Smart Sell Re-quote project for an Insurance company.
|
|
|
- Daniel Lindsey
- 9 years ago
- Views:
Transcription
1 SAS Analytics Day Smart Sell Re-quote project for an Insurance company. A project by Ajay Guyyala Naga Sudhir Lanka Narendra Babu Merla Kiran Reddy Samiullah Bramhanapalli Shaik
2 Business Situation XYZ is the leading Insurance company specializing in Auto Insurances. Re-quote project is an independent initiative by the company where the agent will be able to sell the unsold quotes back to the customers. Identifying the shared characteristics of agents and factors influencing them will help the company emerge as the leader in the market.
3 Need for Prediction There is an imminent need to predict the characteristics of agents which will really influence the agents to use the re-quote project effectively. This information is necessary for the company to use the strategies/patterns and sell higher percentage of quotes. Discovery of different trends through this whole process will help better predict the percentage of re-quotes done.
4 Data Preparation The modeling dataset has 42,322 observations and more than 300 variables. The data is messy, inconsistent, redundant and it also has many missing values. Some of the binary variables have more than 2 levels. Binary variables were recoded accordingly and were brought down to 2 levels. Measurement levels of certain variables needs to be recoded in order to obtain correct representation of the data. The missing values were imputed and the data was transformed to obtain normality using SAS Enterprise Miner.
5 Sample dataset The data has a disproportionate distribution of the levels in target variable. The level HIGH has very less number of observations. We sampled out a dataset which has exactly 5320 observations of each level. This is done to have equal representation of the levels in the data which will in-turn enable us to build a good model.
6 Prior Probabilities The random sampling dataset has a total of observations. This dataset is adjusted using prior probabilities to make it have all the original properties of the modeling dataset. Adjusted prior probabilities are entered in the exact same proportion as of the original modeling dataset.
7 Model Building Different models like Autonomous Decision tree, Gini Tree, Entropy Tree, Probability tree, Forward Regression, Stepwise Regression, Polynomial Regression, Neural Network, Auto neural, Radial basis neural networks(equal and unequal width) are some of the models that we considered and built. More than 25 models were considered and analyzed for our project. Gini Decision tree was selected as the best model with an accuracy of 62.8% and sensitivity of 85.48%.
8 Overview of model statistics Model Misclassification Rate Average Square Error Sensitivity Specificity Autonomous Tree % 58.12% Probability Tree % 57.09% 3-way Split tree % 63.52% Gini Tree % 62.96% Entropy Tree % 69.35% Forward Regression % 65.51% Step Wise Regression % 65.64% Large P value Polynomial Regression % 65.86% Neural Network % 65.14% Auto Neural (Regression) % 61.62% Neural Network % 63.48% (Regression) Neural Network % 66.65% (6Nodes) RBF Unequal Width % 57.49% RBF Equal Width % 64.32% Ensemble % 62.77%
9 Scoring We applied the learning from the modeling on the scoring data. From the scoring results it was found that 6.235% was predicted as the HIGH percentage of requotes done by agents.
10 Business Insights and Opportunities The most notable pattern in our predictions is that the agent who is active on FAO website would generate more revenue. The percentage change in the number of producers should be low over time as it would impact the requote rate. The number of sales representatives should be increased so as to target more number of agency locations. The effective buying income and population of an area are some key demographic factors influencing the percentage of re-quotes.
11 Business Recommendations The agents with VQAR comparative status should be encouraged. The agent who maintains special relationship with the company would add more credit in re-quote rate. The agent who is available on Find An Agent actively will be easily accessible to customers and should be encouraged. The company needs to focus on agents who handles lesser number of competitors. Establishing more number of ad campaigns might increase the probability of targeting large agencies and in-turn increasing the percentage of re-quotes.
12 For more details contact presenters at: Ajay Guyyala Phone: Naga Sudhir Lanka Phone: Narendra Babu Merla Phone: Samiullah Bramhanapalli Shaik Phone: Kiran Reddy Kondamadugula Phone: Faculty Advisor: Dr. Goutam Chakraborty
Predictive Modeling of Titanic Survivors: a Learning Competition
SAS Analytics Day Predictive Modeling of Titanic Survivors: a Learning Competition Linda Schumacher Problem Introduction On April 15, 1912, the RMS Titanic sank resulting in the loss of 1502 out of 2224
Internet Gambling Behavioral Markers: Using the Power of SAS Enterprise Miner 12.1 to Predict High-Risk Internet Gamblers
Paper 1863-2014 Internet Gambling Behavioral Markers: Using the Power of SAS Enterprise Miner 12.1 to Predict High-Risk Internet Gamblers Sai Vijay Kishore Movva, Vandana Reddy and Dr. Goutam Chakraborty;
Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL
Paper SA01-2012 Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL ABSTRACT Analysts typically consider combinations
Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign
Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign Arun K Mandapaka, Amit Singh Kushwah, Dr.Goutam Chakraborty Oklahoma State University, OK, USA ABSTRACT Direct
A Comparison of Decision Tree and Logistic Regression Model Xianzhe Chen, North Dakota State University, Fargo, ND
Paper D02-2009 A Comparison of Decision Tree and Logistic Regression Model Xianzhe Chen, North Dakota State University, Fargo, ND ABSTRACT This paper applies a decision tree model and logistic regression
Reevaluating Policy and Claims Analytics: a Case of Non-Fleet Customers In Automobile Insurance Industry
Paper 1808-2014 Reevaluating Policy and Claims Analytics: a Case of Non-Fleet Customers In Automobile Insurance Industry Kittipong Trongsawad and Jongsawas Chongwatpol NIDA Business School, National Institute
Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables
Paper 10961-2016 Improving performance of Memory Based Reasoning model using Weight of Evidence coded categorical variables Vinoth Kumar Raja, Vignesh Dhanabal and Dr. Goutam Chakraborty, Oklahoma State
Data Mining Techniques Chapter 6: Decision Trees
Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................
Paper 3508-2015. Downtime of a truck = Truck repair end date - Truck repair start date
Paper 3508-2015 Using Text from Repair Tickets of a Truck Manufacturing Company to Predict Factors that Contribute to Truck Downtime Ayush Priyadarshi and Dr. Goutam Chakraborty, Oklahoma State University
Data Mining - Evaluation of Classifiers
Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010
Text Analytics using High Performance SAS Text Miner
Text Analytics using High Performance SAS Text Miner Edward R. Jones, Ph.D. Exec. Vice Pres.; Texas A&M Statistical Services Abstract: The latest release of SAS Enterprise Miner, version 13.1, contains
Agenda. Mathias Lanner Sas Institute. Predictive Modeling Applications. Predictive Modeling Training Data. Beslutsträd och andra prediktiva modeller
Agenda Introduktion till Prediktiva modeller Beslutsträd Beslutsträd och andra prediktiva modeller Mathias Lanner Sas Institute Pruning Regressioner Neurala Nätverk Utvärdering av modeller 2 Predictive
Gerry Hobbs, Department of Statistics, West Virginia University
Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit
PAKDD 2006 Data Mining Competition
PAKDD 2006 Data Mining Competition Date Submitted: February 28 th, 2006 SAS Enterprise Miner, Release 4.3 Team Members Bhuvanendran, Aswin Bommi Narasimha, Sankeerth Reddy Jain, Amit Rangwala, Zenab Table
DECISION TREE ANALYSIS: PREDICTION OF SERIOUS TRAFFIC OFFENDING
DECISION TREE ANALYSIS: PREDICTION OF SERIOUS TRAFFIC OFFENDING ABSTRACT The objective was to predict whether an offender would commit a traffic offence involving death, using decision tree analysis. Four
Survival Analysis of the Patients Diagnosed with Non-Small Cell Lung Cancer Using SAS Enterprise Miner 13.1
Paper 11682-2016 Survival Analysis of the Patients Diagnosed with Non-Small Cell Lung Cancer Using SAS Enterprise Miner 13.1 Raja Rajeswari Veggalam, Akansha Gupta; SAS and OSU Data Mining Certificate
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation
Application of SAS! Enterprise Miner in Credit Risk Analytics. Presented by Minakshi Srivastava, VP, Bank of America
Application of SAS! Enterprise Miner in Credit Risk Analytics Presented by Minakshi Srivastava, VP, Bank of America 1 Table of Contents Credit Risk Analytics Overview Journey from DATA to DECISIONS Exploratory
Data Mining Using SAS Enterprise Miner Randall Matignon, Piedmont, CA
Data Mining Using SAS Enterprise Miner Randall Matignon, Piedmont, CA An Overview of SAS Enterprise Miner The following article is in regards to Enterprise Miner v.4.3 that is available in SAS v9.1.3.
Data mining and statistical models in marketing campaigns of BT Retail
Data mining and statistical models in marketing campaigns of BT Retail Francesco Vivarelli and Martyn Johnson Database Exploitation, Segmentation and Targeting group BT Retail Pp501 Holborn centre 120
Survey Analysis: Data Mining versus Standard Statistical Analysis for Better Analysis of Survey Responses
Survey Analysis: Data Mining versus Standard Statistical Analysis for Better Analysis of Survey Responses Salford Systems Data Mining 2006 March 27-31 2006 San Diego, CA By Dean Abbott Abbott Analytics
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models
Enhancing Compliance with Predictive Analytics
Enhancing Compliance with Predictive Analytics FTA 2007 Revenue Estimation and Research Conference Reid Linn Tennessee Department of Revenue [email protected] Sifting through a Gold Mine of Tax Data
An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century
An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century Nora Galambos, PhD Senior Data Scientist Office of Institutional Research, Planning & Effectiveness Stony Brook University AIRPO
Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines
Data Mining Classification: Decision Trees
Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous
Predictive Analytics in the Public Sector: Using Data Mining to Assist Better Target Selection for Audit
Predictive Analytics in the Public Sector: Using Data Mining to Assist Better Target Selection for Audit Duncan Cleary Revenue Irish Tax and Customs, Ireland [email protected] Abstract: Revenue, the Irish
Microsoft Azure Machine learning Algorithms
Microsoft Azure Machine learning Algorithms Tomaž KAŠTRUN @tomaz_tsql [email protected] http://tomaztsql.wordpress.com Our Sponsors Speaker info https://tomaztsql.wordpress.com Agenda Focus on explanation
Data Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
Using multiple models: Bagging, Boosting, Ensembles, Forests
Using multiple models: Bagging, Boosting, Ensembles, Forests Bagging Combining predictions from multiple models Different models obtained from bootstrap samples of training data Average predictions or
Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets
Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets http://info.salford-systems.com/jsm-2015-ctw August 2015 Salford Systems Course Outline Demonstration of two classification
A Property and Casualty Insurance Predictive Modeling Process in SAS
Paper 11422-2016 A Property and Casualty Insurance Predictive Modeling Process in SAS Mei Najim, Sedgwick Claim Management Services ABSTRACT Predictive analytics is an area that has been developing rapidly
Knowledge Discovery and Data Mining. Bootstrap review. Bagging Important Concepts. Notes. Lecture 19 - Bagging. Tom Kelsey. Notes
Knowledge Discovery and Data Mining Lecture 19 - Bagging Tom Kelsey School of Computer Science University of St Andrews http://tom.host.cs.st-andrews.ac.uk [email protected] Tom Kelsey ID5059-19-B &
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
MERGING BUSINESS KPIs WITH PREDICTIVE MODEL KPIs FOR BINARY CLASSIFICATION MODEL SELECTION
MERGING BUSINESS KPIs WITH PREDICTIVE MODEL KPIs FOR BINARY CLASSIFICATION MODEL SELECTION Matthew A. Lanham & Ralph D. Badinelli Virginia Polytechnic Institute and State University Department of Business
Data Mining Methods: Applications for Institutional Research
Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014
Successfully Implementing Predictive Analytics in Direct Marketing
Successfully Implementing Predictive Analytics in Direct Marketing John Blackwell and Tracy DeCanio, The Nature Conservancy, Arlington, VA ABSTRACT Successfully Implementing Predictive Analytics in Direct
Insurance Premium Increase Optimization: Case Study. Charles Pollack B.Ec F.I.A.A.
Insurance Premium Increase Optimization: Case Study Charles Pollack B.Ec F.I.A.A. Agenda Introduction Business Rules CART analysis to identify customer groups Elasticity modelling for each group Setting
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
Data Mining: A Magic Technology for College Recruitment. Tongshan Chang, Ed.D.
Data Mining: A Magic Technology for College Recruitment Tongshan Chang, Ed.D. Principal Administrative Analyst Admissions Research and Evaluation The University of California Office of the President [email protected]
A fast, powerful data mining workbench designed for small to midsize organizations
FACT SHEET SAS Desktop Data Mining for Midsize Business A fast, powerful data mining workbench designed for small to midsize organizations What does SAS Desktop Data Mining for Midsize Business do? Business
College Tuition: Data mining and analysis
CS105 College Tuition: Data mining and analysis By Jeanette Chu & Khiem Tran 4/28/2010 Introduction College tuition issues are steadily increasing every year. According to the college pricing trends report
!"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"
!"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"!"#"$%&#'()*+',$$-.&#',/"-0%.12'32./4'5,5'6/%&)$).2&'7./&)8'5,5'9/2%.%3%&8':")08';:
THE HYBRID CART-LOGIT MODEL IN CLASSIFICATION AND DATA MINING. Dan Steinberg and N. Scott Cardell
THE HYBID CAT-LOGIT MODEL IN CLASSIFICATION AND DATA MINING Introduction Dan Steinberg and N. Scott Cardell Most data-mining projects involve classification problems assigning objects to classes whether
Beating the MLB Moneyline
Beating the MLB Moneyline Leland Chen [email protected] Andrew He [email protected] 1 Abstract Sports forecasting is a challenging task that has similarities to stock market prediction, requiring time-series
How To Make A Credit Risk Model For A Bank Account
TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző [email protected] 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions
ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS
DATABASE MARKETING Fall 2015, max 24 credits Dead line 15.10. ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS PART A Gains chart with excel Prepare a gains chart from the data in \\work\courses\e\27\e20100\ass4b.xls.
STATISTICA. Financial Institutions. Case Study: Credit Scoring. and
Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT
Big Data Analytics. Benchmarking SAS, R, and Mahout. Allison J. Ames, Ralph Abbey, Wayne Thompson. SAS Institute Inc., Cary, NC
Technical Paper (Last Revised On: May 6, 2013) Big Data Analytics Benchmarking SAS, R, and Mahout Allison J. Ames, Ralph Abbey, Wayne Thompson SAS Institute Inc., Cary, NC Accurate and Simple Analysis
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics
A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic
A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic Report prepared for Brandon Slama Department of Health Management and Informatics University of Missouri, Columbia
Improving Demand Forecasting
Improving Demand Forecasting 2 nd July 2013 John Tansley - CACI Overview The ideal forecasting process: Efficiency, transparency, accuracy Managing and understanding uncertainty: Limits to forecast accuracy,
Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms
Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms Scott Pion and Lutz Hamel Abstract This paper presents the results of a series of analyses performed on direct mail
Benchmarking of different classes of models used for credit scoring
Benchmarking of different classes of models used for credit scoring We use this competition as an opportunity to compare the performance of different classes of predictive models. In particular we want
Alex Vidras, David Tysinger. Merkle Inc.
Using PROC LOGISTIC, SAS MACROS and ODS Output to evaluate the consistency of independent variables during the development of logistic regression models. An example from the retail banking industry ABSTRACT
Better credit models benefit us all
Better credit models benefit us all Agenda Credit Scoring - Overview Random Forest - Overview Random Forest outperform logistic regression for credit scoring out of the box Interaction term hypothesis
A Property & Casualty Insurance Predictive Modeling Process in SAS
Paper AA-02-2015 A Property & Casualty Insurance Predictive Modeling Process in SAS 1.0 ABSTRACT Mei Najim, Sedgwick Claim Management Services, Chicago, Illinois Predictive analytics has been developing
Crawling and Detecting Community Structure in Online Social Networks using Local Information
Crawling and Detecting Community Structure in Online Social Networks using Local Information TU Delft - Network Architectures and Services (NAS) 1/12 Outline In order to find communities in a graph one
Five Ways Retailers Can Profit from Customer Intelligence
Five Ways Retailers Can Profit from Customer Intelligence Use predictive analytics to reach your best customers. An Apption Whitepaper Tel: 1-888-655-6875 Email: [email protected] www.apption.com/customer-intelligence
Make Better Decisions Through Predictive Intelligence
IBM SPSS Modeler Professional Make Better Decisions Through Predictive Intelligence Highlights Easily access, prepare and model structured data with this intuitive, visual data mining workbench Rapidly
Start-up Companies Predictive Models Analysis. Boyan Yankov, Kaloyan Haralampiev, Petko Ruskov
Start-up Companies Predictive Models Analysis Boyan Yankov, Kaloyan Haralampiev, Petko Ruskov Abstract: A quantitative research is performed to derive a model for predicting the success of Bulgarian start-up
Companies already have customer data Creating a more effective sales team With all of this improved technology Most companies have a CRM
Many sales organizations are faced with the underutilization of their sales assets, meaning the potential of available resources, both sales reps and territories, are not being used to their fullest. Every
Improving SAS Global Forum Papers
Paper 3343-2015 Improving SAS Global Forum Papers Vijay Singh, Pankush Kalgotra, Goutam Chakraborty, Oklahoma State University, OK, US ABSTRACT Just as research is built on existing research, the references
The Operational Value of Social Media Information. Social Media and Customer Interaction
The Operational Value of Social Media Information Dennis J. Zhang (Kellogg School of Management) Ruomeng Cui (Kelley School of Business) Santiago Gallino (Tuck School of Business) Antonio Moreno-Garcia
ECLT 5810 E-Commerce Data Mining Techniques - Introduction. Prof. Wai Lam
ECLT 5810 E-Commerce Data Mining Techniques - Introduction Prof. Wai Lam Data Opportunities Business infrastructure have improved the ability to collect data Virtually every aspect of business is now open
Predictive Data Mining in Very Large Data Sets: A Demonstration and Comparison Under Model Ensemble
Predictive Data Mining in Very Large Data Sets: A Demonstration and Comparison Under Model Ensemble Dr. Hongwei Patrick Yang Educational Policy Studies & Evaluation College of Education University of Kentucky
Chapter 7: Data Mining
Chapter 7: Data Mining Overview Topics discussed: The Need for Data Mining and Business Value The Data Mining Process: Define Business Objectives Get Raw Data Identify Relevant Predictive Variables Gain
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
Modeling to improve the customer unit target selection for inspections of Commercial Losses in Brazilian Electric Sector - The case CEMIG
Paper 3406-2015 Modeling to improve the customer unit target selection for inspections of Commercial Losses in Brazilian Electric Sector - The case CEMIG Sérgio Henrique Rodrigues Ribeiro, CEMIG; Iguatinan
10 Ingredients of a Successful Marketing Plan - 2014 SDB Creative Group, Inc.
10 Ingredients of A Successful Marketing Plan You know the saying, not planning is planning to fail. Developing a marketing plan for your business gives you a tool that will help you know your business
Identifying At-Risk Students Using Machine Learning Techniques: A Case Study with IS 100
Identifying At-Risk Students Using Machine Learning Techniques: A Case Study with IS 100 Erkan Er Abstract In this paper, a model for predicting students performance levels is proposed which employs three
Sharing the experiences of teaching business analytics in a University course
Sharing the experiences of teaching business analytics in a University course Dr Michael Lane School of Management and Enterprise Email: [email protected] Agenda Background to Business Intelligence
New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
Data Mining and Visualization
Data Mining and Visualization Jeremy Walton NAG Ltd, Oxford Overview Data mining components Functionality Example application Quality control Visualization Use of 3D Example application Market research
Skills Knowledge Energy Time People and decide how to use themto accomplish your objectives.
Chapter 8 Selling With a Strategy Strategy Defined A strategy is a to assemble your resources Skills Knowledge Energy Time People and decide how to use themto accomplish your objectives. In selling, an
Text Analytics Illustrated with a Simple Data Set
CSC 594 Text Mining More on SAS Enterprise Miner Text Analytics Illustrated with a Simple Data Set This demonstration illustrates some text analytic results using a simple data set that is designed to
Predicting Readmission of Diabetic Patients using the high performance Support Vector Machine algorithm of SAS Enterprise Miner
Paper 3254-2015 Predicting Readmission of Diabetic Patients using the high performance Support Vector Machine algorithm of SAS Enterprise Miner Hephzibah Munnangi, MS, Dr. Goutam Chakraborty Oklahoma State
USING LOGISTIC REGRESSION TO PREDICT CUSTOMER RETENTION. Andrew H. Karp Sierra Information Services, Inc. San Francisco, California USA
USING LOGISTIC REGRESSION TO PREDICT CUSTOMER RETENTION Andrew H. Karp Sierra Information Services, Inc. San Francisco, California USA Logistic regression is an increasingly popular statistical technique
Improving the Thermal Efficiency of Coal-Fired Power Plants: A Data Mining Approach
Paper 1805-2014 Improving the Thermal Efficiency of Coal-Fired Power Plants: A Data Mining Approach Thanrawee Phurithititanapong and Jongsawas Chongwatpol NIDA Business School, National Institute of Development
Fast Analytics on Big Data with H20
Fast Analytics on Big Data with H20 0xdata.com, h2o.ai Tomas Nykodym, Petr Maj Team About H2O and 0xdata H2O is a platform for distributed in memory predictive analytics and machine learning Pure Java,
Predictive Modeling and Big Data
Predictive Modeling and Presented by Eileen Burns, FSA, MAAA Milliman Agenda Current uses of predictive modeling in the life insurance industry Potential applications of 2 1 June 16, 2014 [Enter presentation
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK Agenda Analytics why now? The process around data and text mining Case Studies The Value of Information
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
Cloud Analytics for Capacity Planning and Instant VM Provisioning
Cloud Analytics for Capacity Planning and Instant VM Provisioning Yexi Jiang Florida International University Advisor: Dr. Tao Li Collaborator: Dr. Charles Perng, Dr. Rong Chang Presentation Outline Background
RECOMMENDATIONS HOW TO ATTRACT CLIENTS TO ROBOFOREX
1 Recommendations how to attract clients to RoboForex s partners www.roboforex.com RECOMMENDATIONS HOW TO ATTRACT CLIENTS TO ROBOFOREX Your success as a partner directly depends on the number of attracted
Leveraging Ensemble Models in SAS Enterprise Miner
ABSTRACT Paper SAS133-2014 Leveraging Ensemble Models in SAS Enterprise Miner Miguel Maldonado, Jared Dean, Wendy Czika, and Susan Haller SAS Institute Inc. Ensemble models combine two or more models to
What is Data Mining? MS4424 Data Mining & Modelling. MS4424 Data Mining & Modelling. MS4424 Data Mining & Modelling. MS4424 Data Mining & Modelling
MS4424 Data Mining & Modelling MS4424 Data Mining & Modelling Lecturer : Dr Iris Yeung Room No : P7509 Tel No : 2788 8566 Email : [email protected] 1 Aims To introduce the basic concepts of data mining
MHI3000 Big Data Analytics for Health Care Final Project Report
MHI3000 Big Data Analytics for Health Care Final Project Report Zhongtian Fred Qiu (1002274530) http://gallery.azureml.net/details/81ddb2ab137046d4925584b5095ec7aa 1. Data pre-processing The data given
