.
9 FIGURE 1 - Setup of Outdoor Investigation of VpCI Performance FIGURE 2 - Corrosion Rate vs. Distance of Coupons from VpCI Source
EFFECTIVENESS OF THE CORROSION INHIBITORS FOR THE PETROLEUM INDUSTRY UNDER VARIOUS FLOW CONDITIONS
Paper No. 09573 2009 EFFECTIVENESS OF THE CORROSION INHIBITORS FOR THE PETROLEUM INDUSTRY UNDER VARIOUS FLOW CONDITIONS Boris M. Miksic, Alla Y. Furman, Margarita A. Kharshan Cortec Corporation 4119 White
Vapor Corrosion Inhibitors (VCIs) for Storage Tanks Corrosion Controlled Cost Controlled
Vapor Corrosion Inhibitors (VCIs) for Storage Tanks Corrosion Controlled Cost Controlled Presented by Kelly Baker, Zerust Oil & Gas Efim Lyublinski, Monique Posner, Terry Natale, Yefim Vaks, Ronnie Singh
EXPERIMENT #9 CORROSION OF METALS
EXPERIMENT #9 CORROSION OF METALS Objective The objective of this experiment is to measure the corrosion rate of two different metals and to show the effectiveness of the use of inhibitors to protect metals
Comparison of the Corrosion Protection Effectiveness of Vapor Corrosion Inhibitor and Nitrogen Blanketing System
Comparison of the Corrosion Protection Effectiveness of Vapor Corrosion Inhibitor and Nitrogen Blanketing System Behzad Bavarian 1, Jia Zhang 1, Lisa Reiner 1 and Boris Miksic, FNACE 2 Dept. of Manufacturing
CATHODIC PROTECTION SYSTEM DESIGN
CATHODIC PROTECTION SYSTEM DESIGN Presented By DENIS L ROSSI P.E. CORROSION ENGINEER New England C P Inc. Corrosion Fundamentals What is corrosion? It is defined as the degradation or deterioration of
Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons
Basics of Corrosion Performance Metals Sacrificial anode manufacturer Specialize in aluminum alloy anodes All products made in the USA (Berks county, PA) ISO9001/2001 Certified Quality System Also traditional
CORROSION PROTECTION METHODS OF STRUCTURAL STEEL AGAINST ATMOSPHERIC CORROSION
CORROSION PROTECTION METHODS OF STRUCTURAL STEEL AGAINST ATMOSPHERIC CORROSION E. Daflou a, E. Rakanta b, *G. Batis c a Chemical Engineer, Chemical Engineering School, Section of Materials Science and
Corrosion Control & Cathodic Protection for Water & Wastewater Systems
Corrosion Control & Cathodic Protection for Water & Wastewater Systems Presented By: James T Lary Corrpro Companies, Inc 1090 Enterprise Dr. Medina, OH 44256 Tel. 330-723 723-5082 (x1215) email: [email protected]
POTENTIAL FOR HYDROGEN GENERATION AND EMBRITTLEMENT OF PRESTRESSING STEEL IN GALVANIZED PIPE VOIDED PILE
FDOT Research Report No. FL/DOT/SMO 04-477 POTENTIAL FOR HYDROGEN GENERATION AND EMBRITTLEMENT OF PRESTRESSING STEEL IN GALVANIZED PIPE VOIDED PILE submitted to Florida Department of Transportation State
Corrosion Inhibition of Dry and Pre-Action Fire Suppression Systems Using Nitrogen Gas
Corrosion Inhibition of Dry and Pre-Action Fire Suppression Systems Using Nitrogen Gas Josh Tihen Corrosion Product Manager Potter Electric Signal Company, LLC 1609 Park 370 Place St. Louis, MO 63042 (800)
MCI QUESTIONS & ANSWERS
MCI QUESTIONS & ANSWERS Q. Are Migrating Corrosion Inhibitors (MCI) similar to Vapor phase Corrosion Inhibitors (VpCI)? A. MCI technologies are chemically similar to VpCI. The protection mechanism is identical.
Dissimilar Metal Corrosion
PDHonline Course S118 (1 PDH) Dissimilar Metal Corrosion Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658
Chapter 21a Electrochemistry: The Electrolytic Cell
Electrochemistry Chapter 21a Electrochemistry: The Electrolytic Cell Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated. The oxidation reaction
Underground Storage Tanks
Underground Storage Tanks An Informational and Guidance Document for the University Community. Please contact Yale Environmental Health and Safety for latest Regulatory Requirements. A typical UST installation
List of Frequently Utilized Storage Tank Standards and Practices
List of Frequently Utilized Storage Tank Standards and Practices Below is a list of frequently used storage tank standards and practices from organizations that are referenced in 25 PA Code, Chapter 245.
GALVANIC CATHODIC PROTECTION 1.0 CONTENTS. 1.1 Aluminium Anodes. 1.2 Zinc Anodes. 1.3 Magnesium Anodes SECTION
SECTION 1 GALVANIC CATHODIC PROTECTION 1.0 CONTENTS 1.1 Aluminium Anodes 1.1.1 Aluminium Tank Anodes 1.1.2 Aluminium Hull Anodes 1.1.3 Aluminium Platform / Jetty Anodes 1.2 Zinc Anodes 1.2.1 Zinc Tank
Practical Examples of Galvanic Cells
56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid
EFFECT OF CORROSION INHIBITOR ON WATER WETTING & CO 2 CORROSION IN AN OIL-WATER TWO PHASE SYSTEM ABSTRACT
EFFECT OF CORROSION INHIBITOR ON WATER WETTING & CO 2 CORROSION IN AN OIL-WATER TWO PHASE SYSTEM Chong Li, Sonja Richter and Srdjan Nešić Institute for Corrosion and Multiphase Technology Department of
A SHORT INTRODUCTION TO CORROSION AND ITS CONTROL
A SHORT INTRODUCTION TO CORROSION AND ITS CONTROL CORROSION OF METALS AND ITS PREVENTION WHAT IS CORROSION Corrosion is the deterioration of materials by chemical interaction with their environment. The
Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Artykuły na platformę CMS
S t r o n a 1 Author: Marta Miedźwiedziew METAL CORROSION AND PROTECTION AGAINST CORROSION Introduction The article is intended for high school students having courses in chemistry at both the basic and
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chemistry 1C-Dr. Larson Chapter 20 Review Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) is reduced in the following reaction: Cr2O7
Corrosion experiments in amine solutions
Corrosion experiments in amine solutions Andreas Grimstvedt Process technology SINTEF Materials and chemistry Wenle He Applied mechanics and corrosion SINTEF Materials and chemistry 1 Contents of presentation
Discovering Electrochemical Cells
Discovering Electrochemical Cells Part I Electrolytic Cells Many important industrial processes PGCC CHM 102 Cell Construction e e power conductive medium What chemical species would be present in a vessel
EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C
EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C Chapter 16 1. Burn sulfur in air to give sulfur dioxide. S(s) + O 2 (g) ----> SO 2 (g) Pass this with more air over
Electrochemistry - ANSWERS
Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68
5s Solubility & Conductivity
5s Solubility & Conductivity OBJECTIVES To explore the relationship between the structures of common household substances and the kinds of solvents in which they dissolve. To demonstrate the ionic nature
TECHNICAL SERVICE DEPARTMENT Technical Service Bulletin 1-800-432-8373. Anode Rods, Cathodic Protection and the Porcelain (glass) Lining
Corrosion can be defined as the destructive attack of a metal by an electrochemical reaction with its environment. Steel exposed to moisture and oxygen will rust and corrode. Corrosion is defined as the
The Electrical Control of Chemical Reactions E3-1
Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and
Magnesium TM. Soil Anodes. High Potential Magnesium. Production - Quality Control. Laboratory- Testing. Packaging- Availability
Magnesium TM Soil Anodes High Potential Magnesium SuperMag High Potential Magnesium Anodes from Galvotec Alloys, Inc. offers typical high workingldriving potentials of -1.70 volts or better vs. copperlcopper
Eveready Carbon Zinc (Zn/MnO ² ) Application Manual
Page 1 of 13 Eveready Carbon Zinc (Zn/MnO ² ) Application Manual Eveready carbon zinc batteries are marketed in two basic categories--classic and Super Heavy Duty. The Classic category, our least expensive
THE USE OF OZONE IN COOLING TOWERS
THE USE OF OZONE IN COOLING TOWERS Paul D. McNicholas Ozonia Ltd Duebendorf, Switzerland Abstract Ozone has been successfully applied to industrial cooling water systems with the resultant improvement
Preservation. Simplified. VpCI Technology GLOBAL SERVICES
Preservation. Simplified. Cortec Global Services provides customers and clients with best-in-class technology, project management, engineering, design, application and training services to ensure zero
Anodes and Misc Equipment
Anodes and Misc Equipment Application: Platinised Titanium Anodes Platinised titanium anodes are recommended for use in the following electrolytic processes:- Precious metal electroplating - e.g. Au, Pt,
Corrosion Inhibitors in Antifreeze Coolants
44th International Petroleum Conference, Bratislava, Slovak Republic, September 21-22, 2009 Corrosion Inhibitors in Antifreeze Coolants Bratislava 2009. 09. 22. Bálint Szilágyi Product development engineer
Morrison Bros. Co. General Product Specifications
Morrison Bros. Co. General Product Specifications Tank Mounted Spillbox The spill containment device is manufactured to contain spills and drips that may occur at the fill point on aboveground storage
Air Eliminators and Combination Air Eliminators Strainers
Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.
Galvanic Cells and the Nernst Equation
Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Galvanic Cells and the Nernst Equation Name: Equipment Voltage probe wires 0.1 M solutions of Pb(NO 3, Fe(NO 3 ) 3, and KNO
Application for the Construction or Installation of Aboveground Storage Tank (AST) Systems or Associated Underground or Over-water Piping Systems
Page 1 of 5 Application for the Construction or Installation of Aboveground Storage Tank (AST) Systems or Associated Underground or Over-water Piping Systems New Hampshire Department of Environmental Services
GALVANIC MODEL FOR LOCALIZED CO2 CORROSION
Paper No. 687 GALVANIC MODEL FOR LOCALIZED CO CORROSION Jiabin Han, Srdjan Nešić and Bruce N. Brown Institute for Corrosion and Multiphase Technology Department of Chemical and Biomolecular Engineering
Corrosion Protection Provided by Mortar Lining in Large Diameter Water Pipelines After Many Years of Service. Sylvia C. Hall, P.E., M.
100 Corrosion Protection Provided by Mortar Lining in Large Diameter Water Pipelines After Many Years of Service Sylvia C. Hall, P.E., M.ASCE 1 Abstract More than 95% of large diameter steel (AWWA C200/C205),
Determining Equivalent Weight by Copper Electrolysis
Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.
Chemistry B11 Chapter 6 Solutions and Colloids
Chemistry B11 Chapter 6 Solutions and Colloids Solutions: solutions have some properties: 1. The distribution of particles in a solution is uniform. Every part of the solution has exactly the same composition
Arctic King Fuel Tanks meet the Environment Canada TECHNICAL REQUIREMENTS FOR COLLAPSIBLE FABRIC STORAGE TANKS (BLADDERS) - December 17, 2009
Arctic King Fuel Tanks meet the Environment Canada TECHNICAL REQUIREMENTS FOR COLLAPSIBLE FABRIC STORAGE TANKS (BLADDERS) - December 17, 2009 1. Fuel Bladders a. The fuel bladder should be manufactured
Paper No. 4071 APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION
Paper No. 471 APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION Yang Yang, Bruce Brown and Srdjan Nešić Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering
Chair: David Kroon Vice-Chair: Chuck Lawrence
CONFERENCE CALL MINUTES TASK GROUP 284 CATHODIC PROTECTION, GALVANIC ANODE FOR INTERNAL SUBMERGED SURFACES OF STEEL WATER STORAGE TANKS: REVIEW OF NACE SP0196-2011 ASSIGNMENT: To review and update NACE
Chapter 3 Student Reading
Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The
Cathodic Protection Use On Tank Bottoms & Underground Piping In Power Generation Plants
Cathodic Protection Use On Tank Bottoms & Underground Piping In Power Generation Plants PG&E Office San Francisco January 18, 2007 Craig K. Meier Corrosion Control Incorporated Corrosion process for tanks
ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. II - Transportation of Hydrogen by Pipeline - Kunihiro Takahashi TRANSPORTATION OF HYDROGEN BY PIPELINE
TRANSPORTATION OF HYDROGEN BY PIPELINE Kunihiro Takahashi Director, Center for Supply Control and Disaster Management, Tokyo Gas Co. Ltd., Tokyo, Japan Keywords: pipeline transportation of gaseous hydrogen,
CATHODIC PROTECTION P E FRANCIS
CATHODIC PROTECTION P E FRANCIS CONTENTS 1 INTRODUCTION...2 2 PRINCIPLES OF CATHODIC PROTECTION...3 3 METHODS OF APPLYING CATHODIC PROTECTION...5 3.1 IMPRESSED CURRENT...5 3.2 SACRIFICIAL ANODES...6 4
Question Bank Electrolysis
Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution
Chapter 5 Student Reading
Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.
Mixtures and Pure Substances
Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They
DISTRIBUTION PIPING MATERIALS: BUILDING HYDRONIC SYSTEM MANAGEMENT. Jim Riley, Texas A&M University February 10, 2015
DISTRIBUTION PIPING MATERIALS: BUILDING HYDRONIC SYSTEM MANAGEMENT Jim Riley, Texas A&M University February 10, 2015 Piping at Texas A&M 2 History of Distribution Piping at Texas A&M Concrete reinforced
ASSET MANAGEMENT STRATEGIES FOR METALLIC MUNICIPAL TRANSMISSION PIPELINES
ASSET MANAGEMENT STRATEGIES FOR METALLIC MUNICIPAL TRANSMISSION PIPELINES Jose L. Villalobos, P.E. 1 and Carl Perry 2 Abstract: This paper presents strategies for the control of external corrosion on municipal
reduction ore = metal oxides metal oxidation
Cathodic Protection and Interferences René Gregoor Madrid, June 18 th and 19 th 2009 1 Cathodic protection and interferences Corrosion Cathodic protection Protection criterion ON potential measurements
Hands-On Labs SM-1 Lab Manual
EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.
Corrosion of Steel, Aluminum and Copper in Electrical Applications
Corrosion of Steel, Aluminum and Copper in Electrical Applications By: Alex Mak, P. Eng. - Senior Field Applications Engineer, General Cable Executive Summary Corrosion, typically defined as the deterioration
The Potentiodynamic Polarization Scan. Technical Report 33
Technical Report 33 Technical Report 33 David G Enos Center for Electrochemical Science & Engineering Department of Materials Science & Engineering University of Virginia Charlottesville, VA Louie L Scribner
MODEL 9020 & 9020-OEM CORRATER TRANSMITTER USER MANUAL
Serial Number MODEL 9020 & 9020-OEM CORRATER TRANSMITTER USER MANUAL ROHRBACK COSASCO SYSTEMS, INC. 11841 East Smith Avenue Santa Fe Springs, CA 90670 Tel: (562) 949-0123 (800) 635-6898 Fax: (562) 949-3065
Experiment 12- Classification of Matter Experiment
Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.
The Pennsylvania State University. The Graduate School. Engineering Science and Mechanics
The Pennsylvania State University The Graduate School Engineering Science and Mechanics DEVELOPMENT OF NEW MULTIFUNCTIONAL COATINGS FOR PROTECTION AGAINST EROSION AND CORROSION IN QATAR OIL AND GAS PRODUCTION
SECTION 02720 SANITARY SEWER AND STORM DRAIN SYSTEMS
SECTION 02720 SANITARY SEWER AND STORM DRAIN SYSTEMS PART 1 GENERAL 1.01 SECTION INCLUDES A. The requirements for pipe material and installation in sewer and drainage collection systems. All materials
NACE Standards. Chinese Translation Product Number. Spanish Translation Product Number. Visual Aid/ Related Product Number. Product Number 21105
21105 Related RP0104-2004 The Use of Coupons for Cathodic Cathodic Protection Protection Monitoring Applications ANSI APPROVED. Addresses applications for cathodic protection (CP) coupons attached to buried
INDIAN STANDARDS FOR NATURAL GAS PIPELINE SYSTEM
INDIAN STANDARDS FOR NATURAL GAS PIPELINE SYSTEM 1. IS 15663(Part 1):2006 This code covers requirements and recommendations for the design, materials, construction and testing of pipelines made of steel
Guidelines for Selecting and Maintaining Glycol Based Heat Transfer Fluids
Guidelines for Selecting and Maintaining Based Heat Transfer Fluids David Berry Engineering Manager, Chem-Aqua Canada Allan Browning Technical Marketing Manager, Chem-Aqua, Inc. Based Heat Transfer Fluids
Metal Rescue Rust Remover Technical Data
Technical Data Product Description Metal Rescue TM is an innovative new technology that efficiently removes rust without harming surrounding materials. It is a water-based, non-toxic solution that is biodegradable
Desalination of Sea Water E7-1
Experiment 7 Desalination of Sea Water E7-1 E7-2 The Task The goal of this experiment is to investigate the nature and some properties of sea water. Skills At the end of the laboratory session you should
An Ammonium-free, Acid. Zinc/Nickel (12-15% Ni) Process
An Ammonium-free, Acid Zinc/Nickel (12-15% Ni) Process Requirements of an acid zinc/nickel process Technical requirements High plating speed (current efficiency up to 90 %) High thicknesses of deposits
CATHODIC PROTECTION OF REINFORCED CONCRETE STRUCTURES
CATHODIC PROTECTION OF REINFORCED CONCRETE STRUCTURES AN OVERVIEW CLEARLY THE BEST PROTECTION FOR YOUR INVESTMENT Introduction Cathodic protection is applied to reinforced concrete structures to either
Use of UV-Spectroscopy for Detection of MCI Migration Depth in Concrete
Use of UV-Spectroscopy for Detection of MCI Migration Depth in Concrete Ming Shen, Josh Hicks Cortec Corporation. St Paul, MN Abstract Migrating Corrosion Inhibitors (MCI) are organic inhibitors based
Sulfites for Oxygen Control
If you would like a more detailed version of this report, please request SOS from [email protected] along with your e-mail address. A. Introduction Sulfites for Oxygen Control Robert R. Cavano
COPPER BARS FOR THE HALL-HÉROULT PROCESS
COPPER BARS FOR THE HALL-HÉROULT PROCESS René von Kaenel, Louis Bugnion, Jacques Antille, Laure von Kaenel KAN-NAK Ltd., Route de Sion 35, 3960 Sierre, Switzerland Keywords: Copper, Collector bars, Productivity
THE ELECTROCHEMISTRY OF CORROSION Edited by Gareth Hinds from the original work of J G N Thomas
THE ELECTROCHEMISTRY OF CORROSION Edited by Gareth Hinds from the original work of J G N Thomas INTRODUCTION The surfaces of all metals (except for gold) in air are covered with oxide films. When such
Standard For Lining Ductile Iron Pipe and Fittings For Sewer Service
CAll TOll FREE 1-888-SPEC401 or E;XILq)! Standard For Lining Ductile Iron Pipe and Fittings For Sewer Service QUALIFIED UNDER ASTM E-96 ASTM G-14 ASTM G-95 ASTM D-714 ASTM B-117 ASTM D-1308 Standard Test
CHAPTER 21 ELECTROCHEMISTRY
Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged
ALS TRIBOLOGY Engine Coolant Reference Guide
ALS TRIBOLOGY Engine Coolant Reference Guide Engine coolants are a mixture of, inhibitors, and water. Each formula is designed for specific protection and engine requirements. Mixing different coolants
THEORY AND APPLICATION OF CONDUCTIVITY
Application Data Sheet ADS 43-018/rev.D January 2010 Theory THEORY AND APPLICATION OF CONDUCTIVITY BACKGROUND Conductivity is a measure of how well a solution conducts electricity. To carry a a solution
STAYFLEX CORROSION CONTROL AND THERMAL INSULATION SYSTEM
STAYFLEX CORROSION CONTROL AND THERMAL INSULATION SYSTEM Installed in Pre-engineered Steel Buildings Provides Lowest Cost Construction Method for CORROSIVE AND WET Environments PREFERRED SOLUTIONS, INC.
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour
Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011
Galvanic Cells SCH4U7 Ms. Lorenowicz 1 Electrochemistry Concepts 1.Redox reactions involve the transfer of electrons from one reactant to another 2.Electric current is a flow of electrons in a circuit
Best Available Technology for Sodium Hypochlorite Storage Tanks
Best Available Technology for Sodium Hypochlorite Storage Tanks Michael G. Stevens, Senior Staff Scientist, Ashland Inc. Paul Cohen, Diamond Fiberglass ABSTRACT Sodium hypochlorite disinfection has become
Culligan Exchange Tank Deionization Service
Culligan Exchange Tank Deionization Service Beverages Boiler Feedwater Distilleries Food Preparation/Processing Glass/Mirrors Humidification Ice Making Photo Processing Plating/Anodizing Printing Vehicle
Experiment 9 Electrochemistry I Galvanic Cell
9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.
Name Electrochemical Cells Practice Exam Date:
Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical
A Practical Guide to Free Energy Devices
A Practical Guide to Free Energy Devices Electrolysis Patents No 14: Last updated: 28th January 2006 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content
HVAC: Cool Thermal Storage
HVAC: Cool Thermal Storage Thermal storage systems offer building owners the potential for substantial operating cost savings by using offpeak electricity to produce chilled water or ice for use in cooling
Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008
Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid
)454, !,5-).)5- #!",% 3(%!4(3 #/.3425#4)/. ).34!,,!4)/.!.$ 02/4%#4)/. /& #!",%3!.$ /4(%2 %,%-%.43 /& /543)$% 0,!.43. )454 Recommendation,
INTERNATIONAL TELECOMMUNICATION UNION )454, TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU #/.3425#4)/. ).34!,,!4)/.!.$ 02/4%#4)/. /& #!",%3!.$ /4(%2 %,%-%.43 /& /543)$% 0,!.43!,5-).)5- #!",% 3(%!4(3
Galvanic cell and Nernst equation
Galvanic cell and Nernst equation Galvanic cell Some times called Voltaic cell Spontaneous reaction redox reaction is used to provide a voltage and an electron flow through some electrical circuit When
Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.
Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of
IB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
CHAPTER 13 LAND DISPOSAL
CHAPTER 13 LAND DISPOSAL Supplemental Questions: Which of Shakespeare's plays is the source of the opening quote? The Tempest [1611-1612],Act: I, Scene: i, Line: 70. 13-1. Cite four reasons landfills remain
Northern Region. Underground Storage Tank
California CUPA Northern Region Presents Underground Storage Tank Designated Operators Workshop Workshop Agenda Definitions Tank Construction Corrosion Protection Spill Prevention Overfill Prevention Piping
A GROUNDWATER PROTECTION PLAN FOR HOME HEATING OIL TANKS
A GROUNDWATER PROTECTION PLAN FOR HOME HEATING OIL TANKS What is a groundwater protection plan? A groundwater protection plan identifies the activities being conducted that can pollute groundwater and
Environmental Cracking of Carbon Steel Weldments in Corrosive Petroleum Refining Environments. of Impressed Current Deep Groundbeds
STANDARD PRACTICES Designation Title Item Number NACE No. 1/SSPC-SP 5 White Metal Blast Cleaning (RP0494-2006) 21065 NACE No. 2/SSPC-SP 10 Near-White Metal Blast Cleaning (RP0594-2006) 21066 NACE No. 3/SSPC-SP
SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL
W.-T. Tsai, I.-H. Lo Department of Materials Science and Engineering National Cheng Kung University Tainan, Taiwan SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL ABSTRACT
01 - Plastic Pipe Cements and Primers
01 - Plastic Pipe Cements and Primers Q - What is the shelf life of the cement and primers? PVC & ABS Cements / Primers and Cleaners have 3 year shelf life from date of manufacture, and CPVC has 2 year
AUTOCLAVE CORROSION INHIBITOR EVALUATION
AUTOCLAVE CORROSION INHIBITOR EVALUATION Cormetrics Job #: 12-123 Prepared for: ABC Company Lab: Bay 4-2280 39 th Avenue NE, Calgary, AB. T2E 6P7 Phone: 258-2853 Fax: 291-1423 ABC Company Page 1 of 9 1.
