CHAPTER 13: Electrochemistry and Cell Voltage
|
|
|
- Cordelia Higgins
- 9 years ago
- Views:
Transcription
1 CHAPTER 13: Electrochemistry and Cell Voltage In this chapter: More about redox reactions Cells, standard states, voltages, half-cell potentials Relationship between G and voltage and electrical work Equilibrium constants from electrochemistry Batteries and fuel cells
2 Electrical Work We can use batteries like the galvanic cell of the last chapter to perform electrical work (e.g., light up a light bulb) How to measure electrical work? ω = Q ξ elec Joules Coulombs Joules Coulomb = Volt
3 Example: Computer Power A workstation computer might draw ~10Amps. At 120 V, how many watts?
4 Working with the Current Recall: So: Total charge = current x time Q = I t = Q ω ξ elec = I t ξ Note: ω elec sometimes also measured in kilowatt hours. 1 watt = 1J/s 1kW hr 10 = s 3 J 6 ( 3600 s) = J
5 Gibbs Free Energy, Voltage, and Electrical Work The maximum amount of electrical work that can be achieved is if all the change in Gibbs energy of the system (assuming constant T,P) is turned into electrical work and no heat is generated. G G = ωelec,max = Q ξ (const T,P) (const T,P) Positive ξ means negative G (this Q is defined positive), so ξ > 0 is spontaneous. [sign convention opposite of G!]
6 Galvanic and Electrolytic Cells Galvanic cells like the Cu(s) Cu 2+ (aq) Ag + (aq) Ag(s) example from chapter 12 would have ξ>0. ξ>0 for all Galvanic cells (definition) If ξ<0, electrolytic cell must be driven by outside voltage. ω = Q ξ elec ξ>0 Galvanic cell ω elec <0 cell does work ξ<0 Electrolytic cell ω elec >0 work done on cell
7 Charge, Electrons, Faraday Recall that 1 mol of e - has a charge of 1F (Faraday). If we measure Q in moles of e -, Q = nf G = Q = nf ξ ξ (const T,P) Note: If the battery size doubles, G doubles but so does n therefore ξ doesn t depend on its size. AA and D batteries are both 1.5 V
8 Standard States and Cell Voltage If we work with standard states, then G becomes G. This will also change ξ into ξ. o o G = nf ξ ξ is the potential difference (voltage) of a galvanic cell in which all reactants and products are in standard states.
9 Example: What is G if one mol of Ni is dissolved in the cell: Ni(s) Ni 2+ (aq) Cu 2+ (aq) Cu(s) when [Ni 2+ ]=[Cu 2+ ]=1.00 M and 25 C and ξ is measured to be 0.57V? Standard States
10 Standard Cell Potentials In principle, ξ could be tabulated for all possible cells. But, don t need to can tabulate for each half-reaction! For example, Ni(s) Ni 2+ (aq) Cu 2+ (aq) Cu(s) Ni 2+ (aq) + 2e - Ni(s) ξ (Ni 2+ Ni) Cu 2+ (aq) + 2e - Cu(s) ξ (Cu 2+ Cu) Customary to write the half-reactions as reductions The nickel is actually oxidized (at the anode). So reverse the sign of the standard potential.
11 Standard Cell Potentials (cont.) Ni(s) Ni 2+ (aq) Cu 2+ (aq) Cu(s) Ni 2+ (aq) + 2e - Ni(s) ξ (Ni 2+ Ni) Cu 2+ (aq) + 2e - Cu(s) ξ (Cu 2+ Cu) ξ = ξ (cathode) - ξ (anode) (reduction) for a galvanic cell. (oxidation, reverse sign of reduction ξ )
12 Measuring Standard Potentials How are ξ measured? Set reduction of H + (aq) to 0V Measure chemical potentials of halfreactions coupled with H + reduction below 2H + (aq) + 2e - H 2 (g) ξ =0V (by definition) Stronger oxidizing agents Table 13-1: Standard Reduction Potentials Reduction half-reaction Stronger reducing agents ξ (V) Cations don t want the e - back, they want to give up the e - (compared to H)
13 Using Table 13-1 Table 13-1 allows one to determine which metal is dissolved (oxidized) and which is deposited (reduced) in a Galvanic cell. e.g. In a Nickel/Silver cell, which element plates out? What is ξ? Stronger oxidizing agents Table 13-1: Standard Reduction Potentials Stronger reducing agents
14 Effect of ph on Oxidizing and Reducing Agents Oxygen is a good oxidizing agent O 2 (g) + 4H + + 4e - 2H 2 O(l) ξ =1.229V O 2 (g) + 2H 2 O(l) + 4e - 4OH - (aq) ξ =0.401V Better oxidizing agent in acid than base! NO H + + 2e - HNO 2 + H 2 O ξ = 0.94 HSO 4- +3H + +2e - SO 2 +2H 2 O ξ = 0.17 Nitric acid is a better oxidizing agent than sulfuric acid (hmm, how could we test this hypothesis?)
15 Concentrations and the Nerst Equation We saw that if all reaction conditions are in their standard state, G =-nf ξ What if things are not in standard state? a) remove superscript! One could, but now you couldn t easily use tabulated data. b) Recall from chapter 11 that G= G +RT ln(q)
16 Nernst Equation G= G +RT ln(q) So if: G=-nF ξ G =-nf ξ Nernst Equation also -nf ξ=-nf ξ +RT ln(q) ξ ξ = ξ ( RT ) = ξ F n ln(q) ( V ) log (Q) n 10
17 Example Suppose we have a cell Zn Zn 2+ Cr 3+ Cr with [Zn 2+ ]=0.78M and [Cr 3+ ]= M. What is ξ at 25 C? also ξ ξ What is ξ? n? Q? Zn 2+ (aq) + 2e - Zn(s) Cr 3+ (aq) + 3e - Cr(s) ( RT ) = ξ F = ξ n ln(q) ( V ) log (Q) n 10 ξ (Zn 2+ Zn)= ξ (Cr 3+ Cr)=-0.74
18 Example
19 Example ξ= V Negative ξ for these concentrations, but positive for standard state conditions. What does this mean?
20 Nernst Equation and ph meters ( V ) log (Q) ξ = ξ 10 If we know ξ and ξ and n, we can solve for Q. If we also know all concentrations but one, then we can solve for that one concentration. For example, H + concentration - ph meter. n
21 Equilibrium Constants and Electrochemistry G =-nf ξ G =-RT ln(k) RT ln(k)=nf ξ nf n = ξ or log = ξ RT K V (for T = K) K can be obtained from ξ and vice versa. Standard Potentials are related to equilibrium constants Note: ln ( K ) ( ) ξ >0, K>1 (reaction goes forward) ξ <0, K<1 (reaction goes backward)
22 Batteries and Fuel Cells anode: cathode: Zn(s) Zn 2+ (aq) + 2e - 2MnO 2 (s) +2NH 4+ (aq) + 2e - Mn 2 O 3 (s) + 2NH 3 (aq) + H 2 O(l) also at cathode: 2NH 4+ (aq) + 2e - 2NH 3 (g) + H 2 (g) Gas build up at the cathode presents a problem!!
23 Why batteries (usually) don t explode Gas build up at the cathode is prevented the following reactions: Zn 2+ (aq) + 2NH 3 (g) [Zn(NH 3 ) 2 ] 2+ (aq) 2MnO 2 (s) + H 2 (g) Mn 2 O 3 (s) + H 2 O(l) Net reaction: Zn(s) + 2MnO 2 (s) + 2NH 4+ (aq) [Zn(NH 3 ) 2 ] 2+ (aq) + Mn 2 O 3 (s) + H 2 O(l)
24 Mercury Battery (watch batteries, etc.) Anode: Zn(s) + 2OH - (aq) Zn(OH) 2 (s) + 2e - Cathode: HgO(s) + H 2 O(l) + 2e - Hg(l) + 2OH - (aq) Net: Zn(s) + HgO(s) + H 2 O(l) Zn(OH) 2 (s) + Hg(l) Other batteries: Nickel-Cadmium (rechargeable), Lead-acid (car batteries)
25 Fuel Cells Batteries are used up (and maybe recharged and used again). Fuel cells are used continuously (constantly replenished with new fuel).
Chem 1721 Brief Notes: Chapter 19
Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire
Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.
Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and
Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.
Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The
Useful charge on one mole of electrons: 9.64 x 10 4 coulombs/mol e - = F F is the Faraday constant
Electrochemistry II: Cell voltage and Gibbs Free energy Reading: Moore chapter 19, sections 15.6-15.12 Questions for Review and Thought: 36, 40, 42, 44, 50, 54, 60, 64, 70 Key Concepts and Skills: definition
Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T.
Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I Friday, October 15 Chem 462 T. Hughbanks Preliminary Concepts Electrochemistry: the electrical generation of, or electrical exploitation of
1332 CHAPTER 18 Sample Questions
1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+
5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 10 pages
Review: Balancing Redox Reactions. Review: Balancing Redox Reactions
Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a
Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions
John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 18 Electrochemistry and Its Applications Stephen C. Foster Mississippi State University Electrochemistry
K + Cl - Metal M. Zinc 1.0 M M(NO
Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question
Electrochemistry Voltaic Cells
Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains
CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions
Electrons move from anode to cathode in the wire. Anions & cations move thru the salt bridge. Terms Used for Galvanic Cells Galvanic Cell We can calculate the potential of a Galvanic cell using one of
5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 26.1 5.111 Lecture
AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States
AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States Chemical reactions in which the oxidation state of a substance changes are called oxidation-reduction reactions (redox reactions). Oxidation
Chemistry 122 Mines, Spring 2014
Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44
2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.
1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,
Name AP CHEM / / Collected Essays Chapter 17 Answers
Name AP CHEM / / Collected Essays Chapter 17 Answers 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the
Galvanic cell and Nernst equation
Galvanic cell and Nernst equation Galvanic cell Some times called Voltaic cell Spontaneous reaction redox reaction is used to provide a voltage and an electron flow through some electrical circuit When
Practical Examples of Galvanic Cells
56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid
Electrochemistry - ANSWERS
Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68
Experiment 9 Electrochemistry I Galvanic Cell
9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.
CHAPTER 21 ELECTROCHEMISTRY
Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged
Discovering Electrochemical Cells
Discovering Electrochemical Cells Part I Electrolytic Cells Many important industrial processes PGCC CHM 102 Cell Construction e e power conductive medium What chemical species would be present in a vessel
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chemistry 1C-Dr. Larson Chapter 20 Review Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) is reduced in the following reaction: Cr2O7
CHM1 Review Exam 12. Topics REDOX
CHM1 Review Exam 12 Topics REDOX REDOX Reactions Oxidation Reduction Oxidizing agent Reducing agent Galvanic (Voltaic) Cells Anode Cathode Salt bridge Electrolyte Half-reactions Voltage o Positive voltages
Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011
Galvanic Cells SCH4U7 Ms. Lorenowicz 1 Electrochemistry Concepts 1.Redox reactions involve the transfer of electrons from one reactant to another 2.Electric current is a flow of electrons in a circuit
Name Electrochemical Cells Practice Exam Date:
Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical
LEAD-ACID STORAGE CELL
3.14 MATERIALS LABORATORY MODULE BETA 1 NOVEMBER 13 17, 26 GEETHA P. BERERA LEAD-ACID STORAGE CELL OBJECTIVES: Understand the relationship between Gibbs Free Energy and Electrochemical Cell Potential.
AP* Chemistry ELECTROCHEMISTRY
Terms to Know: AP* Chemistry ELECTROCHEMISTRY the study of the interchange of chemical and electrical energy OIL RIG oxidation is loss, reduction is gain (of electrons) Oxidation the loss of electrons,
Electrochemistry Worksheet
Electrochemistry Worksheet 1. Assign oxidation numbers to each atom in the following: a. P 4 O 6 b. BiO 3 c. N 2 H 4 d. Mg(BrO 4 ) 2 e. MnSO 4 f. Mn(SO 4 ) 2 2. For each of the reactions below identify
Chapter 20. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 20 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The gain of electrons by an element is called. A) oxidation B) reduction C) sublimation
PROCEDURE: Part A. Activity Series and Simple Galvanic Cells
Experiment 21G ELECTROCHEMISTRY: GALVANIC CELLS AND BATTERIES FV 2/8/11 MATERIALS: Ag, Cu, Zn strips; sandpaper; 20d bright common nails (2); 0.25 M solutions of AgNO 3, Cu(NO 3 ) 2, Zn(NO 3 ) 2 ; 1.0
4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean?
HOMEWORK 3A 1. In each of the following pairs, tell which has the higher entropy. (a) One mole of liquid water or one mole of water vapor (b) One mole of dry ice or one mole of carbon dioxide at 1 atm
ELECTROCHEMICAL CELLS
1 ELECTROCHEMICAL CELLS Allessandra Volta (1745-1827) invented the electric cell in 1800 A single cell is also called a voltaic cell, galvanic cell or electrochemical cell. Volta joined several cells together
Redox and Electrochemistry
Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+
Chapter 18 Homework Answers
Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction
Electrochemistry. Pre-Lab Assignment. Purpose. Background. Experiment 12
Experiment 12 Electrochemistry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered
Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.
Voltaic Cells Introduction In this lab you will first prepare a set of simple standard half-cells and then measure the voltage between the half-cells with a voltmeter. From this data you will be able to
12. REDOX EQUILIBRIA
12. REDOX EQUILIBRIA The electrochemical series (reference table) 12.1. Redox reactions 12.2. Standard electrode potentials 12.3. Calculations involving electrochemical cells 12.4. Using Eʅ values to predict
AP Chemistry 2010 Free-Response Questions Form B
AP Chemistry 010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.
REDOX REACTION EQUATIONS AND APPLICATIONS Overview of Redox Reactions: o Change in Oxidation State: Loses Electrons = Oxidized (Oxidation number increases) Gains Electrons = Reduced (Oxidation Number Reduced)
AP Chemistry 2009 Free-Response Questions Form B
AP Chemistry 009 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
Galvanic Cells and the Nernst Equation
Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Galvanic Cells and the Nernst Equation Name: Equipment Voltage probe wires 0.1 M solutions of Pb(NO 3, Fe(NO 3 ) 3, and KNO
The Galvanic Cell Game
The Galvanic Cell Game Author: Kiana Guerrero Date Created: 2009 Subject: Chemistry Level: High School Standards: New York State-Physical Setting/Chemistry Standard: 3.1i Each electron in an atom has its
Potassium ion charge would be +1, so oxidation number is +1. Chloride ion charge would be 1, so each chlorine has an ox # of -1
Chapter 18-1 1. Assign oxidation numbers to each atom in: Ni Nickel ion charge would be +2, so oxidation number is +2 Chloride ion charge would be 1, so each chlorine has an ox # of -1 Mg 2 Ti 4 Magnesium
Building Electrochemical Cells
Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the
Chapter 12: Oxidation and Reduction.
207 Oxidation- reduction (redox) reactions Chapter 12: Oxidation and Reduction. At different times, oxidation and reduction (redox) have had different, but complimentary, definitions. Compare the following
The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.
The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed
AP Chemistry 2010 Scoring Guidelines Form B
AP Chemistry 2010 Scoring Guidelines Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
ELECTROCHEMICAL CELLS LAB
ELECTROCHEMICAL CELLS LAB Purpose: The purpose of this lab is to demonstrate the ability of chemistry to make electric current using oxidation/reduction (REDOX) reactions, and to measure the electric current
Redox Chemistry Handout
Redox Chemistry Handout This handout is intended as a brief introduction to redox chemistry. For further reading, consult an introductory chemistry or microbiology textbook. Redox reactions involve the
Electrochemical Half Cells and Reactions
Suggested reading: Chang text pages 81 89 Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various
EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion
EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1 Introduction This lab is designed for you to discover the properties of electrochemical cells. It requires little previous knowledge of electrochemical
The Electrical Control of Chemical Reactions E3-1
Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and
Electrochemistry Revised 04/29/15
INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, BATTERIES, & THE NERNST EQUATION Experiment partially adapted from J. Chem. Educ., 2008, 85 (8), p 1116 Introduction Electrochemical cell In this experiment,
AP Chemistry 2011 Free-Response Questions
AP Chemistry 011 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in
Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)
Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward
AP Chemistry 2008 Free-Response Questions
AP Chemistry 008 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
AP Chemistry 2012 Free-Response Questions
AP Chemistry 01 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900,
Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions
Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned
Introduction to electrolysis - electrolytes and non-electrolytes
Introduction to electrolysis - electrolytes and non-electrolytes Electrolysis is the process of electrically inducing chemical changes in a conducting melt or solution e.g. splitting an ionic compound
A Review of the Construction of Electrochemical Cells
CHEM331 Physical Chemistry Revision 2.0 A Review of the Construction of Electrochemical Cells Electrochemical cells provide us with our first real example of a system which performs non-pv work. The work
The Gibbs Free Energy and Cell Voltage
The Gibbs Free Energy and Cell Vltage When an amunt f charge, Q, mves thrugh a ptential difference, E w = - Q E b/c wrk dne by the system E > 0 fr galvanic (vltaic) cells Recall, G = H TS = E + PV TS Fr
AP Chemistry 2005 Scoring Guidelines Form B
AP Chemistry 2005 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases
Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties
AP CHEMISTRY 2009 SCORING GUIDELINES (Form B)
AP CHEMISTRY 2009 SCORING GUIDELINES (Form B) Question 3 (10 points) 2 H 2 O 2 (aq) 2 H 2 O(l) + O 2 (g) The mass of an aqueous solution of H 2 O 2 is 6.951 g. The H 2 O 2 in the solution decomposes completely
Chapter 14 - Acids and Bases
Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry
Chemical Reactions in Water Ron Robertson
Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds
Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K
1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what
Decomposition. Composition
Decomposition 1. Solid ammonium carbonate is heated. 2. Solid calcium carbonate is heated. 3. Solid calcium sulfite is heated in a vacuum. Composition 1. Barium oxide is added to distilled water. 2. Phosphorus
Chemistry B11 Chapter 4 Chemical reactions
Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl
Chapter 1. Introduction of Electrochemical Concepts
Chapter 1. Introduction of Electrochemical Concepts Electrochemistry concerned with the interrelation of electrical and chemical effects. Reactions involving the reactant the electron. Chemical changes
Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.
GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all
Final Exam CHM 3410, Dr. Mebel, Fall 2005
Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture
Experiment 18: ph Measurements of Common Substances. Experiment 17: Reactions of Acids with Common Substances
Experiment 18: ph Measurements of Common Substances and Experiment 17: Reactions of Acids with Common Substances What is this lab about? You mean what ARE THESE labs about? Ok, so what are THESE labs about?
Determining Equivalent Weight by Copper Electrolysis
Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.
Summer 2003 CHEMISTRY 115 EXAM 3(A)
Summer 2003 CHEMISTRY 115 EXAM 3(A) 1. In which of the following solutions would you expect AgCl to have the lowest solubility? A. 0.02 M BaCl 2 B. pure water C. 0.02 M NaCl D. 0.02 M KCl 2. Calculate
How Batteries Work by Marshall Brain
How Batteries Work by Marshall Brain Batteries are all over the place -- in our cars, our PCs, laptops, portable MP3 players and cell phones. A battery is essentially a can full of chemicals that produce
AP Chemistry 2009 Free-Response Questions
AP Chemistry 009 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe
ALKALINE WATER ELECTROLYSIS Isao Abe Office Tera, Chiba, Japan Keywords: Water electrolysis, alkaline, hydrogen, electrode, diaphragm, high pressure high temperature electrolyser, cell, electrocatalyst
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:
Chemical Equations & Stoichiometry
Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term
Faraday s Law 1. Experiment 8: Copper Electroplating and Faraday s Law 1
Faraday s Law 1 Experiment 8: Copper Electroplating and Faraday s Law 1 Purpose: An electrochemical cell is constructed to determine the efficiency of copper electroplating. Chemical treatments are tested
OXIDATION REDUCTION. Section I. Cl 2 + 2e. 2. The oxidation number of group II A is always (+) 2.
OXIDATION REDUCTION Section I Example 1: Na Example 2: 2C1 Example 3: K + + e Na + + e Cl 2 + 2e K Example 4: C1 2 + 2e 2Cl 1. The oxidation number of group I A is always (+) 1. 2. The oxidation number
Galvanic and electrolytic cells
Galvanic and electrolytic cells Electrochemical reactions In Grade 11, you carried out an experiment to see what happens when zinc granules are added to a solution of copper(ii) sulfate. Figure 1: When
Question Bank Electrolysis
Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution
QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -
QUESTION (2012:3) (i) Complete the table below showing the conjugate acids and bases. Conjugate acid Conjugate base - HCO 3 2 CO 3 H 2 O OH HCN CN - (ii) HPO 4 2 (aq) Write equations for the reactions
NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:
NET IONIC EQUATIONS A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NaCl + AgNO 3 AgCl + NaNO 3 In this case, the simple formulas of the various reactants
Chapter 6 Oxidation-Reduction Reactions
65 Chapter 6 Oxidation-Reduction Reactions Review Skills 6.1 An Introduction to Oxidation-Reduction Reactions Oxidation, Reduction, and the Formation of Binary Ionic Compounds Oxidation-Reduction and Molecular
Applications of Galvanic Cell Reactions
Applications of Galvanic Cell Reactions Background The exchange of electrons during a redox process makes this type of reaction potentially useful in a variety of ways. One of the more familiar applications
EXPERIMENT #9 CORROSION OF METALS
EXPERIMENT #9 CORROSION OF METALS Objective The objective of this experiment is to measure the corrosion rate of two different metals and to show the effectiveness of the use of inhibitors to protect metals
4.1 Aqueous Solutions. Chapter 4. Reactions in Aqueous Solution. Electrolytes. Strong Electrolytes. Weak Electrolytes
Chapter 4 Reactions in Aqueous Solution 4.1 Aqueous Solutions Solution homogeneous mixture of 2 or more substances Solute the substance present in a smaller amount (usually solid in Chap. 4) Solvent the
SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS. Oxidation-Reduction
SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS OxidationReduction Oxidation is loss of electrons. (Oxygen is EN enough to grab e away from most elements, so the term originally meant
Chapter 8 - Chemical Equations and Reactions
Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from
Chapter 9 Lecture Notes: Acids, Bases and Equilibrium
Chapter 9 Lecture Notes: Acids, Bases and Equilibrium Educational Goals 1. Given a chemical equation, write the law of mass action. 2. Given the equilibrium constant (K eq ) for a reaction, predict whether
2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )
TYPES OF CHEMICAL REACTIONS Most reactions can be classified into one of five categories by examining the types of reactants and products involved in the reaction. Knowing the types of reactions can help
Chem101: General Chemistry Lecture 9 Acids and Bases
: General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water
Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change
Chemical Reactions Chemical Equations Chemical reactions describe processes involving chemical change The chemical change involves rearranging matter Converting one or more pure substances into new pure
