Markus K. Brunnermeier
|
|
|
- Annabelle Amice Berry
- 9 years ago
- Views:
Transcription
1 Institutional tut Finance Financial Crises, Risk Management and Liquidity Markus K. Brunnermeier Preceptor: Dong BeomChoi Princeton University 1
2 Market Making Limit Orders Limit order price contingent order Limit buy order: buy as soon as price drops to $x. bid Limit sell order: sell as soon as price rises to $x. ask Stand ready to trade at a certain price Grant somebody else the option to execute a transaction Stop orders Stop sell order: sell as soon as price drops to $x. (cut losses!) Stop buy order: buy as soon as price rises to $x. Market orders non contingent order 1-2
3 Market Making Market maker NYSE: monopolistic specialist (all orders go through him) NASDAQ: multiple competing dealers ECNs: (pure electronic limit order book) OTC/upstairs mrkt: bilateral relationship Black pools: After various mergers, distinction is less black and white 1-3
4 Event tree One-period Snapshot p t+1,1 p t p t+1,2 p t+1,3 p t+1 is random variable 1-4
5 Setting Bid and Ask Prices 1. Market Maker faces only liquidity traders (practice) Fundamental stays constant p t is driven by random liquidity needs of liquidity traders ask bid Fundamental follows random walk v t+1 = v t + ε t+1, where E[ε t+1 ]=0 Differences: One has to adjust bid and ask price in each period (cancel old limit orders and set new limit orders) Asset volatility What determines bid ask spread? Monopolistic power of market maker (Bertrand competition if there are multiple market makers) Volatility of asset if market makers are risk averse Stochastic process of liquidity traders needs 1-5
6 Setting Bid and Ask Prices 2. Market Maker faces informed traders Only informed traders extreme case v = 0 or 1 with equal probability all traders are informed traders (know whether v =0 or 1) Whatis the ask price? What isthe bid price? set by uninformed market maker Suppose ask: a = ¾ and bid: b = ¼. Does the market make or lose money with a bid ask spread of ½ Market Break Down No Trade! Liquidity traders and informed traders [See Glosten Milgrom (1985)] v=1 v=0 1-6
7 Setting Bid and Ask Prices 2. Market makerfaces Liquidity traders and informed traders [See Glosten Milgrom (1985)] μ v=1 ι informed liquidity 1 α buy sell buy sell a = E[v buy order] b = E[v sell order] 1-μ v=0 ι informed liquidity 1 α buy sell buy sell Bayesian updating! 1-7
8 Bayesian Updating Bayes Rule Example: a = E[v buy] =1*Pr[v=1 buy] + 0* Pr [buy v=1] = ι 1 + (1 ι) α Pr [buy v=0] = ι 0 + (1 ι) α Pr [buy]= Pr [buy v=1] ]μ μ + Pr [buy v=0] ](1 μ) 1-8
9 Noise, noise, noise, Asymmetric information causes adverseselectionselection Informed traders buy only if asset is undervalued and sell only if asset is overvalued Market maker loses (even with bid ask spread) noise traders Market makers wins from them (due to bid ask spread) Fellow students might be noise traders 1 signal for every 3 4 time of trading (why?) Assuming that others are rational is dangerous: (see e.g. Keynes Beauty contest game) 1-9
10 Profits & Positions in simulations Relative profits Market Markers should do well when fundamentals are relatively flat Sim 1, 2, and 3 Market takers should do well otherwise Sim 4 (too much gambling on Sim 5) Market maker s positions Move against the price 1-10
11 Where will this head Only tradeafterbuying after and receiving an extreme signal No noise traders Market makers face more adverse selection and set wider bid ask spread Ultimately, Market Breakdown Nobody bids for market making rights (zero value for privilege) 1-11
12 Example of Market Breakdown Risk neutral competitive market makers v is distributed with pdf i.e. cdf is xxx α = prob. of informed trader Noise traders private valuation has pdf of f(v) (indep. of v). Ask price: a = 1/(1 2α), if α < 1/2 market breaks down for larger α Homework: Analysis for bid 1-12
13 Limit order Granting an option (selling an option) pick on me when you want One has to charge an option premium Market making rights are worthless when there areno noise/liquidity traders Lose to informed traders Gain from noise traders 1-13
14 Informed Trading 1. Acquiring Information What is the value of information? 2. Trading based on Information Trading is limited by Risk appetite i (previous lecture with CARA utility) Price impact If I trade more aggressive the market maker will learn my information and adjust the price 1-14
15 Endogenous info acquisition Value of signal (conditional on knowing realization) Intermediate signals are worthless Very high (go long) and very low (go short) are worth the most Take expectations bf before - knowing signal Payoff is very skewed (5.00) only extreme signal realizations are valuable Value of strangle (put + call) use Black-Scholes More valuable for higher vol. (see Excel file) 1-15 Put Call
16 Price Impact of Informed Trades Strategic t Trading: Kyle Kl (1985) model dl asset return v N(p 0, Σ 0 ) Agents (risk neutral) Insider who knows v and submit market order of size x Noise trader who submit marketorders of exogenous aggregate size u N(0, σ 2 u) Market maker sets competitive price after observing net order flowx=x+u Timing (order of moves) Stage 1: Insider & liquidity traders submit market orders Stage 2: Market Maker sets the execution price Repeated trading in dynamic version 1-16
17 Kyle (1985) on one page 1-17
18 Kyle (1985) Equilibrium: Illiquidity decreases with noise trading, σ u 2 increases with info advantage of informed trader, Σ 0 Multi period version Aggressive trading leads to adverse price movement in current trading round In any future trading around (before public announcement 1-18
19 In sum Asymmetric information causes adverseselectionselection Informed traders buy only if asset is undervalued and sell only if asset is overvalued Market maker loses (even with bid ask spread) noise traders Market makers wins from them (due to bid ask spread) Market breakdownwithout noise traders Value of information is (ex ante) highest when fundamental volatility is high (since only extreme signals pay off) strangle analogy 1-19
Financial Markets. Itay Goldstein. Wharton School, University of Pennsylvania
Financial Markets Itay Goldstein Wharton School, University of Pennsylvania 1 Trading and Price Formation This line of the literature analyzes the formation of prices in financial markets in a setting
Financial Market Microstructure Theory
The Microstructure of Financial Markets, de Jong and Rindi (2009) Financial Market Microstructure Theory Based on de Jong and Rindi, Chapters 2 5 Frank de Jong Tilburg University 1 Determinants of the
Asymmetric Information (2)
Asymmetric nformation (2) John Y. Campbell Ec2723 November 2013 John Y. Campbell (Ec2723) Asymmetric nformation (2) November 2013 1 / 24 Outline Market microstructure The study of trading costs Bid-ask
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
A new model of a market maker
A new model of a market maker M.C. Cheung 28786 Master s thesis Economics and Informatics Specialisation in Computational Economics and Finance Erasmus University Rotterdam, the Netherlands January 6,
Finance 400 A. Penati - G. Pennacchi Market Micro-Structure: Notes on the Kyle Model
Finance 400 A. Penati - G. Pennacchi Market Micro-Structure: Notes on the Kyle Model These notes consider the single-period model in Kyle (1985) Continuous Auctions and Insider Trading, Econometrica 15,
News Trading and Speed
News Trading and Speed Thierry Foucault, Johan Hombert, Ioanid Roşu (HEC Paris) 6th Financial Risks International Forum March 25-26, 2013, Paris Johan Hombert (HEC Paris) News Trading and Speed 6th Financial
Bayesian Nash Equilibrium
. Bayesian Nash Equilibrium . In the final two weeks: Goals Understand what a game of incomplete information (Bayesian game) is Understand how to model static Bayesian games Be able to apply Bayes Nash
High Frequency Trading + Stochastic Latency and Regulation 2.0. Andrei Kirilenko MIT Sloan
High Frequency Trading + Stochastic Latency and Regulation 2.0 Andrei Kirilenko MIT Sloan High Frequency Trading: Good or Evil? Good Bryan Durkin, Chief Operating Officer, CME Group: "There is considerable
Fixed odds bookmaking with stochastic betting demands
Fixed odds bookmaking with stochastic betting demands Stewart Hodges Hao Lin January 4, 2009 Abstract This paper provides a model of bookmaking in the market for bets in a British horse race. The bookmaker
Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging
Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in
Market Microstructure: An Interactive Exercise
Market Microstructure: An Interactive Exercise Jeff Donaldson, University of Tampa Donald Flagg, University of Tampa ABSTRACT Although a lecture on microstructure serves to initiate the inspiration of
TITLE: Direct Access Execution: ECNs, SOEs, SuperDOT, and Other Methods of Trading
TITLE: Direct Access Execution: ECNs, SOEs, SuperDOT, and Other Methods of Trading AUTHOR: Simit Patel PUBLISHER: McGraw-Hill ISBN: 0-07-136391-2 REVIEWED BY: Douglas Price The book Direct Access Execution
Electronic Market-Makers: Empirical Comparison
Electronic Market-Makers: Empirical Comparison Janyl Jumadinova, Prithviraj Dasgupta Computer Science Department University of Nebraska, Omaha, NE 682, USA E-mail: {jjumadinova, pdasgupta}@mail.unomaha.edu
AN ANALYSIS OF EXISTING ARTIFICIAL STOCK MARKET MODELS FOR REPRESENTING BOMBAY STOCK EXCHANGE (BSE)
AN ANALYSIS OF EXISTING ARTIFICIAL STOCK MARKET MODELS FOR REPRESENTING BOMBAY STOCK EXCHANGE (BSE) PN Kumar Dept. of CSE Amrita Vishwa Vidyapeetham Ettimadai, Tamil Nadu, India [email protected]
Trading for News: an Examination of Intraday Trading Behaviour of Australian Treasury-Bond Futures Markets
Trading for News: an Examination of Intraday Trading Behaviour of Australian Treasury-Bond Futures Markets Liping Zou 1 and Ying Zhang Massey University at Albany, Private Bag 102904, Auckland, New Zealand
Market Microstructure Tutorial R/Finance 2009
Market Microstructure Tutorial R/Finance 2009 Dale W.R. Rosenthal 1 Department of Finance and International Center for Futures and Derivatives University of Illinois at Chicago 24 April 2009 1 [email protected]
Chapter 12: Economics of Information
Chapter 11: probs #1, #3, and #4, p. 298 Problem set 4: due week of Feb 20-24 Chapter 12: probs #1 a-b-c-d, #2, #3, pp. 320-321 Future problem sets Chapter 13: probs #1, #2 a-b-c-d, #3, #5, pp. 347-348
Options. + Concepts and Buzzwords. Readings. Put-Call Parity Volatility Effects
+ Options + Concepts and Buzzwords Put-Call Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options
The Effects of Market-Making on Price Dynamics
The Effects of Market-Making on Price Dynamics Sanmay Das Dept. of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093-0404 [email protected] Abstract This paper studies
Decision Making under Uncertainty
6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how
6.207/14.15: Networks Lectures 19-21: Incomplete Information: Bayesian Nash Equilibria, Auctions and Introduction to Social Learning
6.207/14.15: Networks Lectures 19-21: Incomplete Information: Bayesian Nash Equilibria, Auctions and Introduction to Social Learning Daron Acemoglu and Asu Ozdaglar MIT November 23, 25 and 30, 2009 1 Introduction
6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games
6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games Asu Ozdaglar MIT February 4, 2009 1 Introduction Outline Decisions, utility maximization Strategic form games Best responses
Derivative Users Traders of derivatives can be categorized as hedgers, speculators, or arbitrageurs.
OPTIONS THEORY Introduction The Financial Manager must be knowledgeable about derivatives in order to manage the price risk inherent in financial transactions. Price risk refers to the possibility of loss
Choice Under Uncertainty
Decision Making Under Uncertainty Choice Under Uncertainty Econ 422: Investment, Capital & Finance University of ashington Summer 2006 August 15, 2006 Course Chronology: 1. Intertemporal Choice: Exchange
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
Goal Market Maker Pricing and Information about Prospective Order Flow
Goal Market Maker Pricing and Information about Prospective Order Flow EIEF October 9 202 Use a risk averse market making model to investigate. [Microstructural determinants of volatility, liquidity and
A Primer on Valuing Common Stock per IRS 409A and the Impact of FAS 157
A Primer on Valuing Common Stock per IRS 409A and the Impact of FAS 157 By Stanley Jay Feldman, Ph.D. Chairman and Chief Valuation Officer Axiom Valuation Solutions 201 Edgewater Drive, Suite 255 Wakefield,
Options (1) Class 19 Financial Management, 15.414
Options (1) Class 19 Financial Management, 15.414 Today Options Risk management: Why, how, and what? Option payoffs Reading Brealey and Myers, Chapter 2, 21 Sally Jameson 2 Types of questions Your company,
A Theory of Intraday Patterns: Volume and Price Variability
A Theory of Intraday Patterns: Volume and Price Variability Anat R. Admati Paul Pfleiderer Stanford University This article develops a theory in which concentrated-trading patterns arise endogenously as
Section 1. Introduction to Option Trading
Section 1. Introduction to Option Trading Trading stock options is a much different game from trading the underlying stocks. When options are traded for appreciation, it is a game of leverage, with big
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
FUNDING INVESTMENTS FINANCE 738, Spring 2008, Prof. Musto Class 4 Market Making
FUNDING INVESTMENTS FINANCE 738, Spring 2008, Prof. Musto Class 4 Market Making Only Game In Town, by Walter Bagehot (actually, Jack Treynor) Seems like any trading idea would be worth trying Tiny amount
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing
Return to Risk Limited website: www.risklimited.com. Overview of Options An Introduction
Return to Risk Limited website: www.risklimited.com Overview of Options An Introduction Options Definition The right, but not the obligation, to enter into a transaction [buy or sell] at a pre-agreed price,
The Theory of Investment
CHAPTER 17 Modified for ECON 2204 by Bob Murphy 2016 Worth Publishers, all rights reserved IN THIS CHAPTER, YOU WILL LEARN: leading theories to explain each type of investment why investment is negatively
Intelligent Market-Making in Artificial Financial Markets. Sanmay Das
Intelligent Market-Making in Artificial Financial Markets by Sanmay Das A.B. Computer Science Harvard College, 2001 Submitted to the Department of Electrical Engineering and Computer Science in partial
Lecture 4: Futures and Options Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 4: Futures and Options Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Foreign Currency Futures Assume that
Financial Markets And Financial Instruments - Part I
Financial Markets And Financial Instruments - Part I Financial Assets Real assets are things such as land, buildings, machinery, and knowledge that are used to produce goods and services. Financial assets
Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example
Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in Microeconomics-Charles W Upton Zero Sum Games
Asymmetric Information
Chapter 12 Asymmetric Information CHAPTER SUMMARY In situations of asymmetric information, the allocation of resources will not be economically efficient. The asymmetry can be resolved directly through
Intelligent Market-Making in Artificial Financial Markets
@ MIT massachusetts institute of technology artificial intelligence laboratory Intelligent Market-Making in Artificial Financial Markets Sanmay Das AI Technical Report 2003-005 June 2003 CBCL Memo 226
Lecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2
Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2 Due Date: Friday, March 11 at 5:00 PM This homework has 170 points plus 20 bonus points available but, as always, homeworks are graded
Exchange Rates and Foreign Direct Investment
Exchange Rates and Foreign Direct Investment Written for the Princeton Encyclopedia of the World Economy (Princeton University Press) By Linda S. Goldberg 1 Vice President, Federal Reserve Bank of New
Applied Economics For Managers Recitation 5 Tuesday July 6th 2004
Applied Economics For Managers Recitation 5 Tuesday July 6th 2004 Outline 1 Uncertainty and asset prices 2 Informational efficiency - rational expectations, random walks 3 Asymmetric information - lemons,
Department of Economics and Related Studies Financial Market Microstructure. Topic 1 : Overview and Fixed Cost Models of Spreads
Session 2008-2009 Department of Economics and Related Studies Financial Market Microstructure Topic 1 : Overview and Fixed Cost Models of Spreads 1 Introduction 1.1 Some background Most of what is taught
Lecture 3: Put Options and Distribution-Free Results
OPTIONS and FUTURES Lecture 3: Put Options and Distribution-Free Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distribution-free results? option
MSc Finance and Economics detailed module information
MSc Finance and Economics detailed module information Example timetable Please note that information regarding modules is subject to change. TERM 1 TERM 2 TERM 3 INDUCTION WEEK EXAM PERIOD Week 1 EXAM
Understanding Trading Performance in an Order Book Market Structure TraderEx LLC, July 2011
TraderEx Self-Paced Tutorial & Case: Who moved my Alpha? Understanding Trading Performance in an Order Book Market Structure TraderEx LLC, July 2011 How should you handle instructions to buy or sell large
Market Making with Asymmetric Information and Inventory Risk
Market Making with Asymmetric Information and Inventory Risk Hong Liu Yajun Wang October 15, 2015 Abstract Market makers in some financial markets often make offsetting trades and have significant market
News Trading and Speed
News Trading and Speed Thierry Foucault, Johan Hombert, and Ioanid Rosu (HEC) High Frequency Trading Conference Plan Plan 1. Introduction - Research questions 2. Model 3. Is news trading different? 4.
Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
Fast Trading and Prop Trading
Fast Trading and Prop Trading B. Biais, F. Declerck, S. Moinas (Toulouse School of Economics) December 11, 2014 Market Microstructure Confronting many viewpoints #3 New market organization, new financial
How Securities Are Traded
How Securities Are Traded Chapter 3 Primary vs. Secondary Security Sales Primary new issue issuer receives the proceeds from the sale first-time issue: IPO = issuer sells stock for the first time seasoned
Stapled Finance. Paul Povel and Raj Singh. Bauer College of Business, Univ. of Houston Carlson School of Management, Univ.
Paul Povel and Raj Singh Bauer College of Business, Univ. of Houston Carlson School of Management, Univ. of Minnesota What Is? What is? From the Business Press Explanations Acquisition financing, pre-arranged
Part 2: Screening and Signaling in Games with Incomplete Information.
Lecture 9 Part 2: Screening and Signaling in Games with Incomplete Information. 1 Lecture Outline Screening and signaling incentives arise in games where uncertainty is exogenous and some players are better
Binomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
Sequential lmove Games. Using Backward Induction (Rollback) to Find Equilibrium
Sequential lmove Games Using Backward Induction (Rollback) to Find Equilibrium Sequential Move Class Game: Century Mark Played by fixed pairs of players taking turns. At each turn, each player chooses
Two-State Option Pricing
Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold
Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes
Do not open this exam until told to do so.
Do not open this exam until told to do so. Department of Economics College of Social and Applied Human Sciences K. Annen, Winter 004 Final (Version ): Intermediate Microeconomics (ECON30) Solutions Final
The Effects of Market-Making on Price Dynamics
The Effects of Market-Making on Price Dynamics Sanmay Das Dept. of Computer Science Rensselaer Polytechnic Institute Troy, NY 12180-3590 [email protected] ABSTRACT This paper studies market-makers, agents
Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania
Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically
Art of Yield Curve Modelling: Joint Consistency of Russian Government Bond Quotes
Art of Yield Curve Modelling: Joint Consistency of Russian Government Bond Quotes Victor Lapshin joint work with Marat Kurbangaleev Higher School of Economics [email protected] Yield Curve Modelling What?
Stock Market -Trading and market participants
Stock Market -Trading and market participants Ruichang LU ( 卢 瑞 昌 ) Department of Finance Guanghua School of Management Peking University Overview Trading Stock Understand trading order Trading cost Margin
Math 202-0 Quizzes Winter 2009
Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile
Toxic Equity Trading Order Flow on Wall Street
Toxic Equity Trading Order Flow on Wall Street INTRODUCTION The Real Force Behind the Explosion in Volume and Volatility By Sal L. Arnuk and Joseph Saluzzi A Themis Trading LLC White Paper Retail and institutional
Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D
Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS
Syllabus Short Course on Market Microstructure Goethe Universität, Frankfurt am Main August 24 28, 2015
Syllabus Short Course on Market Microstructure Goethe Universität, Frankfurt am Main August 24 28, 2015 Albert S. Pete Kyle University of Maryland Robert H. Smith School of Business This Version: August
Discussions of Monte Carlo Simulation in Option Pricing TIANYI SHI, Y LAURENT LIU PROF. RENATO FERES MATH 350 RESEARCH PAPER
Discussions of Monte Carlo Simulation in Option Pricing TIANYI SHI, Y LAURENT LIU PROF. RENATO FERES MATH 350 RESEARCH PAPER INTRODUCTION Having been exposed to a variety of applications of Monte Carlo
Goals. Options. Derivatives: Definition. Goals. Definitions Options. Spring 2007 Lecture Notes 4.6.1 Readings:Mayo 28.
Goals Options Spring 27 Lecture Notes 4.6.1 Readings:Mayo 28 Definitions Options Call option Put option Option strategies Derivatives: Definition Derivative: Any security whose payoff depends on any other
ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
Option Premium = Intrinsic. Speculative Value. Value
Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An Option-Pricing Formula Investment in
ECON 351: The Stock Market, the Theory of Rational Expectations, and the Efficient Market Hypothesis
ECON 351: The Stock Market, the Theory of Rational Expectations, and the Efficient Market Hypothesis Alejandro Riaño Penn State University June 8, 2008 Alejandro Riaño (Penn State University) ECON 351:
Lecture 6: Portfolios with Stock Options Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 6: Portfolios with Stock Options Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Portfolios with Options The
Herding, Contrarianism and Delay in Financial Market Trading
Herding, Contrarianism and Delay in Financial Market Trading A Lab Experiment Andreas Park & Daniel Sgroi University of Toronto & University of Warwick Two Restaurants E cient Prices Classic Herding Example:
Asset Pricing Implications of Short-sale Constraints in Imperfectly Competitive Markets
Asset Pricing Implications of Short-sale Constraints in Imperfectly Competitive Markets Hong Liu Yajun Wang June 8, 2015 Abstract We study the impact of short-sale constraints on market prices and liquidity
6. Foreign Currency Options
6. Foreign Currency Options So far, we have studied contracts whose payoffs are contingent on the spot rate (foreign currency forward and foreign currency futures). he payoffs from these instruments are
We never talked directly about the next two questions, but THINK about them they are related to everything we ve talked about during the past week:
ECO 220 Intermediate Microeconomics Professor Mike Rizzo Third COLLECTED Problem Set SOLUTIONS This is an assignment that WILL be collected and graded. Please feel free to talk about the assignment with
The Effects ofVariation Between Jain Mirman and JMC
MARKET STRUCTURE AND INSIDER TRADING WASSIM DAHER AND LEONARD J. MIRMAN Abstract. In this paper we examine the real and financial effects of two insiders trading in a static Jain Mirman model (Henceforth
Hybrid Auctions Revisited
Hybrid Auctions Revisited Dan Levin and Lixin Ye, Abstract We examine hybrid auctions with affiliated private values and risk-averse bidders, and show that the optimal hybrid auction trades off the benefit
Introduction. Asymmetric Information and Adverse selection. Problem of individual insurance. Health Economics Bill Evans
Introduction Asymmetric Information and Adverse selection Health Economics Bill Evans Intermediate micro build models of individual, firm and market behavior Most models assume actors fully informed about
