The demand for new roadway
|
|
|
- Martin Turner
- 9 years ago
- Views:
Transcription
1 Designing strong walls on weak soils Civil engineers have options to remedy foundation soil problems and meet project cost and schedule requirements. By Fadi Faraj, P.E.; Michael H. Garrison, P.E.; and Brendan FitzPatrick, P.E. The demand for new roadway construction or expansion of existing infrastructure for both public and private owners continues to grow. These projects commonly involve grade-separation construction and projects are often restricted by tight schedules, limited funding, public opposition, and rightof-way limitations, among other things. Although project challenges may vary, one universal question remains for engineers, contractors, and owners on every project: How do you design and build the project to meet the owner s cost and schedule requirements? Infrastructure construction involving grade separations in urban environments is often challenged by tight or difficult access and limited right-ofway restrictions for construction. As an alternate to sloped embankments, which typically require large work areas and property acquisition, gradeseparation solutions typically involve construction of retaining walls using either conventional cast-in-place concrete cantilevered walls or mechanically stabilized earth (MSE) walls. While both systems are commonly used, many public and private owners have adopted MSE wall solutions, which represent a more economical and faster wall construction approach than cast-in-place cantilevered retaining walls. MSE walls can also be designed to tolerate more settlement. However, weak or compressible foundation soils present significant design and construction challenges. Wall heights commonly range from 10 to 40 feet and apply pressures ranging from 4,000 to 7,000 pounds per square foot (psf) near the wall face, depending on the specific wall design. The increasing size of these walls poses geotechnical challenges, including inadequate factors of safety for global stability and bearing capacity, as well as excessive total and differential settlement. Traditional solutions for remedying foundation soil problems include massive overexcavation and replacement, deep foundations, or staged construction. Each of these options provides distinct advantages and disadvantages and is selected based on the projectspecific needs. For instance, overexcavation is most commonly used when the depth of weak or compressible soils is relatively shallow (less than 10 feet). Removal of shallow, unsuitable soils and replacement with compacted, engineered fill is often an inexpensive approach to provide improved foundation soils in these conditions. Overexcavation and replacement may become less cost-effective, however, when poor soils extend to deeper depths, dewatering is required because of shallow groundwater, temporary shoring is required to stabilize an excavation next to an existing roadway, or the presence Construction of cantilevered or mechanically stabilized earth retaining walls to create grade separations presents significant design and construction challenges when faced with weak or compressible foundation soils. April 2008 CE NEWS 35
2 of contaminated soil results in high costs of disposal. Overexcavation and replacement is significantly affected by inclement weather, which could present schedule challenges as well. When compressible or weak soils extend to depths of 30 or 40 feet or greater, options for supporting embankments or wall construction may include staged construction or deep foundations. Staging involves embankment construction to specific heights, temporarily stopping construction and monitoring the embankment until settlement is complete, followed by continuation of construction to greater heights. The purpose is to build the embankment to specific heights where the existing soils will provide suitable support. As the new embankment Rammed Aggregate Pier installation involves drilling a 30-inch-diameter hole; placing thin lifts of aggregate within the cavity; and vertically ramming the aggregate using a high-energy, patented beveled impact tamper. pressure is applied, settlement occurs and the weak foundation soils become stronger, thereby permitting higher embankment construction. This process is repeated in multiple stages until the embankment reaches the final design height. This approach is well suited when there is significant time in the construction schedule. This approach is not often a viable solution when the embankment construction is part of the critical path for the project. Deep foundations are used in similar situations with deep, compressible soils to support and transfer the embankment pressures to more competent bearing layers. Deep foundations are able to support high loads through very soft soils delivering superior performance but are an expensive solution. The costs incurred include not only the deep foundations (driven steel or concrete piles, augercast-in-place piles, or caissons) but also a load-transfer platform constructed using either multiple layers of structural geogrid or a concrete mat to transfer embankment pressures to the deep foundation elements. The balance of cost, schedule, performance, and ease of construction has led design teams to an alternative approach for embankment and wall construction called an Intermediate Foundation solution. This approach uses Rammed 36 CE NEWS April
3 Retaining wall heights commonly range from 10 to 40 feet and apply pressures ranging from 4,000 to 7,000 pounds per square foot near the wall face, depending on the specific wall design. Aggregate Pier (RAP) systems to reinforce poor soils to intermediate depths, typically ranging from 10 to 40 feet (see Figure 1). As described in the recently published Highway Innovative Technology Evaluation Center (HITEC) evaluation report, RAP elements use highly densified aggregate piers to improve the composite engineering characteristics of poor or unsuitable soils to support high applied pressures. Installation involves drilling a 30-inch-diameter hole; placing thin lifts of aggregate within the cavity; and vertically ramming the aggregate using a high-energy, patented beveled impact tamper. During construction, the high-frequency energy delivered by the modified hydraulic hammer, combined with the beveled shape of the tamper, not only densifies the aggregate vertically to create a stiff aggregate pier with internal friction angles on the order of 50 degrees, but also forces aggregate laterally into the sidewall of the hole, resulting in lateral stress increase in surrounding soil. The lateral stress increase reduces the compressibility of the surrounding soil and promotes positive coupling of the RAP element and the soil to create a composite, reinforced soil zone. Additionally, when constructed using open-graded stone, the RAP elements act as vertical drains to promote radial drainage and accelerate settlement within the reinforced zone. Overall, the system provides the benefits of increased shear resistance for stability and bearing capacity improvement coupled with reduction in settlement magnitude and duration by improving the strength and stiffness of soft or compressible soils at intermediate depths. Foundation challenge Engineers designing the Loop 363 South Interchange project in Temple, Texas, were confronted by design challenges for a series of new gradeseparation walls inadequate factors of safety for global stability and bearing capacity, as well as excessive total and differential settlement. The project involved reconstruction of portions of Loop 363 to create a new highway interchange along Interstate 35, as well as widening nearby portions of Loop 363 to accommodate the traffic demand created from the new interchange. In one location, an existing embankment was used to facilitate a grade separation over an existing railroad crossing. The plan called for widening the existing two-lane roadway to accommodate a total of four lanes. In another location, proposed interchange construction required new gradeseparation construction. Because of the presence of a nearby telecommunication substation, acquiring additional right-of-way to facilitate widening of the existing embankments was not a viable solution. After a preliminary analysis was conducted to compare construction of an extended bridge with an embankment/retaining wall, the project team concluded that a taller MSE wall would be the most economically feasible solution. Led by transportation engineers at PBS&J working for the Texas Department of Transportation, the project team developed plans for walls as high as 38 feet at a railroad overpass and as high as 22 feet at the new I-35 interchange. Wall construction was expected to apply pressures greater than 4,250 psf at the 22-foot-tall wall and 7,500 psf at the 38-foot-tall wall. Geotechnical engineers at HVJ Associates, Inc., investigated existing soil conditions at the wall locations and evaluated performance of the walls. Soil conditions for the project consisted of newly placed clay fill, in some areas extending to depths of about 8 feet, underlain by very soft to stiff clay. The clay ranged from low to high plasticity, with moisture contents ranging from 15 percent to 38 percent. The clay was 38 CE NEWS April
4 Weak or compressible foundation soils present significant design and construction challenges. underlain by bedrock at depths as shallow as 13 feet in some locations and more than 30 feet in other locations. HVJ Associates identified early in the design that construction of the tall walls would result in significant increase in the shear stress (demand) on the underlying weak clay foundation soils. In addition, the high applied pressures at the wall face resulted in unacceptably low factors of safety for bearing capacity. While settlement control was less of a concern in areas with shallow rock, the high wall pressures applied in areas of deeper rock were expected to result in unacceptable long-term settlement. Using conventional limit equilibrium 12PH-MesaAACEN4C08 3/6/08 4:42 PM Page 1 analyses (slope stability programs), HVJ Associates concluded that the shear strength (resistance) along the critical slip surface extending behind the reinforced portion of the wall and through the weak clay was insufficient for supporting the walls. Factors of safety for stability may be determined as the ratio of the shear strength within the contributing soil layers along the slip surface to the applied shear stress. The calculated factor of safety for the long-term case was less than 1.25 for walls taller than 15 feet, and approximately 1.0 for walls taller than 20 feet, indicating a strong likelihood of global instability. Bearing pressures were calculated at the retaining walls and, using conventional Terzaghi bearing capacity approaches, engineers determined that the factors of safety for bearing would fall below the required minimum factor of safety of 2.0 for wall heights greater than about 16 feet. While settlement in the areas with relatively shallow rock was less of a concern, the variability of the clay stiffness and the deeper depth to rock coupled with the high design pressures resulted in estimated postconstruction settlement of more than 5 inches. An alternative solution was required to limit the post-construction settlement to 1 inch or less. YOUR NEW MASTERPIECE.> The Mesa Ashford System now with more design options than ever! The art of randomly patterned segmental retaining walls has reached new heights with the recently improved Mesa Ashford System. Using three distinctive units to create more natural, mosaic-like patterns, Ashford Wall designs are unlimited. Custom and variegated colors and antiqued finishes are locally available. Complete your picture with all of this and the structural integrity and reliability of traditional single-source Mesa Retaining Wall Systems. For Distributor Opportunities Call Build your masterpiece today! For more information on the Mesa Systems variety of styles, colors and textures, call or visit today. 2008, Tensar International Corporation, Limited LLC, Inc. 1/2PH-MesaAACEN4C08. THE CONNECTION YOU CAN COUNT ON Enter #127 at cenews.com/infodirect April 2008 CE NEWS 39
5 The conventional approach of removal and replacement was initially considered by the design team to address the geotechnical design challenges. Concern about required depth and lateral extent of excavations combined with negative impacts to the construction schedule and costs led the project team to consider other alternatives. Based on previous project experiences, engineers from HVJ Associates determined that an Intermediate Foundation solution using RAP elements would provide the level of improvement required to satisfy factors of safety for both bearing and global stability and provide sufficient improvement in the composite stiffness to control settlement of the walls. The system would also provide a cost-effective approach to soil reinforcement while making short work of pier installation. Design and installation Working closely with the project team, a solution was developed by Geopier Foundation Company, Inc., consisting of two to four rows of RAP Figure 1: Conceptual drawing of mechanically stabilized earth wall Rammed Aggregate Pier element layout elements installed beneath the MSE walls. RAP spacings ranging from 4.75 to 8.5 feet on-center were incorporated beneath wall heights of 16 feet or greater. The spacing of the piers was reduced, corresponding to increases in wall heights, to provide sufficient levels of improvement. Piers were as long as 16 feet but did not completely penetrate the clay. In some locations, piers did tag the shallow rock. By incorporating the high shear strength afforded by each pier, the improved strength characteristics of the composite reinforced zone provided increases in the factors of safety for bearing capacity instability and global SW_halfpgad14_OL.indd 1 Enter #312 at cenews.com/infodirect 2/24/08 1:29:55 PM 40 CE NEWS April
6 instability to greater than 2.0 and 1.3, respectively. Additionally, the stiff RAP elements substantially reduced settlement magnitudes to meet the stringent post-construction settlement requirement. Working for general contractor Zachry Construction Corporation of San Antonio, Texas, Peterson Contractors, Inc., of Reinbeck, Iowa, installed the piers. During installation, field monitoring was performed to provide quality control for the installations. In addition, field performance verification of the RAP system was accomplished by conducting a fullscale modulus test. The modulus test is similar to a pile load test, where stress is applied to a concrete cap at the top of the pier using a 100-ton jack reacting against a steel beam held in place with helical anchors. Deflections are taken to monitor the movement of the top of the pier. ACEC Directory Ad_7.375x4.8 11/29/07 3:46 PM Page 1 Additionally, a steel telltale rod sleeved in PVC and installed within the pier allows for deflection measurements near the bottom of the pier. By monitoring deflections at both the top and bottom of the pier, the modulus test provides confirmation that the stiffness of the pier achieves the required design stiffness, and that the pier is sufficiently long to dissipate stress to act as an intermediate foundation as opposed to a deep foundation (pile), which transfers loads to a better layer. The modulus test results showed a total movement of 0.69 inches at a stress of more than 22,000 psf, indicating a pier stiffness greater than twice the assumed design value. Conclusion Solutions to address the engineering challenges encountered on transportation projects must first overcome the technical challenges. Cost-effectiveness and impacts to the construction schedule must then be considered when evaluating the overall effectiveness of a solution to reinforce poor foundation soils. Each project requires a unique solution to address the specific design challenges such as global instability, inadequate bearing, or excessive settlement magnitude or duration. Fadi Faraj, P.E., is senior project engineer for HVJ Associates, Inc., in Dallas. He can be contacted at [email protected]. Michael H. Garrison, P.E., is senior project manager for PBS&J in Dallas. He can be contacted at mhgarrison@pbsj. com. Brendan FitzPatrick, P.E., is director of engineering and development North America for Geopier Foundation Company, Inc., Mooresville, N.C. He can be contacted at [email protected]. A Civil Approach for the Road Ahead. Site Traffic Structural Transportation Value Engineering Subsurface Utility Aerial Mapping Land Survey 6745 Sugarloaf Parkway Suite 100 Duluth, GA [email protected] Enter #190 at cenews.com/infodirect April 2008 CE NEWS 41
SETTLEMENT MONITORING OF DISCRETE REINFORCED SOIL LAYER BENEATH MAT FOUNDATIONS, CALIFORNIA, USA
SETTLEMENT MONITORING OF DISCRETE REINFORCED SOIL LAYER BENEATH MAT FOUNDATIONS, CALIFORNIA, USA Ken Hoevelkamp, PE Geopier Foundation Company West, Inc., Irvine, CA, USA Brendan FitzPatrick, PE Geopier
IH-635 MANAGED LANES PROJECT, SEG. 3.2
IH-635 MANAGED LANES PROJECT, SEG. 3.2 Location: Dallas, Texas Owner: Texas Department of Transportation Client: Ferrovial Agroman Construction Cost: $1 Billion Construction Completion Date: December,
Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES
Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering Geotechnical Bulletin GB 1 PLAN SUBGRADES Geotechnical Bulletin GB1 was jointly developed by the Offices
STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.
STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill
PILE FOUNDATIONS FM 5-134
C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics
Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. The Leading Edge.
TM TM Engineered, Time-Tested Foundation Repairs for Settlement in Residential and Light Commercial Structures. SM The Leading Edge. 10 One Major Causes of foundation settlement or more conditions may
Safe & Sound Bridge Terminology
Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries
Specification Guidelines: Allan Block Modular Retaining Wall Systems
Specification Guidelines: Allan Block Modular Retaining Wall Systems The following specifications provide Allan Block Corporation's typical requirements and recommendations. At the engineer of record's
ALLOWABLE LOADS ON A SINGLE PILE
C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity
ATLAS RESISTANCE Pier Foundation Systems
ATLAS RESISTANCE Pier Foundation Systems Foundation Repair Systems for Civil Construction Applications: Residential, Commercial, Industrial Atlas Resistance Piers have been used to restore and/or stabilize
Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils
Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Stephen W. Lacz 1, M. ASCE, P.E. and Richard C. Wells 2, F. ASCE, P.E. 1 Senior Professional, Trigon Kleinfelder, Inc., 313 Gallimore
SECTION 1 GENERAL REQUIREMENTS
Page 1 of 6 SECTION 1 GENERAL REQUIREMENTS 1. SCOPE OF WORK: The work to be performed under the provisions of these documents and the contract based thereon includes furnishing all labor, equipment, materials,
RETAINING WALL CONSTRUCTION DETAILS 2006 ESTIMATING AND INSTALLATION MANUAL. Featuring Highland Stone. anchorwall.com
RETAINING WALL CONSTRUCTION DETAILS 2006 ESTIMATING AND INSTALLATION MANUAL 11 Featuring Highland Stone anchorwall.com TABLE OF CONTENTS 2 TABLE OF CONTENTS BEFORE YOU BEGIN............................
Designed and Engineered to Perform
History EARTH CONTACT PRODUCTS, L.L.C., is a family owned company, based in Olathe, Kansas. This company was built upon Don May s U.S. Patented fourth-generation Steel Piering System that has led to the
Chapter 4 SUBSURFACE INVESTIGATION GUIDELINES
Chapter 4 SUBSURFACE INVESTIGATION GUIDELINES Final SCDOT GEOTECHNICAL DESIGN MANUAL August 2008 Table of Contents Section Page 4.1 Introduction...4-1 4.2 Subsurface Investigation...4-2 4.2.1 Preliminary
Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation
Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 [email protected]
TYPES OF PIERS USED IN NORTH AND EAST TEXAS RESIDENTIAL FOUNDATION REPAIR
TYPES OF PIERS USED IN NORTH AND EAST TEXAS RESIDENTIAL FOUNDATION REPAIR If you listen to the hype, it sounds like there must be 20 or 30 different types of piers out there. Company A says they have an
BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM
BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM Swaminathan Srinivasan, P.E., M.ASCE H.C. Nutting/Terracon David Tomley, P.E., M.ASCE KZF Design Delivering Success for
CIVL451. Soil Exploration and Characterization
CIVL451 Soil Exploration and Characterization 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally
Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations
Up-Down Construction Utilizing Steel Sheet Piles and Drilled Shaft Foundations Nathan A. Ingraffea, P.E., S.E. Associate, KPFF Consulting Engineers, Portland, Oregon, USA Abstract The use of steel sheet
GLOSSARY OF TERMINOLOGY
GLOSSARY OF TERMINOLOGY AUTHORIZED PILE LENGTHS - (a.k.a. Authorized Pile Lengths letter) Official letter stating Engineer's recommended length of concrete piles to be cast for construction of foundation.
SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)
Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks
COSMOS 2012: Earthquakes in Action COSMOS 2012
COSMOS 2012 What is SFSI and why is it important? Soil issues in Earthquakes Structures where SFSI important Retaining structures (lateral earth pressure) Foundations (spread and pile footings, bearing
CHAPTER 8 CIVIL DESIGN
CHAPTER 8 CIVIL DESIGN A. GENERAL This Chapter includes standards and design considerations for other civil engineering design in structural, drainage and utilities. Design considerations for electrical
Stability. Security. Integrity.
Stability. Security. Integrity. PN #MBHPT Foundation Supportworks provides quality helical pile systems for both new construction and retrofit applications. 288 Helical Pile System About Foundation Supportworks
MSE Wall Engineering A New Look at Contracting, Design, and Construction. Presented by: James M. Schmidt, P.E., P.Eng. 1 Daniel L. Harpstead, P.E.
MSE Wall Engineering A New Look at Contracting, Design, and Construction Presented by: James M. Schmidt, P.E., P.Eng. 1 Daniel L. Harpstead, P.E. 2 ABSTRACT Poor performance of mechanically stabilized
State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS
State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary
Emergency repair of Bridge B421
Emergency repair of Bridge B421 over the Olifants River after fl ood damage INTRODUCTION AND BACKGROUND Bridge B421 is located on the R555 at km 5.03 on Section 01E between Witbank (now known as emalahleni)
Soil Screw Design Manual Edition 2
Soil Screw Design Manual Edition 2 Page TOC-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2015 CONTENTS CONTENTS TABLE of CONTENTS INTRODUCTION and APPLICATIONS Section 1 PURPOSE AND SCOPE...
SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS
July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional
Helical Piles. A Practical Guide to Design and Installation
Brochure More information from http://www.researchandmarkets.com/reports/2216946/ Helical Piles. A Practical Guide to Design and Installation Description: An unbiased, comprehensive review of helical pile
Structural Foundation System
Structural Foundation System SLABTEK, a technological advancement in foundation designs for residential and lightweight commercial structures SlabTek is a patent allowed process for concrete foundations
High Capacity Helical Piles Limited Access Projects
High Capacity Helical Piles Limited Access Projects Tel 403 228-1767 Canada, USA, Russia Brendan ODonoghue 519 830-6113 Presentation Summary 1. Helical piles Background on large diameter shafts and helices
Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective
Value of Instrumentation Systems and Real-Time Monitoring: An Owner s Perspective FHWA NATIONAL GEOTECHNICAL PROGRAM www.fhwa.dot.gov/engineering/geotech Why Geotechnical Instrumentation? Provide warning
REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:
HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering
Chapter 3 Pre-Installation, Foundations and Piers
Chapter 3 Pre-Installation, Foundations and Piers 3-1 Pre-Installation Establishes the minimum requirements for the siting, design, materials, access, and installation of manufactured dwellings, accessory
System. Stability. Security. Integrity. 150 Helical Anchor
Model 150 HELICAL ANCHOR System PN #MBHAT Stability. Security. Integrity. 150 Helical Anchor System About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair
DESIGNING STRUCTURES IN EXPANSIVE CLAY
DESIGNING STRUCTURES IN EXPANSIVE CLAY A GUIDE FOR A RCHITECTS AND E NGINEERS Table of Contents 1. Introduction Page 1 2. Common Foundation Systems Page 2 3. Drilled Piers Page 3 a. Skin Friction Piers
A Solid Foundation Solution for Homeowners. from. Our products are made with 90% Recycled Material Down. Right. Solid. GREEN.
A Solid Foundation Solution for Homeowners from Our products are made with 90% Recycled Material Down. Right. Solid. GREEN. Stop the damaging effects of foundation settling... Sinking foundations, cracked
Lighthouse Engineering, L.L.C.
Registered Engineering Firm (F: 9334) Phone: 214-577-1077 Fax: 214-224-0549 Website: www.lighthouseeng.com Email: [email protected] Thursday, September 04, 2014 TO: Our Client RE: Initial Engineering
STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION
STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION Design Criteria Drainage Area The drainage area for storm drain inlets shall not exceed one acre. The crest elevations of these practices shall
New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations
from New construction foundations don t have to be a headache. The CHANCE Helical Pier Foundation System gives you the performance of concrete without the drawbacks and liabilities of driven piles and
ENGINEERED FOUNDATIONS. Department of Public Works Jeff Hill, PE
ENGINEERED FOUNDATIONS Department of Public Works Jeff Hill, PE What is an engineered foundation. A Foundation Design Developed by a Trained Professional (Engineer) Types of Foundations (All of which can
6 RETROFITTING POST & PIER HOUSES
Retrofitting Post & Pier Houses 71 6 RETROFITTING POST & PIER HOUSES by James E. Russell, P.E. 72 Retrofitting Post & Pier Houses Retrofitting Post & Pier Houses 73 RETROFITTING POST AND PIER HOUSES This
CONCRETE SEGMENTAL RETAINING WALL SYSTEM
CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Vintage TM unit segmental retaining wall (SRW)
The International Workshop on Micropiles, 2007
MICROPILE FOUNDATION REPAIR AND UNDERPINNING, ARTS AND SCIENCE MUSEUM, UNIVERSITY OF PUERTO RICO, MAYAGUEZ Presented at: International Society of Micropiles (ISM) The International Workshop on Micropiles,
DUDERSTADT FOUNDATION & CONSTRUCTION, LLC.
DUDERSTADT FOUNDATION & CONSTRUCTION, LLC. Drilling since 1916 2215 Belknap Place Phone (210) 824-3800 San Antonio, TX 78212-1904 Fax (210) 824-9525 www.duderstadtfoundation.com ABOUT THE COVER: Drilled
SECTION 02200 SUPPORT OF EXCAVATION
SECTION 02200 PART 1 GENERAL 1.01 DESCRIPTION A. Section including specifications for design and installation of excavation support. B. Section also includes specifications for excavation support systems
Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training
Foundations 65 5 FOUNDATIONS by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. 66 Foundations Foundations 67 FOUNDATIONS Let's assume that the retrofit has been done correctly from the roofline
Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26
2014 HDR Architecture, 2014 2014 HDR, HDR, Inc., all all rights reserved. Challenging Skew: Higgins Road Steel I-Girder Bridge over I-90 OTEC 2015 - October 27, 2015 Session 26 Brandon Chavel, PhD, P.E.,
Design and Construction of Auger Cast Piles
Design and Construction of Auger Cast Piles 101 th Annual Road School 2015 3/11/2015 Malek Smadi, Ph.D., P.E. Principal Engineer - GEOTILL - Fishers, IN [email protected] - www.geotill.com CONTENTS 1.
High Strain Dynamic Load Testing of Drilled Shafts
Supplemental Technical Specification for High Strain Dynamic Load Testing of Drilled Shafts SCDOT Designation: SC-M-712 (9/15) September 3, 2015 1.0 GENERAL This work shall consist of performing high-strain
The Stabilizer TM. Benefits. www.griptite.com. Supplemental support system for sagging beams and floor joists within a crawl space
The Stabilizer TM Supplemental support system for sagging beams and floor joists within a crawl space Pre-drilled holes in steel plate allow for connection to beam or floor joists. Benefits Levels and
CONCRETE SEGMENTAL RETAINING WALL SYSTEM
CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Classic 8 with PCS unit segmental retaining wall
Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing
Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering
PDCA Driven-Pile Terms and Definitions
PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified
Now That s IDEAL. Now That s IDEAL. LISTEN. RESEARCH. DESIGN. DELIVER.
The Leading Edge SM At IDEAL, we try not to complicate things. We discover needs and problems, then work out solutions. It takes real teamwork to accomplish truly great things. That s you and us, working
Helical Pier Foundations
Screw piers are a cost-effective option for steep sites and expansive soils Helical Pier Foundations FOR PROBLEMSITES SITES Our company, HighCraft Builders in Fort Collins, Colo., specializes in room additions
SECTION 31 20 00 EARTH MOVING
SECTION 31 20 00 PART 1 - GENERAL 1.01 DESCRIPTION A. This Section describes the requirements for excavating, filling, and grading for earthwork at Parking Structure, new exit stair and as required to
June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL
7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction
Washington 98102-3699, [email protected]
LESSONS LEARNED FROM A STONE COLUMN TEST PROGRAM IN GLACIAL DEPOSITS Barry S. Chen 1, P.E., Member, Geo-Institute and Michael J. Bailey 2, P.E., Member, Geo-Institute ABSTRACT A stone column test program
How To Retaining Wall Guide
How To Retaining Wall Guide Before you start: Consents and Engineering Building Consent Retaining walls over 1.5m high will require a building consent from the Local Body Council. Walls that carry extra
PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center
PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org
National Home Builder - Name Wednesday, August 20, 2014 Regional Customer Care Manager 1234 Main Street Houston, Texas 77067
Lighthouse Engineering, L.L.C. Michael Gandy, P.E. Registered Professional Engineer (TX: 95672) Registered Engineering Firm (F: 9334) Phone: 214-577-1077 Fax: 214-224-0549 Website: www.lighthouseeng.com
USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch
USE OF MICROPILES IN TEXAS BRIDGES by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch DEFINITION OF A MICROPILE A micropile is a small diameter (typically less than 12 in.), drilled and
Geotechnical Building Works (GBW) Submission Requirements
Building Control (Amendment) Act 2012 and Regulations 2012: Geotechnical Building Works (GBW) Submission Requirements Building Engineering Group Building and Construction Authority May 2015 Content : 1.
LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code
LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900
Foundation Experts, LLC Specializes in Foundation Repair and Waterproofing
1 Most basements show some signs of leaking and cracking. Through the years, problems with water, poor soils, grading, drainage and possible settling affect the integrity of a basement. Being able to recognize
ARCHITECTURAL TECHNOLGY 4 ADVANCED CONSTRUCTION TECHNOLOGY BASEMENT CONSTRUCTION YEAR 3 SEMESTER 1 AIDAN WALSH R00060057. Lecturer: Jim Cahill
ARCHITECTURAL TECHNOLGY 4 ADVANCED CONSTRUCTION TECHNOLOGY BASEMENT CONSTRUCTION YEAR 3 SEMESTER 1 AIDAN WALSH R00060057 Lecturer: Jim Cahill 29 th November 2011 TABLE OF CONTENTS SUMMARY 1 MAIN BODY SECTION
How to Estimate the Cost of Support of Excavation for Foundation Installation. CPE Candidate No. 0113013. May 15, 2013
How to Estimate the Cost of Support of Excavation for Foundation Installation CPE Candidate No. 0113013 May 15, 2013 1 How to Estimate the Cost of Support of Excavation for Foundation Installation Table
DESIGN GUIDELINES FOR EARTH RETENTION
DESIGN GUIDELINES FOR EARTH RETENTION Strata Systems, Inc. 380 Dahlonega Rd., Suite 200 Cumming, GA 30040 USA www.geogrid.com TABLE OF CONTENTS MECHANICS OF RETAINING WALLS... 3 THE STRATAWEB SOLUTION...4
Intermediate, Geopier-reinforced Mat Slab versus Deep Micropile Foundation System
STRUCTURAL BREADTH STUDY Intermediate, Geopier-reinforced Mat Slab versus Deep Micropile Foundation System Introduction This analysis examines the feasibility of replacing the existing deep micropile foundation
Civil. 2. City of Seattle Supplement to the Specification for Road, Bridge and Municipal Construction, most current addition.
Design Guide Basis of Design This section applies to the design and installation of earthwork and backfill. Design Criteria No stockpiling of excavation materials is allowed unless the Geotechnical Engineer
The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma
The Impact of Market Demands on Residential Post-Tensioned Foundation Design: An Ethical Dilemma Bart B. Barrett, B.S., P.E.1 Kerry S. Lee, M.B.A., P.E., M. ASCE2 Erik L. Nelson, Ph.D., P.E., M. ASCE3
1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona
for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety
SCHEMATIC AND PROJECT BUDGET APPROVAL EAST CAMPUS NURSING EDUCATION AND CLASSROOM
Shepherd University Board of Governors June 9, 2005 Agenda Item No. 9 SCHEMATIC AND PROJECT BUDGET APPROVAL EAST CAMPUS NURSING EDUCATION AND CLASSROOM In 1994 construction began on the Byrd Science and
Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples
Geotechnical Investigation Reports and Foundation Recommendations - Scope for Improvement - Examples Prof. V.S.Raju (Formerly: Director, IIT Delhi & Professor and Dean, IIT Madras) Email: [email protected]
Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions
Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions Peyman Amini Motlagh, Ali Pak Abstract Seismic retrofitting of important structures is essential in seismological
How To Design A Foundation
The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural
The Verdura Wall check with your local building department
The Verdura Wall The Verdura Wall by Soil Retention Products, Inc of Carlsbad, California can be constructed as a gravity retaining structure or a geosynthetic reinforced segmental retaining wall, depending
Anirudhan I.V. Geotechnical Solutions, Chennai
Anirudhan I.V. Geotechnical Solutions, Chennai Often inadequate In some cases, excess In some cases, disoriented Bad investigation Once in a while good ones Depends on one type of investigation, often
4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.
Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls
DFI CSCE Workshop April 12, 2013 Solutions for Embankments Over Soft Soils Embankments Over Soft Soils
DFI CSCE Workshop April 12, 2013 Solutions for Embankments Over Soft Soils Embankments Over Soft Soils Construction over Unstable Soils focuses on methods to support embankment and embankment widening
FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples
FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to
EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL
EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall
SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS
SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS Section Page 36-1 GENERAL... 36.1 36-2 PIPEMAKING EQUIPMENT... 36.1 36-3 TRENCH EXCAVATION... 36.1 36-4 SPECIAL FOUNDATION TREATMENT...
Riprap-lined Swale (RS)
Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This
1. ASTM C 140 - Sampling and Testing Concrete Masonry Units 2. ASTM C 1372 Standard Specification for Dry-Cast Segmental Retaining Wall Units
SPECIFICATION FOR SEGMENTAL RETAINING WALL SYSTEMS PART 1: GENERAL 1.01 Description A. Work shall consist of furnishing materials, labor, equipment and supervision to install a segmental retaining wall
BUTE Department of Construction Management and Technology
BUTE Department of Construction Management and Technology 02.10.2012 Definition 1: Foundation: The structure, that transmits the load of the building to the soil Definition 2: Load bearing soil (strata):
METHOD OF STATEMENT FOR STATIC LOADING TEST
Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents
SECTION 32 32 23 CONCRETE SEGMENTAL RETAINING WALL SYSTEM
Anchor [coarse-split products] SECTION 32 32 23 CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1 GENERAL 1.01 SUMMARY A. Section Includes 1. Concrete segmental retaining wall units 2. Geosynthetic reinforcement
How to Design and Build a Fence/G traverse Bridge or Graffiti Project
Outline Project Location Project Description Project History Site Constraints Geotechnical Investigation & Soil Profile Foundation Design Process Photos Project Location Project Limits: The Grand River
FOUNDATION TECHNICAL CATEGORY 3 (TC3) AUGUST 2012
FOUNDATION TECHNICAL CATEGORY 3 (TC3) AUGUST 2012 Building and Housing has published technical guidance for foundation repairs and reconstruction for residential properties in green zone Foundation Technical
DIRECTIONAL DRILLING
DIRECTIONAL DRILLING 1. General. Installation of pipelines through the levee embankment using directional drilling technology is prohibited. Installation of pipelines through a flood control project foundation
CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION
391 CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 9.1 OVERVIEW OF FE SOIL-STRUCTURE INTERACTION Clough and Denby (1969) introduced Finite Element analysis into the soil-structure interaction
THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS
Chapter 11 Slope Stabiliza bilization and Stability of Cuts and Fills THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS are 1) to create space for the road template and driving surface; 2) to balance material
Table of Contents 16.1 GENERAL... 16.1-1. 16.1.1 Overview... 16.1-1 16.1.2 Responsibilities... 16.1-1
Table of Contents Section Page 16.1 GENERAL... 16.1-1 16.1.1 Overview... 16.1-1 16.1.2 Responsibilities... 16.1-1 16.1.2.1 Geotechnical Section/Bridge Bureau Coordination... 16.1-1 16.1.2.2 Geotechnical
The unit costs are based on the trend line of the 3 low bids for the average quantity.
Page 1 of 8 COST ESTIMATE GENERAL INSTRUCTIONS The unit costs are based on the trend line of the 3 low bids for the average quantity. Apply the Unit Costs to ordinary structures. Unit Costs should generally
SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT
SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration
Comprehensive Design Example 2: Foundations for Bulk Storage Facility
Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently
