Fraud and Anomaly Detection Using Oracle Advanced Analytic Option 12c
|
|
|
- Merry Todd
- 10 years ago
- Views:
Transcription
1 Fraud and Anomaly Detection Using Oracle Advanced Analytic Option 12c Charlie Berger Sr. Director Product Management, Data Mining and Advanced Analytics 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13
2 Doctors, Nurses, Execs Medicare Fraud CNN International, By Terry Frieden, CNN Justice Producer, February 17, :15 p.m. EST Federal authorities indicted and arrested more than 100 doctors, nurses and health care executives nationwide. Largest federal health care fraud takedown in our nation's history The false billings to defraud Medicare totaled $225 million "From 2008 to 2010, every dollar the federal government spent under its health care fraud and abuse control programs averaged a return on investment (of) $6.80," Health and Human Services Secretary Kathleen Sebelius said. 2 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13
3 American Society of Certified Fraud Examiners 20 Ways to Detect Fraud 1. Unusual Behavior The perpetrator will often display unusual behavior, that when taken as a whole is a strong indicator of fraud. The fraudster may not ever take a vacation or call in sick in fear of being caught. He or she may not assign out work even when overloaded. Other symptoms may be changes in behavior such as increased drinking, smoking, defensiveness, and unusual irritability and suspiciousness. 2. Complaints Frequently tips or complaints will be received which indicate that a fraudulent action is going on. Complaints have been known to be some of the best sources of fraud and should be taken seriously. Although all too often, the motives of the complainant may be suspect, the allegations usually have merit that warrant further investigation. 3. Stale Items in Reconciliations In bank reconciliations, deposits or checks not included in the reconciliation could be indicative of theft. Missing deposits could mean the perpetrator absconded with the funds; missing checks could indicate one made out to a bogus payee. 4. Excessive Voids Voided sales slips could mean that the sale was rung up, the payment diverted to the use of the perpetrator, and the sales slip subsequently voided to cover the theft. 5. Missing Documents Documents which are unable to be located can be a red flag for fraud. Although it is expected that some documents will be misplaced, the auditor should look for explanations as to why the documents are missing, and what steps were taken to locate the requested items. All too often, the auditors will select an alternate item or allow the auditee to select an alternate without determining whether or not a problem exists. 6. Excessive Credit Memos Similar to excessive voids, this technique can be used to cover the theft of cash. A credit memo to a phony customer is written out, and the cash is taken to make total cash balance. 3 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
4 A Real Fraud Example My credit card statement Can you see the fraud? May 22 1:14 PM FOOD Monaco Café $ May 22 7:32 PM WINE Wine Bistro $28.00 Gas Station? June 14 2:05 PM MISC Mobil Mart $75.00 June 14 2:06 PM MISC Mobil Mart $75.00 June 15 11:48 AM MISC Mobil Mart $75.00 June 15 11:49 AM MISC Mobil Mart $75.00 May 28 6:31 PM WINE Acton Shop $31.00 May 29 8:39 PM FOOD Crossroads $ June 16 11:48 AM MISC Mobil Mart $75.00 June 16 11:49 AM MISC Mobil Mart $75.00 All same $75 amount? Monaco? Pairs of $75? 4 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
5 Turkcell Combating Communications Fraud Objectives Prepaid card fraud millions of dollars/year Extremely fast sifting through huge data volumes; with fraud, time is money Solution Monitor 10 billion daily call-data records Leveraged SQL for the preparation 1 PB Due to the slow process of moving data, Turkcell IT builds and deploys models in-db Oracle Advanced Analytics on Exadata for extreme speed. Analysts can detect fraud patterns almost immediately Turkcell manages 100 terabytes of compressed data or one petabyte of uncompressed raw data on Oracle Exadata. With Oracle Data Mining, a component of the Oracle Advanced Analytics Option, we can analyze large volumes of customer data and call-data records easier and faster than with any other tool and rapidly detect and combat fraudulent phone use. Hasan Tonguç Yılmaz, Manager, Turkcell İletişim Hizmetleri A.Ş. Oracle Advanced Analytics In-Database Fraud Models Exadata 5 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12
6 In-Database Analytics Oracle Big Data Platform Oracle Big Data Appliance Optimized for Hadoop, R, and NoSQL Processing Oracle Big Data Connectors Oracle Exadata System of Record Optimized for DW/OLTP Oracle Exalytics Optimized for Analytics & In-Memory Workloads Hadoop Open Source R Oracle NoSQL Database Applications Oracle Big Data Connectors Oracle Data Integrator Oracle Advanced Analytics Data Warehouse Oracle Database Oracle Enterprise Performance Management Oracle Business Intelligence Applications Oracle Business Intelligence Tools Oracle Endeca Information Discovery Stream Acquire Organize Discover & Analyze 6 Copyright 2012, Oracle and/or its affiliates. All rights reserved.
7 Oracle Advanced Analytics Fastest Way to Deliver Scalable Enterprise-wide Predictive Analytics Key Features In-database data mining algorithms and open source R algorithms SQL, PL/SQL, R languages Scalable, parallel in-database execution Workflow GUI and IDEs Integrated component of Database Enables enterprise analytical applications 7 Copyright 2012, Oracle and/or its affiliates. All rights reserved.
8 Oracle Advanced Analytics Wide Range of In-Database Data Mining and Statistical Functions Data Understanding & Visualization Summary & Descriptive Statistics Histograms, scatter plots, box plots, bar charts R graphics: 3-D plots, link plots, special R graph types Cross tabulations Tests for Correlations (t-test, Pearson s, ANOVA) Selected Base SAS equivalents Data Selection, Preparation and Transformations Joins, Tables, Views, Data Selection, Data Filter, SQL time windows, Multiple schemas Sampling techniques Re-coding, Missing values Aggregations Spatial data R to SQL transparency and push down Classification Models Logistic Regression (GLM) Naive Bayes Decision Trees Support Vector Machines (SVM) Neural Networks (NNs) Regression Models Multiple Regression (GLM) Support Vector Machines Clustering Hierarchical K-means Orthogonal Partitioning Expectation Maximization Anomaly Detection Special case Support Vector Machine (1-Class SVM) Associations / Market Basket Analysis A Priori algorithm Feature Selection and Reduction Attribute Importance (Minimum Description Length) Principal Components Analysis (PCA) Non-negative Matrix Factorization Singular Vector Decomposition Text Mining Most OAA algorithms support unstructured data (i.e. customer comments, , abstracts, etc.) Transactional Data Most OAA algorithms support transactional data (i.e. purchase transactions, repeated measures over time) R packages ability to run open source Broad range of R CRAN packages can be run as part of database process via R to SQL transparency and/or via Embedded R mode 8 Copyright 2012, Oracle and/or its affiliates. All rights reserved. * included in every Oracle Database
9 Financial Sector/Accounting/Expenses Anomaly Detection Simple Fraud Detection Methodology 1-Class SVM More Sophisticated Fraud Detection Methodology Clustering + 1-Class SVM 9 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
10 Fraud Prediction Demo Automated In-DB Analytical Methodolgies drop table CLAIMS_SET; exec dbms_data_mining.drop_model('claimsmodel'); create table CLAIMS_SET (setting_name varchar2(30), setting_value varchar2(4000)); insert into CLAIMS_SET values ('ALGO_NAME','ALGO_SUPPORT_VECTOR_MACHINES'); insert into CLAIMS_SET values ('PREP_AUTO','ON'); commit; begin dbms_data_mining.create_model('claimsmodel', 'CLASSIFICATION', 'CLAIMS', 'POLICYNUMBER', null, 'CLAIMS_SET'); end; / -- Top 5 most suspicious fraud policy holder claims select * from (select POLICYNUMBER, round(prob_fraud*100,2) percent_fraud, rank() over (order by prob_fraud desc) rnk from (select POLICYNUMBER, prediction_probability(claimsmodel, '0' using *) prob_fraud from CLAIMS where PASTNUMBEROFCLAIMS in ('2to4', 'morethan4'))) where rnk <= 5 order by percent_fraud desc; POLICYNUMBER PERCENT_FRAUD RNK Automated Monthly Application! Just add: Create View CLAIMS2_30 As Select * from CLAIMS2 Where mydate > SYSDATE Copyright 2013, Oracle and/or its affiliates. All rights reserved.
11 Why Oracle Advanced Analytics? Differentiating Features Fastest Way to Deliver Enterprise Predictive Analytics Applications Integrated with OBIEE and any application that uses SQL queries Performance and Scalability Leverages power and scalability of Oracle Database. Lowest Total Costs of Ownership No need for separate analytical servers 11 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13
12 A Real Fraud Example My credit card statement Can you see the fraud? May 22 1:14 PM FOOD Monaco Café $ May 22 7:32 PM WINE Wine Bistro $28.00 Gas Station? June 14 2:05 PM MISC Mobil Mart $75.00 June 14 2:06 PM MISC Mobil Mart $75.00 June 15 11:48 AM MISC Mobil Mart $75.00 June 15 11:49 AM MISC Mobil Mart $75.00 May 28 6:31 PM WINE Acton Shop $31.00 May 29 8:39 PM FOOD Crossroads $ June 16 11:48 AM MISC Mobil Mart $75.00 June 16 11:49 AM MISC Mobil Mart $75.00 All same $75 amount? Monaco? Pairs of $75? 12 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
13 Multiple Approaches To Detect Potential Fraud 1. Anomaly Detection (1-Class SVM) Add feedback loop to purify the input training data over time and improve model performance 2. Classification IF you have a lot of examples (25% or more) of fraud on which to train/learn 3. Clustering Find records that don t high very high probability to fit any particular cluster and/or lie in the outlier/edges of the clusters 4. Hybrid of # 3 and then # 1 Pre-cluster the records to create similar segments and then apply anomaly detection models for each cluster 5. Panel of Experts i.e. 3 out of 5 models predict possibly anomalous above 40% or any 1 out of N models considers this record unusual 13 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
14 Challenge: Finding Anomalies Considering multiple attributes Taken alone, may seem normal X 1 X 1 Taken collectively, a record may appear to be anomalous Look for what is different X 2 X 3 X 2 X 3 X 4 X 4 14 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
15 Oracle Advanced Analytics SQL Data Mining Algorithms Problem Algorithms Applicability Classification Logistic Regression (GLM) Decision Trees Naïve Bayes Support Vector Machines Classical statistical technique Popular for rules & transparency Fast, simple, performant New, versatile and performant R Regression Multiple Regression (GLM) Support Vector Machines Classical statistical technique New, versatile and performant Anomaly Detection Attribute Importance Association Rules Clustering Feature Extraction A1 A2 A3 A4 A5 A6 A7 F1 F2 F3 F4 1-Class Support Vector Machine Minimum Description Length (MDL) Apriori Hierarchical K-Means Hierarchical O-Cluster Expectation Maximization (EM) Principal Components Analysis (PCA) Nonnegative Matrix Factorization Singular Value Decomposition (SVD) Anomaly detection & fraud where lack examples of the target field Attribute reduction Reduce data noise Market basket analysis Link analysis Customer segmentation Find similar records, transactions or clusters Feature reduction e.g. many inputs, text problems, etc. 15 Copyright 2012, Oracle and/or its affiliates. All rights reserved.
16 Oracle Advanced Analytics Wide Range of In-Database Data Mining and Statistical Functions Data Understanding & Visualization Summary & Descriptive Statistics Histograms, scatter plots, box plots, bar charts R graphics: 3-D plots, link plots, special R graph types Cross tabulations Tests for Correlations (t-test, Pearson s, ANOVA) Selected Base SAS equivalents Data Selection, Preparation and Transformations Joins, Tables, Views, Data Selection, Data Filter, SQL time windows, Multiple schemas Sampling techniques Re-coding, Missing values Aggregations Spatial data R to SQL transparency and push down Classification Models Logistic Regression (GLM) Naive Bayes Decision Trees Support Vector Machines (SVM) Neural Networks (NNs) Regression Models Multiple Regression (GLM) Support Vector Machines Clustering Hierarchical K-means Orthogonal Partitioning Expectation Maximization Anomaly Detection Special case Support Vector Machine (1-Class SVM) Associations / Market Basket Analysis A Priori algorithm Feature Selection and Reduction Attribute Importance (Minimum Description Length) Principal Components Analysis (PCA) Non-negative Matrix Factorization Singular Vector Decomposition Text Mining Most OAA algorithms support unstructured data (i.e. customer comments, , abstracts, etc.) Transactional Data Most OAA algorithms support transactional data (i.e. purchase transactions, repeated measures over time) R packages ability to run open source Broad range of R CRAN packages can be run as part of database process via R to SQL transparency and/or via Embedded R mode 16 Copyright 2012, Oracle and/or its affiliates. All rights reserved. * included in every Oracle Database
17 Oracle Data Miner GUI SQL Developer 4.0 Extension Free OTN Download Easy to Use Oracle Data Miner GUI for data analysts Work flow paradigm Powerful Multiple algorithms & data transformations Runs 100% in-db Build, evaluate and apply models Automate and Deploy Generate SQL scripts for deployment Share analytical workflows 17 Copyright 2012, Oracle and/or its affiliates. All rights reserved.
18 Tax Noncomplaince Audit Selection Simple Oracle Data Mining predictive model Uses Decision Tree for classification of Noncompliant tax submissions (yes/no) based on historical 2011 data 18 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
19 Tax Noncomplaince Audit Selection Tax data used for demo 19 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
20 Tax Noncomplaince Audit Selection Patterns of possibly noncompliant tax submisisons found! 20 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
21 Fraud and Non-Compliance Example Identify & Drill-Thru Expenses by Probability of Non-Compliance OAA data mining models provide likelihood of expense reporting fraud and other important insights. 21 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13
22 Oracle Advanced Analytics R Enterprise Compute Engines R R Engine Other R packages Oracle R Enterprise packages SQL Results Oracle Database R Open Source User tables?x R Results R Engine Other R packages Oracle R Enterprise packages User R Engine on desktop R-SQL Transparency Framework intercepts R functions for scalable in-database execution Function intercept for data transforms, statistical functions and advanced analytics Interactive display of graphical results and flow control as in standard R Submit entire R scripts for execution by database Database Compute Engine Scale to large datasets Access tables, views, and external tables, as well as data through DB LINKS Leverage database SQL parallelism Leverage new and existing in-database statistical and data mining capabilities R Engine(s) spawned by Oracle DB Database can spawn multiple R engines for database-managed parallelism Efficient data transfer to spawned R engines Emulate map-reduce style algorithms and applications Enables lights-out execution of R scripts 22 Copyright 2012, Oracle and/or its affiliates. All rights reserved.
23 Oracle Adaptive Access Manager Trust., But Verify Global ODM clustering model identifies typical behaviors/patterns/ profiles Each user is assigned several cluster nodes, that in total, capture 85% of their typical behavior/profile Real-time scoring of ODM model to bolster OAA s complex realtime security 23 Copyright 2013, Oracle and/or its affiliates. All rights reserved.
24 Financial Sector/Accounting/Expenses Oracle Spend Classification: Auto Classify Spend into Purchasing Categories Text mining of expense items descriptions Defragmentation of likely misclassified expenses Flat panel monitor = Meals Oracle Spend Classification 24 Copyright 2013, Oracle and/or its affiliates. All rights reserved. -24-
25 25 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13
Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2
Oracle 11g DB Data Warehousing ETL OLAP Statistics Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2 Data Mining Charlie Berger Sr. Director Product Management, Data
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining R The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
Anomaly and Fraud Detection with Oracle Data Mining
Oracle 11g DB Data Warehousing ETL OLAP Statistics Anomaly and Fraud Detection with Oracle Data Mining Data Mining Charlie Berger Sr. Director Product Management, Data Mining Technologies
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Charlie Berger, MS Eng, MBA Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
Big Data Analytics with Oracle Advanced Analytics In-Database Option
Big Data Analytics with Oracle Advanced Analytics In-Database Option Charlie Berger Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2
Oracle 11g DB Data Warehousing ETL OLAP Statistics Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2 Data Mining Charlie Berger Sr. Director Product Management, Data
Exadata V2 + Oracle Data Mining 11g Release 2 Importing 3 rd Party (SAS) dm models
Exadata V2 + Oracle Data Mining 11g Release 2 Importing 3 rd Party (SAS) dm models Charlie Berger Sr. Director Product Management, Data Mining Technologies Oracle Corporation [email protected]
Big Data and Predictive Analytics: Fiserv Data Mining Case Study [CON8631] Data Warehouse and Big Data
Big Data and Predictive Analytics: Fiserv Data Mining Case Study [CON8631] Data Warehouse and Big Data Miguel Barrera - Director, Risk Analytics, Fiserv, Inc. Julia Minkowski - Risk Manager, Fiserv, Inc.
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Tax Fraud in Increasing
Preventing Fraud with Through Analytics Satya Bhamidipati Data Scientist Business Analytics Product Group Copyright 2014 Oracle and/or its affiliates. All rights reserved. 2 Tax Fraud in Increasing 27%
1 Copyright 2011, Oracle and/or its affiliates. All rights reserved.
1 Copyright 2011, Oracle and/or its affiliates. FPO In-Database Analytics: Predictive Analytics, Data Mining, Exadata & Business Intelligence Charlie Berger Sr. Director Product Management, Data Mining
Starting Smart with Oracle Advanced Analytics
Starting Smart with Oracle Advanced Analytics Great Lakes Oracle Conference Tim Vlamis Thursday, May 19, 2016 Vlamis Software Solutions Vlamis Software founded in 1992 in Kansas City, Missouri Developed
Advanced In-Database Analytics
Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??
Data Mining with Oracle Database 11g Release 2
An Oracle White Paper September 2009 Data Mining with Oracle Database 11g Release 2 Competing on In-Database Analytics Executive Overview... 1 In-Database Data Mining... 1 Key Benefits of Oracle Data Mining...
Getting Started with Oracle Data Miner 11g R2. Brendan Tierney
Getting Started with Oracle Data Miner 11g R2 Brendan Tierney Scene Setting This is not about DB log mining This is an introduction to ODM And how ODM can be included in OBIEE (next presentation) Domain
Oracle Data Mining 11g Release 2
An Oracle White Paper February 2012 Oracle Data Mining 11g Release 2 Competing on In-Database Analytics Disclaimer The following is intended to outline our general product direction. It is intended for
Oracle Data Mining In-Database Data Mining Made Easy!
Oracle Data Mining In-Database Data Mining Made Easy! Charlie Berger Sr. Director Product Management, Data Mining and Advanced Analytics Oracle Corporation [email protected] www.twitter.com/charliedatamine
Up Your R Game. James Taylor, Decision Management Solutions Bill Franks, Teradata
Up Your R Game James Taylor, Decision Management Solutions Bill Franks, Teradata Today s Speakers James Taylor Bill Franks CEO Chief Analytics Officer Decision Management Solutions Teradata 7/28/14 3 Polling
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
IBM SPSS Modeler 15 In-Database Mining Guide
IBM SPSS Modeler 15 In-Database Mining Guide Note: Before using this information and the product it supports, read the general information under Notices on p. 217. This edition applies to IBM SPSS Modeler
Big Data Analytics with Oracle Advanced Analytics
Big Data Analytics with Oracle Advanced Analytics Making Big Data and Analytics Simple O R A C L E W H I T E P A P E R J U L Y 2 0 1 5 Disclaimer The following is intended to outline our general product
extreme Datamining mit Oracle R Enterprise
extreme Datamining mit Oracle R Enterprise Oliver Bracht Managing Director eoda Matthias Fuchs Senior Consultant ISE Information Systems Engineering GmbH extreme Datamining with Oracle R Enterprise About
Predictive Analytics Powered by SAP HANA. Cary Bourgeois Principal Solution Advisor Platform and Analytics
Predictive Analytics Powered by SAP HANA Cary Bourgeois Principal Solution Advisor Platform and Analytics Agenda Introduction to Predictive Analytics Key capabilities of SAP HANA for in-memory predictive
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model
KnowledgeSEEKER Marketing Edition
KnowledgeSEEKER Marketing Edition Predictive Analytics for Marketing The Easiest to Use Marketing Analytics Tool KnowledgeSEEKER Marketing Edition is a predictive analytics tool designed for marketers
WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat
Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise
Harnessing the power of advanced analytics with IBM Netezza
IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
Make Better Decisions Through Predictive Intelligence
IBM SPSS Modeler Professional Make Better Decisions Through Predictive Intelligence Highlights Easily access, prepare and model structured data with this intuitive, visual data mining workbench Rapidly
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Big Data Use Cases Update
Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected
Using OBIEE for Location-Aware Predictive Analytics
Using OBIEE for Location-Aware Predictive Analytics Jean Ihm, Principal Product Manager, Oracle Spatial and Graph Jayant Sharma, Director, Product Management, Oracle Spatial and Graph, MapViewer Oracle
Name: Srinivasan Govindaraj Title: Big Data Predictive Analytics
Name: Srinivasan Govindaraj Title: Big Data Predictive Analytics Please note the following IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
Oracle Data Miner (Extension of SQL Developer 4.0)
An Oracle White Paper October 2013 Oracle Data Miner (Extension of SQL Developer 4.0) Generate a PL/SQL script for workflow deployment Denny Wong Oracle Data Mining Technologies 10 Van de Graff Drive Burlington,
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
Data Analysis with Various Oracle Business Intelligence and Analytic Tools
Data Analysis with Various Oracle Business Intelligence and Analytic Tools Session ID: 108680 Prepared by: Tim and Dan Vlamis Vlamis Software Solutions www.vlamis.com @TimVlamis Agenda What we will talk
Building In-Database Predictive Scoring Model: Check Fraud Detection Case Study
Building In-Database Predictive Scoring Model: Check Fraud Detection Case Study Jay Zhou, Ph.D. Business Data Miners, LLC 978-726-3182 [email protected] Web Site: www.businessdataminers.com
Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014
Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
2015 Workshops for Professors
SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Oracle Big Data Building A Big Data Management System
Oracle Big Building A Big Management System Copyright 2015, Oracle and/or its affiliates. All rights reserved. Effi Psychogiou ECEMEA Big Product Director May, 2015 Safe Harbor Statement The following
Maximizing Return and Minimizing Cost with the Decision Management Systems
KDD 2012: Beijing 18 th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Rich Holada, Vice President, IBM SPSS Predictive Analytics Maximizing Return and Minimizing Cost with the Decision Management
Pentaho Data Mining Last Modified on January 22, 2007
Pentaho Data Mining Copyright 2007 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest information, please visit our web site at www.pentaho.org
Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved.
Mike Maxey Senior Director Product Marketing Greenplum A Division of EMC 1 Greenplum Becomes the Foundation of EMC s Big Data Analytics (July 2010) E M C A C Q U I R E S G R E E N P L U M For three years,
The Oracle Data Mining Machine Bundle: Zero to Predictive Analytics in Two Weeks Collaborate 15 IOUG
The Oracle Data Mining Machine Bundle: Zero to Predictive Analytics in Two Weeks Collaborate 15 IOUG Presentation #730 Tim Vlamis and Dan Vlamis Vlamis Software Solutions 816-781-2880 www.vlamis.com Presentation
What Are They Thinking? With Oracle Application Express and Oracle Data Miner
What Are They Thinking? With Oracle Application Express and Oracle Data Miner Roel Hartman Brendan Tierney Agenda Who are we The Scenario Graphs & Charts in APEX - Live Demo Oracle Data Miner & DBA tasks
An In-Depth Look at In-Memory Predictive Analytics for Developers
September 9 11, 2013 Anaheim, California An In-Depth Look at In-Memory Predictive Analytics for Developers Philip Mugglestone SAP Learning Points Understand the SAP HANA Predictive Analysis library (PAL)
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08
Hexaware E-book on Predictive Analytics
Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,
EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data
EMC Greenplum Driving the Future of Data Warehousing and Analytics Tools and Technologies for Big Data Steven Hillion V.P. Analytics EMC Data Computing Division 1 Big Data Size: The Volume Of Data Continues
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise Solutions Group The following is intended to outline our
KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES
HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within
Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p.
Introduction p. xvii Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p. 9 State of the Practice in Analytics p. 11 BI Versus
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model
Oracle Big Data Strategy Simplified Infrastrcuture
Big Data Oracle Big Data Strategy Simplified Infrastrcuture Selim Burduroğlu Global Innovation Evangelist & Architect Education & Research Industry Business Unit Oracle Confidential Internal/Restricted/Highly
Understanding the Value of In-Memory in the IT Landscape
February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
IBM SPSS Modeler Premium
IBM SPSS Modeler Premium Improve model accuracy with structured and unstructured data, entity analytics and social network analysis Highlights Solve business problems faster with analytical techniques
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
In-Database Analytics
Embedding Analytics in Decision Management Systems In-database analytics offer a powerful tool for embedding advanced analytics in a critical component of IT infrastructure. James Taylor CEO CONTENTS Introducing
not possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day
Oracle Database 12c Plug In. Switch On. Get SMART.
Oracle Database 12c Plug In. Switch On. Get SMART. Duncan Harvey Head of Core Technology, Oracle EMEA March 2015 Safe Harbor Statement The following is intended to outline our general product direction.
SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603
SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business
High Performance Data Management Use of Standards in Commercial Product Development
v2 High Performance Data Management Use of Standards in Commercial Product Development Jay Hollingsworth: Director Oil & Gas Business Unit Standards Leadership Council Forum 28 June 2012 1 The following
Advanced Big Data Analytics with R and Hadoop
REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional
BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES
BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 123 CHAPTER 7 BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 7.1 Introduction Even though using SVM presents
III JORNADAS DE DATA MINING
III JORNADAS DE DATA MINING EN EL MARCO DE LA MAESTRÍA EN DATA MINING DE LA UNIVERSIDAD AUSTRAL PRESENTACIÓN TECNOLÓGICA IBM Alan Schcolnik, Cognos Technical Sales Team Leader, IBM Software Group. IAE
Focus on the business, not the business of data warehousing!
Focus on the business, not the business of data warehousing! Adam M. Ronthal Technical Product Marketing and Strategy Big Data, Cloud, and Appliances @ARonthal 1 Disclaimer Copyright IBM Corporation 2014.
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
In-Memory Analytics for Big Data
In-Memory Analytics for Big Data Game-changing technology for faster, better insights WHITE PAPER SAS White Paper Table of Contents Introduction: A New Breed of Analytics... 1 SAS In-Memory Overview...
Data Mining - The Next Mining Boom?
Howard Ong Principal Consultant Aurora Consulting Pty Ltd Abstract This paper introduces Data Mining to its audience by explaining Data Mining in the context of Corporate and Business Intelligence Reporting.
TUT NoSQL Seminar (Oracle) Big Data
Timo Raitalaakso +358 40 848 0148 [email protected] TUT NoSQL Seminar (Oracle) Big Data 11.12.2012 Timo Raitalaakso MSc 2000 Work: Solita since 2001 Senior Database Specialist Oracle ACE 2012 Blog: http://rafudb.blogspot.com
Three steps to put Predictive Analytics to Work
Three steps to put Predictive Analytics to Work The most powerful examples of analytic success use Decision Management to deploy analytic insight in day to day operations helping organizations make more
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:
An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP Oracle ESG Data Systems Architecture
An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP ESG Data Systems Architecture Big Data & Analytics as a Service Components Unstructured Data / Sparse Data of Value
Greenplum Database. Getting Started with Big Data Analytics. Ofir Manor Pre Sales Technical Architect, EMC Greenplum
Greenplum Database Getting Started with Big Data Analytics Ofir Manor Pre Sales Technical Architect, EMC Greenplum 1 Agenda Introduction to Greenplum Greenplum Database Architecture Flexible Database Configuration
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION EXECUTIVE SUMMARY Oracle business intelligence solutions are complete, open, and integrated. Key components of Oracle business intelligence
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances
INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA
Big Data and Advanced Analytics Applications and Capabilities Steven Hagan, Vice President, Server Technologies
Big Data and Advanced Analytics Applications and Capabilities Steven Hagan, Vice President, Server Technologies 1 Copyright 2011, Oracle and/or its affiliates. All rights Big Data, Advanced Analytics:
ETPL Extract, Transform, Predict and Load
ETPL Extract, Transform, Predict and Load An Oracle White Paper March 2006 ETPL Extract, Transform, Predict and Load. Executive summary... 2 Why Extract, transform, predict and load?... 4 Basic requirements
Disrupt or be disrupted IT Driving Business Transformation
Disrupt or be disrupted IT Driving Business Transformation Gokula Mishra VP, Big Data & Advanced Analytics Business Analytics Product Group Copyright 2014 Oracle and/or its affiliates. All rights reserved.
How to Optimize Your Data Mining Environment
WHITEPAPER How to Optimize Your Data Mining Environment For Better Business Intelligence Data mining is the process of applying business intelligence software tools to business data in order to create
Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine
Data Mining SPSS 12.0 1. Overview Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Types of Models Interface Projects References Outline Introduction Introduction Three of the common data mining
Oracle Data Mining. Concepts 11g Release 2 (11.2) E16808-07
Oracle Data Mining Concepts 11g Release 2 (11.2) E16808-07 June 2013 Oracle Data Mining Concepts, 11g Release 2 (11.2) E16808-07 Copyright 2005, 2013, Oracle and/or its affiliates. All rights reserved.
Oracle Big Data Handbook
ORACLG Oracle Press Oracle Big Data Handbook Tom Plunkett Brian Macdonald Bruce Nelson Helen Sun Khader Mohiuddin Debra L. Harding David Segleau Gokula Mishra Mark F. Hornick Robert Stackowiak Keith Laker
High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances
High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances Highlights IBM Netezza and SAS together provide appliances and analytic software solutions that help organizations improve
Using Data Mining to Detect Insurance Fraud
IBM SPSS Modeler Using Data Mining to Detect Insurance Fraud Improve accuracy and minimize loss Highlights: combines powerful analytical techniques with existing fraud detection and prevention efforts
Big Data and Its Impact on the Data Warehousing Architecture
Big Data and Its Impact on the Data Warehousing Architecture Sponsored by SAP Speaker: Wayne Eckerson, Director of Research, TechTarget Wayne Eckerson: Hi my name is Wayne Eckerson, I am Director of Research
