MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC
|
|
|
- Jade Nicholson
- 9 years ago
- Views:
Transcription
1 MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC Overview Summary The new enhanced-capability port adapters are targeted to replace the following Cisco port adapters: 1-port T3 Serial Port Adapter Enhanced (part number PA-T3+), 2-port T3 Serial Port Adapter Enhanced (part number PA-2T3+), 1-port Enhanced Multichannel T3 Port Adapter (part number PA-MC-T3+), 2-port Enhanced Multichannel T3 Port Adapter (part number PA-MC-2T3+), 1-port E3 Port Adapter (part number PA-E3), and 2-port E3 Port Adapter (part number PA-2E3). These new products will ship in two phases. Phase 1 is targeted for November 2006 and will ship the Cisco 1-Port Multichannel Enhanced Capability Port Adapter (part number PA-MC-T3-EC) and Cisco 2-Port Multichannel Enhanced Capability Port Adapter (part number (PA-MC-2T3-EC). These two port adapters support clearchannel and multichannel functions. The Cisco 7200 Series Network Processing Engines NPE-G1 and NPE-G2 will be the only processors supported in phase 1. One reason for the development of the new port adapters was to overcome performance limitations of the existing multichannel port adapter (PA-MC-2T3+) when sending small packets on both ports simultaneously. The new port adapters do not have the same limitation, and they can achieve line rate with 64-byte packets on both ports. Phase 2 is targeted for March 2007 and will ship the 1-port clear-channel T3/E3 (PA-T3/E3-EC) and the 2-port clear-channel T3/E3 (PA-2T3/E3-EC). These new port adapters will support clearchannel T3 and E3 functions. Phase 2 will also incorporate support for all versions of the new port adapters on the Cisco ubr7200 Series NPE-400, NPE-G1, and NPE-G2 Network Processing Engines and the Cisco 7301 Router. The multichannel enhanced-capability port adapters (PA-MC- T3-EC and PA-MC-2T3-EC) have the latest version of T3 silicon devices that support offloading certain features to the port adapter to relieve the burden on the CPU of the network processing engine. The features offloaded to the port adapter include: Multilink Point-to-Point Protocol (MLPPP), link fragmentation and interleaving (LFI), Multilink Frame Relay (MLFR), and Frame Relay Fragmentation (FRF.12). Channelizing a T3 down to T1s and using MLPPP is a very popular solution for certain customers. This paper discusses why a customer would choose to use MLPPP and how the new port adapters with their MLPPP offload capability would benefit a customer. This document discusses MLPPP and LFI extensively; MLFR and FRF.12 are not discussed because these technologies are roughly the same concepts over different Layer 2 encapsulation (Frame Relay instead of Point-to-Point Protocol [PPP]). Results All rates mentioned in this document are unidirectional. To find the bidirectional rate of packets on a link, multiply the unidirectional rate by 2. All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 13
2 Sharing Bandwidth Link Bundling There are various mechanisms to bundle links at Layer 2 and make them appear as a single logical link at Layer 3. MLPPP, MLFR, Inverse Multiplexing for ATM (IMA), and Link Aggregation Control Protocol (LACP) are all methods to achieve similar functions on different media. MLPPP bundles serial links that run the PPP protocol; MLFR bundles serial links running the Frame Relay protocol; IMA bundles ATM links; and LACP (which is similar to Cisco EtherChannel technology) bundles Ethernet links. The reasons for bundling links follow: Additional bandwidth Link redundancy IP address conservation Layer 2 load sharing Load-Balancing Algorithms Layer 3 Cisco Express Forwarding load balancing can be done in either of the following modes: Per-session load balancing is done by hashing on some bits within each packet to determine which link to use. Balancing traffic between links depends on the hash algorithm and traffic distribution. In actual deployments, the use of all links will not be equal. Per-packet load balancing is done in a round-robin fashion. The number of packets sent on each link will be equal. However, now it is possible to forward out-of-order packets. Layer 2 load balancing can also be done in a couple of different modes: LACP uses an algorithm to hash on certain bits within a packet to determine which member link within a bundle to use, resulting in packets in the same session traversing the same member link. Balancing traffic between member links depends on the hash algorithm and traffic distribution. MLPPP, MLFR, and IMA typically use a round-robin algorithm to balance traffic among member links within a bundle, leading to fairly equal use of all links. However, it is now possible to receive (and forward) out-of-order packets. MLPPP compensates for this feature and buffers packets received out of order, and forwards packets only in order. This additional buffering and resequencing effort causes the CPU to do more processing. Packet Reordering Figures 1 through 4 illustrate the packet order problem when trying to use multiple links equally to load balance. Initially, the packets arrive on the San Francisco (SFO) router in order. The SFO router forwards these packets to New York City (NYC) by sending every other packet on every other T1 link. Because the links have different propagation delays (and interfaces have different buffering delays), packet 2 arrives in NYC before packet 1. Now the packets are out of order, and the question is: should the NYC router forward them out of order or buffer them and forward them in order? Figure 1. Packets Arrive in Sequence All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 2 of 13
3 Figure 2. Links with Different Propagation Delay Cause Packets Out of Sequence Figure 3. Cisco Express Forwarding per-packet Load Balancing Packets Forwarded Out of Sequence If the routers are doing Cisco Express Forwarding per-packet load balancing, the NYC router will forward the packets in the same order they were received so they will be forwarded out of sequence. This out-of-sequence forwarding might cause problems, depending on the application. Data applications have large reassembly buffers and out-of-sequence packets do not cause a problem for data. However, voice and video applications have very small reassembly buffers and out-of-sequence packets are a big problem for these applications. Figure 4. MLPPP Packets Buffered and Forwarded in Sequence MLPPP solves the packet sequence problem by buffering the packets and forwarding them in sequence, thereby placing more of a burden on the router because it has to buffer the packets that All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 3 of 13
4 are received out of sequence. However, packets are only forwarded in sequence and voice applications will operate much better with MLPPP enabled. Link Fragmentation and Interleaving LFI is required on links that carry both voice and data. Voice traffic is normally small packets that are sensitive to delay, and data packets are normally large packets that are relatively insensitive to delay. Without LFI, if a large data packet is currently being transmitted, the small voice packet will have to be queued and transmitted only when the large packet has been fully transmitted. If there are many routers in the path, this delay will accumulate and users will start to complain. LFI fragments the large packets into small fragments, so the problem with the small packet waiting for the entire large packet to be transmitted is no longer applicable. If a fragment of a large packet is currently being transmitted and if a small packet arrives, it can be transmitted next without having to wait for all the fragments of the large packet to be transmitted. LFI minimizes the serialization delay caused by the large packets. FRF.12 is a similar concept for implementing LFI on Frame Relay links (Figure 5). Figure 5. Link Fragmentation and Interleaving All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 4 of 13
5 MLPPP Is MLPPP Needed? When connecting a pair of routers with multiple serial links, a common question is whether or not MLPPP is needed or if Cisco Express Forwarding load balancing is sufficient. The following points should be considered before using MLPPP: Is the bandwidth of member links T1 or less for MLPPP? (Links with greater bandwidth require more buffering and CPU resources, so Cisco recommends MLPPP on T1 or smaller links.) Is equal use of all links important? Are there delay-sensitive applications that do not do well with out-of-sequence packets (such as voice) on the network? If the answer to all three questions is yes, then MLPPP is necessary. The advantages of MLPPP are additional bandwidth, equal use of all links, and delivery of packets in sequence. MLPPP Deployment Scenario Figure 6 shows a typical MLPPP deployment scenario. The head office has a T3 interface that has been channelized down to T1s. Some remote offices may be fine with only a single T1, others may require a pair of T1s, and still others may require three or more T1s. MLPPP is a great solution here because as bandwidth is required, another T1 can be added to the MLPPP bundle. Figure 6. MLPPP Deployed to Many Remote Sites When a remote site exceeds the throughput of a T1, the choices are to upgrade to a T3 or to buy an additional T1 from the telco. Typically, the cost of a T3 is much more than the cost of two or All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 5 of 13
6 even three T1s. Therefore, for incremental bandwidth upgrades, MLPPP is an excellent solution that does not require any Layer 3 router reconfiguration. For simplicity, Figure 6 shows a single T3 connection to the Cisco However, the new port adapter comes in a dual-port option, so a single Cisco 2-Port Multichannel Enhanced Capability Port Adapter (PA-MC-2T3-EC) can support 56 T1s shared across a pair of T3s. Figure 7 shows another scenario where MLPPP is useful: it can be deployed to connect two sites that need more than T1 access. Again, the advantage is that as more bandwidth is needed, additional T1s can be added to the bundle with minimal router configuration changes. Topologies similar to the one of Figure 7 are also used by cell phone providers to provide access between cells. The only difference is that MLPPP would be running between two adjacent cell sites. Figure 7. MLPPP Deployed Between Two Sites Cisco 2-Port Multichannel Enhanced Capability Port Adapter Overview Figure 8 shows the main components of the Cisco 2-Port Multichannel Enhanced Capability Port Adapter (PA-MC-2T3-EC). The points of interest follow: The data link manager that terminates MLPPP on the port adapter and handles fragmentation and interleaving The resequencing memory that is used to buffer out-of-order MLPPP and MLFR fragments These points are the major parts of the port adapter that allow MLPPP, MLFR, LFI, and FRF.12 to be hardware-accelerated on the port adapter and relieve this burden from the main network processing engine, which sees only complete MLPPP packets (not fragments) as a result of the datalink manager. Figure 8. Port Adapter Block Diagram All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 6 of 13
7 Verification of Hardware-Enabled Features If upgrading from an older channelized port adapter to the new Cisco 1-Port Multichannel Enhanced Capability Port Adapter (PA-MC-T3-EC) or Cisco 2-Port Multichannel Enhanced Capability Port Adapter (PA-MC-2T3-EC), no new commands are needed to enable the hardware acceleration. Simply install the port adapter and load an appropriate Cisco IOS Software image that supports the new port adapter. The following show command can be used to verify that MLPPP is being processed on the port adapter. Notice the line showing Multilink is hardware enabled. Router# show ppp multilink interface multilink 14 Multilink14 Bundle name: 7200_top_bundle_14 Remote Endpoint Discriminator: [1] 7200_top_bundle_14 Local Endpoint Discriminator: [1] 7200_bot_bundle_14 Bundle up for 03:11:30, total bandwidth 6144, load 195/255 Receive buffer limit bytes, frag timeout 1000 ms 0 lost fragments, 0 reordered, 0 unassigned 0 discarded, 0 lost received received sequence unavailable, 0xCC3D sent sequence Multilink is hardware enabled Member links: 4 active, 0 inactive (max not set, min not set) Se2/1/25:0, since 03:11:30 Se2/1/26:0, since 03:11:30 Se2/1/27:0, since 03:11:30 Se2/1/28:0, since 03:11:30 Restrictions for Hardware-Enabled Features All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 7 of 13
8 In order for MLPPP and MLFR to be offloaded to the port adapter, the following conditions must be met: All member links must be T1 or less. All member links must have the same bandwidth. All member links must terminate on the same port adapter. The port adapter must contain fewer than 168 bundles. Each bundle must have fewer than 12 T1 links. Member links should not be configured with ppp multilink multiclass (not applicable for MLFR) In addition to the above, if LFI is enabled, the following two additional conditions must be met for MLPPP to be offloaded to the PA. If these aren t met, MLPPP will be done on the NPE s CPU: Fragmentation size needs to be 128 bytes or greater. Only one member link is allowed in the bundle. Some other points to note regarding hardware offload: Fragmentation counters on the transmit side are not available, since these counters aren t supported in hardware. Fragmentation sizes supported in hardware are 128, 256 and 512 bytes. If different sizes are configured, the fragment size will be adjusted to the nearest of these values three values. TX fragmentation of MFR is not supported in hardware. Test Results Figure 9 shows the following: The Cisco 2-Port Multichannel Enhanced Capability Port Adapter (PA-MC-2T3-EC) can reach 99 percent of line rate, and it outperforms the older port adapters. Figure 9. Performance of 56 T1s All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 8 of 13
9 Figure 10 shows the following: With MLPPP, the Cisco 2-Port Multichannel Enhanced Capability Port Adapter (PA-MC- 2T3-EC) can reach 98 percent of line rate, and it outperforms the older port adapters. Because MLPPP is offloaded to the 2-port port adapter, the CPU has less work to do, so only 74 percent of the CPU is being used while it sustains two 178,571-pps streams. With the older port adapter combinations and less traffic, the CPU was at 100 percent and the console was unavailable. Figure 10. Performance with MLPPP All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 9 of 13
10 Figure 11 compares phase 1 (which does MLPPP on the main processor) with phase 2 (which offloads MLPPP processing to the port adapter): Phase 1 has a non-delivery receipt (NDR) of 137,061 pps and the CPU is 98-percent used. When MLPPP is offloaded to the port adapter (with phase 2), the CPU use goes down to 58 percent for the same traffic load. So for the same traffic load, offloading MLPPP causes a 40-percent reduction in CPU use. With phase 2, the NDR value is 178,571 (which is 98 percent of line rate) and the CPU use is only 74 percent. The middle bar shows that phase 2 uses 40 percent less CPU time for the same traffic load. Comparing the middle bar with the rightmost bar shows that phase 2 also provides more throughput. Figure 11. MLPPP on Network Processing Engine vs. MLPPP on Port Adapter All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 10 of 13
11 Figure 12 shows the following: In clear-channel mode with small packets, the Cisco 2-Port Multichannel Enhanced Capability Port Adapter (PA-MC-2T3-EC) has more than triple the throughput of the Cisco 2-Port Multichannel Port Adapter (PA-MC-2T3+). In clear-channel mode, the 2-port enhanced-capability port adapter can reach 97 percent of line rate. The Cisco 2-Port T3 Port Adapter [[CORRECT?]] (PA-2T3+) is also able to reach 97 percent of line rate. Because it cannot operate in channelized mode, however, it is not as flexible as the new port adapters. Figure 12. Clear-Channel T3 Performance All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 11 of 13
12 Test Topology Details The topology shown in Figure 13 was used to measure the performance of the Cisco 2-Port Multichannel Enhanced Capability Port Adapter (PA-MC-2T3-EC). A similar topology was used to test the other port adapters. Figure 13. Topology with Cisco 2-Port Multichannel Enhanced Capability Port Adapter The minimum size packet generated by the traffic generator on an Ethernet segment is 64 bytes. The packet traversing the serial link will be smaller because the Ethernet header is larger than the serial link (PPP) header. Appendix A Definitions and Further Reading MLPPP Multilink Point-to-Point Protocol: All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 12 of 13
13 LFI Link fragmentation and interleaving PPP fragmentation defined in RFC MLFR Multilink Frame Relay defined by the Frame Relay Forum in specification FRF.16: FRF.12 Frame Relay Forum specification defining fragmentation on Frame Relay links: Link Aggregation Control Protocol (LACP) is part of an IEEE specification (802.3ad): Alternatives for Parallel N x T1/E1 connections: d4b.shtml Printed in USA C /06 All contents are Copyright Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 13 of 13
Dedicated Access Solutions for Internet Service Providers
White Paper Dedicated Access Solutions for Internet Service Providers INTRODUCTION Revenue from business connections to the Internet represents, on average, almost 60 percent of the total revenue to Internet
WAN Data Link Protocols
WAN Data Link Protocols In addition to Physical layer devices, WANs require Data Link layer protocols to establish the link across the communication line from the sending to the receiving device. 1 Data
How To Make A Multilink Ame Relay Work Faster And More Efficiently
1/16/01 - ick Franks / Tiara etworks nc. / [email protected] / 408-535-1222 Multilink Frame Relay Prior to the advent of the multilink ame relay () protocol, some ame relay users were experiencing
Configuring a Load-Balancing Scheme
Configuring a Load-Balancing Scheme Last Updated: October 5, 2011 This module contains information about Cisco Express Forwarding and describes the tasks for configuring a load-balancing scheme for Cisco
Calculating Bandwidth Requirements
Calculating Bandwidth Requirements Codec Bandwidths This topic describes the bandwidth that each codec uses and illustrates its impact on total bandwidth. Bandwidth Implications of Codec 22 One of the
Chapter 2 Lab 2-2, Configuring EtherChannel Instructor Version
Chapter 2 Lab 2-2, Configuring EtherChannel Instructor Version Topology Objective Background Configure EtherChannel. Four switches have just been installed. The distribution layer switches are Catalyst
Voice Over IP Per Call Bandwidth Consumption
Over IP Per Call Bandwidth Consumption Interactive: This document offers customized voice bandwidth calculations with the TAC Bandwidth Calculator ( registered customers only) tool. Introduction Before
Cisco 8-Port Channelized T1/E1 Shared Port Adapter
Cisco 8-Port Channelized T1/E1 Shared Port Adapter The Cisco I-Flex approach combines shared port adapters (SPAs) and SPA interface processors (SIPs), providing an extensible design that helps prioritize
Evaluating Bandwidth Optimization Technologies: Bonded Internet
Evaluating Bandwidth Optimization Technologies: Bonded Internet Contents Channel Bonding and MLPPP Load Balancing and BGP Configuring Tunnels Traditional Bonding MetTel s Bonded Internet Service 3 4 5
Configuring a Load-Balancing Scheme
This module contains information about Cisco Express Forwarding and describes the tasks for configuring a load-balancing scheme for Cisco Express Forwarding traffic. Load-balancing allows you to optimize
White Paper Abstract Disclaimer
White Paper Synopsis of the Data Streaming Logical Specification (Phase I) Based on: RapidIO Specification Part X: Data Streaming Logical Specification Rev. 1.2, 08/2004 Abstract The Data Streaming specification
Network administrators must be aware that delay exists, and then design their network to bring end-to-end delay within acceptable limits.
Delay Need for a Delay Budget The end-to-end delay in a VoIP network is known as the delay budget. Network administrators must design a network to operate within an acceptable delay budget. This topic
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
WAN Routing Configuration Examples for the Secure Services Gateway Family
Application Note WAN Routing Configuration Examples for the Secure Services Gateway Family Chien-shun Chu SPG Technical Marketing November, 2006 Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale,
Chapter 2 - The TCP/IP and OSI Networking Models
Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application
CCNA R&S: Introduction to Networks. Chapter 5: Ethernet
CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.
PART III. OPS-based wide area networks
PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity
Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols
Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various
LAB TESTING SUMMARY REPORT
Key findings and conclusions: Cisco Nonstop Forwarding with Stateful Switchover drastically reduces mean time to repair (MTTR) Delivered zero route flaps with BGP, OSPF, IS-IS and static routes during
Data Link Protocols. TCP/IP Suite and OSI Reference Model
Data Link Protocols Relates to Lab. This module covers data link layer issues, such as local area networks (LANs) and point-to-point links, Ethernet, and the Point-to-Point Protocol (PPP). 1 TCP/IP Suite
Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL)
Asynchrous Transfer Mode: architecture 1980s/1990 s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport
Configuring the Channelized 12-port CT3/T1 Optical Services Modules
CHAPTER 7 Configuring the Channelized 12-port CT3/T1 Optical Services Modules This chapter describes how to configure the 12-port channelized/unchannelized DS3 Optical Services Modules (OSM-12CT3/T1).
Challenges and Solutions in VoIP
Challenges and Solutions in VoIP Challenges in VoIP The traditional telephony network strives to provide 99.99 percent uptime to the user. This corresponds to 5.25 minutes per year of down time. Many data
MikroTik RouterOS Workshop Load Balancing Best Practice. Warsaw MUM Europe 2012
MikroTik RouterOS Workshop Load Balancing Best Practice Warsaw MUM Europe 2012 MikroTik 2012 About Me Jānis Meģis, MikroTik Jānis (Tehnical, Trainer, NOT Sales) Support & Training Engineer for almost 8
IP - The Internet Protocol
Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network
Link Aggregation and its Applications
Link Aggregation White Paper Link Aggregation and its Applications Asante 47709 Fremont Blvd Fremont, CA 94538 USA SALES 408-435-8388 TECHNICAL SUPPORT 408-435-8388: Worldwide www.asante.com/support [email protected]
Clearing the Way for VoIP
Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.
LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs
LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
Cisco 2-Port and 4-Port Channelized T3 (DS-0) Shared Port Adapters
Cisco 2-Port and 4-Port Channelized T3 (DS-0) Shared Port Adapters The Cisco I-Flex approach combines shared port adapters (SPAs) and SPA interface processors (SIPs), providing an extensible design that
Encapsulating Voice in IP Packets
Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols
Bandwidth Aggregation, Teaming and Bonding
Bandwidth Aggregation, Teaming and Bonding The increased use of Internet sharing combined with graphically rich web sites and multimedia applications have created a virtually insatiable demand for Internet
CHAPTER 10 LAN REDUNDANCY. Scaling Networks
CHAPTER 10 LAN REDUNDANCY Scaling Networks CHAPTER 10 10.0 Introduction 10.1 Spanning Tree Concepts 10.2 Varieties of Spanning Tree Protocols 10.3 Spanning Tree Configuration 10.4 First-Hop Redundancy
Per-Packet Load Balancing
Per-Packet Load Balancing Feature History Release 12.0(19)ST 12.0(21)S 12.0(22)S Modification This feature was introduced on the Cisco 10000 series routers. This feature was introduced on the Cisco 12000
100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1)
100-101: Interconnecting Cisco Networking Devices Part 1 v2.0 (ICND1) Course Overview This course provides students with the knowledge and skills to implement and support a small switched and routed network.
Computer Network. Interconnected collection of autonomous computers that are able to exchange information
Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.
Protocols and Architecture. Protocol Architecture.
Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between
hp ProLiant network adapter teaming
hp networking june 2003 hp ProLiant network adapter teaming technical white paper table of contents introduction 2 executive summary 2 overview of network addressing 2 layer 2 vs. layer 3 addressing 2
Network Layer: Network Layer and IP Protocol
1 Network Layer: Network Layer and IP Protocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols
Exhibit n.2: The layers of a hierarchical network
3. Advanced Secure Network Design 3.1 Introduction You already know that routers are probably the most critical equipment piece in today s networking. Without routers, internetwork communication would
Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD
Ethernet dominant LAN technology: cheap -- $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token rings and ATM Kept up with speed race: 10, 100, 1000 Mbps Metcalfe s Etheret sketch
Configuring NetFlow Switching
Configuring NetFlow Switching This chapter describes how to configure NetFlow switching. For a complete description of NetFlow commands used in this chapter, refer to the Cisco IOS Switching s chapter
Configuring an efficient QoS Map
Configuring an efficient QoS Map This document assumes the reader has experience configuring quality of service (QoS) maps and working with traffic prioritization. Before reading this document, it is advisable
Configuring IPS High Bandwidth Using EtherChannel Load Balancing
Configuring IPS High Bandwidth Using EtherChannel Load Balancing This guide helps you to understand and deploy the high bandwidth features available with IPS v5.1 when used in conjunction with the EtherChannel
Cisco Integrated Services Routers Performance Overview
Integrated Services Routers Performance Overview What You Will Learn The Integrated Services Routers Generation 2 (ISR G2) provide a robust platform for delivering WAN services, unified communications,
Switch Fabric Implementation Using Shared Memory
Order this document by /D Switch Fabric Implementation Using Shared Memory Prepared by: Lakshmi Mandyam and B. Kinney INTRODUCTION Whether it be for the World Wide Web or for an intra office network, today
Configuring a Load-Balancing Scheme
Configuring a Load-Balancing Scheme Finding Feature Information Configuring a Load-Balancing Scheme Last Updated: August 15, 2011 This module contains information about Cisco Express Forwarding and describes
Benefit from our Hard-Learned Lessons: Evaluating Bandwidth Optimization Technologies
Benefit from our Hard-Learned Lessons: Evaluating Bandwidth Optimization Technologies This whitepaper outlines the existing technologies we examined before we developed our BONDED INTERNET service. We
Virtual Fragmentation Reassembly
Virtual Fragmentation Reassembly Currently, the Cisco IOS Firewall specifically context-based access control (CBAC) and the intrusion detection system (IDS) cannot identify the contents of the IP fragments
Overview of Asynchronous Transfer Mode (ATM) and MPC860SAR. For More Information On This Product, Go to: www.freescale.com
Overview of Asynchronous Transfer Mode (ATM) and MPC860SAR nc. 2 What is ATM? o Protocol that applies primarily to layer 2 of the OSI protocol stack: Application Presentation Session Transport Network
Alternatives for High Bandwidth Connections Using Parallel T1/E1 Links
Alternatives for High Bandwidth Connections Using Parallel T1/E1 Links WHITE PAPER Introduction Data communication connections at link speeds of 1.544 Mbit/s (T1) or 2.048 Mbit/s (E1) are widely available
This topic lists the key mechanisms use to implement QoS in an IP network.
IP QoS Mechanisms QoS Mechanisms This topic lists the key mechanisms use to implement QoS in an IP network. QoS Mechanisms Classification: Each class-oriented QoS mechanism has to support some type of
H.323 Traffic Characterization Test Plan Draft Paul Schopis, [email protected]
H.323 Traffic Characterization Test Plan Draft Paul Schopis, [email protected] I. Introduction Recent attempts at providing Quality of Service in the Internet2 community have focused primarily on Expedited
Auspex Support for Cisco Fast EtherChannel TM
Auspex Support for Cisco Fast EtherChannel TM Technical Report 21 Version 1.0 March 1998 Document 300-TC049, V1.0, 980310 Auspex Systems, Inc. 2300 Central Expressway Santa Clara, California 95050-2516
Notes Odom, Chapter 4 Flashcards Set: http://www.flashcardmachine.com/1162711/b41c
EDTECH 552 (SP11) Susan Ferdon Notes Odom, Chapter 4 Flashcards Set: http://www.flashcardmachine.com/1162711/b41c telco Leased Line CSU/DSU Local Telephone Company Owns the cables and has right of way
Juniper / Cisco Interoperability Tests. August 2014
Juniper / Cisco Interoperability Tests August 2014 Executive Summary Juniper Networks commissioned Network Test to assess interoperability, with an emphasis on data center connectivity, between Juniper
Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding
Page 1 of 16 Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding Document ID: 18285 Contents Introduction Prerequisites Requirements Components Used Conventions Background
D1.2 Network Load Balancing
D1. Network Load Balancing Ronald van der Pol, Freek Dijkstra, Igor Idziejczak, and Mark Meijerink SARA Computing and Networking Services, Science Park 11, 9 XG Amsterdam, The Netherlands June [email protected],[email protected],
- EtherChannel - Port Aggregation
1 Port Aggregation - EtherChannel - A network will often span across multiple switches. Trunk ports are usually used to connect switches together. There are two issues with using only a single physical
Optimizing Converged Cisco Networks (ONT)
Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS Introducing QoS Objectives Explain why converged networks require QoS. Identify the major quality issues with converged networks.
How To Balance On A Cisco Catalyst Switch With The Etherchannel On A Fast Ipv2 (Powerline) On A Microsoft Ipv1 (Powergen) On An Ipv3 (Powergadget) On Ipv4
Cisco - Understanding EtherChannel Load Balancing and Redundancy on Catalyst Switch...Page 1 of 10 Understanding EtherChannel Load Balancing and Redundancy on Catalyst Switches Document ID: 12023 Contents
Configuring Port Security
CHAPTER 62 This chapter describes how to configure the port security feature. For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Master List, at this URL:
ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP
ENSC 427: Communication Networks ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP Spring 2010 Final Project Group #6: Gurpal Singh Sandhu Sasan Naderi Claret Ramos ([email protected]) ([email protected])
Network Monitoring White Paper
Network ing White Paper ImageStream Internet Solutions, Inc. 7900 East 8th Road Plymouth, Indiana 46563 http://www.imagestream.com [email protected] Phone: 574.935.8484 Sales: 800.813.5123 Fax: 574.935.8488
Advanced Transportation Management Systems
Advanced Transportation Management Systems Summary Many Department of Transportation agencies are looking for cost-saving ways to improve the efficiencies of roadways without making actual surface improvements
Frame Relay and Frame-Based ATM: A Comparison of Technologies
White Paper and -Based : A Comparison of Technologies Larry Greenstein Nuera Communications VP, Technology, Forum June 1995 June 27, 1995 i TABLE OF CONTENTS 1. PREFACE...1 2. INTRODUCTION...1 3. INTERWORKING
Networking Topology For Your System
This chapter describes the different networking topologies supported for this product, including the advantages and disadvantages of each. Select the one that best meets your needs and your network deployment.
"Charting the Course...
Description "Charting the Course... Course Summary Interconnecting Cisco Networking Devices: Accelerated (CCNAX), is a course consisting of ICND1 and ICND2 content in its entirety, but with the content
Leased Line + Remote Dial-in connectivity
Leased Line + Remote Dial-in connectivity Client: One of the TELCO offices in a Southern state. The customer wanted to establish WAN Connectivity between central location and 10 remote locations. The customer
What s New in VMware vsphere 5.5 Networking
VMware vsphere 5.5 TECHNICAL MARKETING DOCUMENTATION Table of Contents Introduction.................................................................. 3 VMware vsphere Distributed Switch Enhancements..............................
End-to-End QoS Network Design
End-to-End QoS Network Design Tim Szigeti, CCIE No. 9794, and Christina Hattingh Cisco Press Cisco Press 800 East 96th Street Indianapolis, IN 46240 USA Table of Contents Introduction xxii Part I Introduction
LAN Switching and VLANs
26 CHAPTER Chapter Goals Understand the relationship of LAN switching to legacy internetworking devices such as bridges and routers. Understand the advantages of VLANs. Know the difference between access
Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led
Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led Course Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements,
VoIP Bandwidth Considerations - design decisions
VoIP Bandwidth Considerations - design decisions When calculating the bandwidth requirements for a VoIP implementation the two main protocols are: a signalling protocol such as SIP, H.323, SCCP, IAX or
SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005. Lecturer: Kartik Krishnan Lecture 1-3
SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005 Lecturer: Kartik Krishnan Lecture 1-3 Communications and Computer Networks The fundamental purpose of a communication network is the exchange
6/8/2011. Document ID: 12023. Contents. Introduction. Prerequisites. Requirements. Components Used. Conventions. Introduction
Page 1 of 9 Products & Services Understanding EtherChannel Load Balancing and Redundancy on Catalyst Switches Document ID: 12023 Contents Introduction Prerequisites Requirements Components Used Conventions
Communication Networks. MAP-TELE 2011/12 José Ruela
Communication Networks MAP-TELE 2011/12 José Ruela Network basic mechanisms Introduction to Communications Networks Communications networks Communications networks are used to transport information (data)
Asynchronous Transfer Mode
CHAPTER 15 Asynchronous Transfer Mode Background Asynchronous Transfer Mode (ATM) technology is based on the efforts of the International Telecommunication Union Telecommunication Standardization Sector
CHAPTER 3 STATIC ROUTING
CHAPTER 3 STATIC ROUTING This chapter addresses the end-to-end delivery service of IP and explains how IP routers and hosts handle IP datagrams. The first section discusses how datagrams are forwarded
Juniper Networks EX Series/ Cisco Catalyst Interoperability Test Results. May 1, 2009
Juniper Networks EX Series/ Cisco Catalyst Interoperability Test Results May 1, 2009 Executive Summary Juniper Networks commissioned Network Test to assess interoperability between its EX4200 and EX8208
Application Note Gigabit Ethernet Port Modes
Application Note Gigabit Ethernet Port Modes Application Note Gigabit Ethernet Port Modes Table of Contents Description... 3 Benefits... 4 Theory of Operation... 4 Interaction with Other Features... 7
Architecture of distributed network processors: specifics of application in information security systems
Architecture of distributed network processors: specifics of application in information security systems V.Zaborovsky, Politechnical University, Sait-Petersburg, Russia [email protected] 1. Introduction Modern
CONTROL MICROSYSTEMS DNP3. User and Reference Manual
DNP3 User and Reference Manual CONTROL MICROSYSTEMS SCADA products... for the distance 48 Steacie Drive Telephone: 613-591-1943 Kanata, Ontario Facsimile: 613-591-1022 K2K 2A9 Technical Support: 888-226-6876
Introduction to Packet Voice Technologies and VoIP
Introduction to Packet Voice Technologies and VoIP Cisco Networking Academy Program Halmstad University Olga Torstensson 035-167575 [email protected] IP Telephony 1 Traditional Telephony 2 Basic
Network congestion control using NetFlow
Network congestion control using NetFlow Maxim A. Kolosovskiy Elena N. Kryuchkova Altai State Technical University, Russia Abstract The goal of congestion control is to avoid congestion in network elements.
MLPPP in the Evolving Radio Access Network
Freescale Semiconductor White Paper Document Number: MLPPPWP Rev. 0, 09/2010 MLPPP in the Evolving Radio Access Network by Networking and Multimedia Group Freescale Semiconductor, Inc. East Kilbride, Scotland
Extending SANs Over TCP/IP by Richard Froom & Erum Frahim
Extending SANs Over TCP/IP by Richard Froom & Erum Frahim Extending storage area networks (SANs) over a distance has become a necessity for enterprise networks. A single SAN island with one storage system
2-port STM-1/OC-3 Channelized E1/T1 Line Card for Cisco 12000 Series Internet Routers
2-port STM-1/OC-3 Channelized E1/T1 Line Card for Cisco 12000 Series Internet Routers This feature module describes the Two-port STM-1/OC-3 Channelized E1/T1 line card and its use in the Cisco 12000 series
How To Learn Cisco Cisco Ios And Cisco Vlan
Interconnecting Cisco Networking Devices: Accelerated Course CCNAX v2.0; 5 Days, Instructor-led Course Description Interconnecting Cisco Networking Devices: Accelerated (CCNAX) v2.0 is a 60-hour instructor-led
920-803 - technology standards and protocol for ip telephony solutions
920-803 - technology standards and protocol for ip telephony solutions 1. Which CODEC delivers the greatest compression? A. B. 711 C. D. 723.1 E. F. 726 G. H. 729 I. J. 729A Answer: C 2. To achieve the
Configuring SNA Frame Relay Access Support
This chapter describes Frame Relay Access Support (FRAS) for Systems Network Architecture (SNA) devices. It also explains how to configure FRAS and how to use a FRAS host to connect Cisco Frame Relay Access
Course Contents CCNP (CISco certified network professional)
Course Contents CCNP (CISco certified network professional) CCNP Route (642-902) EIGRP Chapter: EIGRP Overview and Neighbor Relationships EIGRP Neighborships Neighborship over WANs EIGRP Topology, Routes,
VPN. Date: 4/15/2004 By: Heena Patel Email:[email protected]
VPN Date: 4/15/2004 By: Heena Patel Email:[email protected] What is VPN? A VPN (virtual private network) is a private data network that uses public telecommunicating infrastructure (Internet), maintaining
Top-Down Network Design
Top-Down Network Design Chapter Five Designing a Network Topology Copyright 2010 Cisco Press & Priscilla Oppenheimer Topology A map of an internetwork that indicates network segments, interconnection points,
WANs connect remote sites. Connection requirements vary depending on user requirements, cost, and availability.
WAN Review A WAN makes data connections across a broad geographic area so that information can be exchanged between distant sites. This topic defines the characteristics of a WAN. WAN Overview WANs connect
Applications. Network Application Performance Analysis. Laboratory. Objective. Overview
Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying
Layer 3 Network + Dedicated Internet Connectivity
Layer 3 Network + Dedicated Internet Connectivity Client: One of the IT Departments in a Northern State Customer's requirement: The customer wanted to establish CAN connectivity (Campus Area Network) for
