Decentralized Task-Aware Scheduling for Data Center Networks
|
|
|
- Theodore Norman
- 9 years ago
- Views:
Transcription
1 Decentralized Task-Aware Scheduling for Data Center Networks Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, Ant Rowstron Presented by Eric Dong (yd2dong) October 30, 2015
2 Tasks in data centers Applications execute rich and complicated tasks Replying to search queries, gathering information for a news feed, etc Each task can involve dozensof flows, all of which have to complete for the task to finish
3 Tasks in data centers Two important metrics Task size: sum of the sizes of network flows involved All sorts of statistical distributions (ex: search vs. data analytics) Uniform, heavy-tailed, etc Flows per task Varies very wildly, from dozens to thousands. Scheduling algorithm must work on a wide
4 Traditional metrics Per-flow fair sharing (TCP, DCTCP) Poor average performance when multiple tasks occur at the same time Flow-level scheduling metrics (shortest flow first, etc) Considers flows in isolation Example: SFF schedules the shorter flows of different tasks first, leaving the longer flows of all the tasks to the end, thus delaying the completion of all the tasks. We need something better. Unfortunately, this problem is NP-hard :(. But we can use some heuristics!
5 Task serialization The set of policies where an entire task is scheduled before the next. This improves upon fair-sharing because it eliminates contention. One good task serialization algorithm is actually simple: first-in-first-out. Another example would be shortest-task-first (STF), which improves the average completion time, but leads to high tail latency or even starvation if short tasks keep coming in and preempting long tasks.
6 Task serialization FIFO is great for light-tailed distributions in fact it s provably optimal for minimizing the tail completion time. But it isn t that great for heavy-tailed distributions. Elephant flows which happen to arrive first end up blocking small flows, increasing latency.
7 FIFO-LM The paper proposes FIFO-LM: first-in-first-out with limited multiplexing Just like FIFO, but does a limited number of tasks the degree of multiplexing at once. Hybrid between FIFO (degree = 1) and fair-sharing (degree = ).
8 Baraat The authors distributed implementation of FIFO-LM No explicit coordination Based on globally unique task-ids. Lower ID means higher priority Flows inherit the ID of their tasks. Incrementing counter for every point where tasks arrive
9 Prioritization mechanism We have task priorities now. We still need an algorithm that uses them to efficiently schedule tasks. We can theoretically use one of the zillions of different existing flow-prioritization algorithms. But they don t have the properties we need. We need a new algorithm.
10 Smart Priority Class Similar to traditional priority queues High-priority flows preempt low-priority flows Flows with the same priority share bandwidth fairly Two differences: On-switch classifier: one-to-one mapping between tasks and priorities. Detects heavy tasks on-the-fly, and bump their priority down to that of the next-prioritized class. -LM part in FIFO-LM! Explicit rate control: switches tell senders how quickly to send. This moves more work to the end hosts and reduces the overhead of bookkeeping in switches.
11 Explicit rate protocol Every RTT, sender transmits a scheduling request message that demands a certain rate. Switch tells sender two numbers Actual rate (AR): how much should be sent in the next RTT Nominal rate (NR): maximum possible rate based on the priority
12 Explicit rate protocol We end up implementing FIFO-LM in a distributed way, with no global communication or central controller needed. But is it actually a lot better than existing schedulers? Experiments!
13 Evaluation The paper evaluates Baraat on three platforms Small scale testbed Huge datacenter simulation Micro-benchmarks All show significant improvements compared to other techniques
14 Small-scale tests Storage retrieval scenario: clients read data from storage servers in parallel One rack of four nodes running Memcached as the client, four more racks acting as the backend One switch connecting everything Very significant improvmeents in task completion time. (Nitty-gritty details of setup in paper)
15 Large datacenter simulation Three-level tree topology Racks of 40 machines with 1 Gbps links connected to top-of-rack switch and then to aggregator switch Three different workloads: Search engine (Bing) Data analytics (Facebook) Homogeneous application: uniformly distributed flow sizes from 2 KB to 50 KB
16 Bing-like workloads Policies comparable until the 70th percentile At that point, size-based policies begin starving heavy tasks. Baraat s limited multiplexing fixes this problem well.
17 Other two workloads Data-analytics workloads are heavy-tailed, and FIFO suffers from head-of-line blocking. Size-based policies reduce completion time relative to fair-sharing here. But still causes starvation issues at the very end of the tail Baraat still much faster 60% faster than fair-sharing 36% faster than size-based policies Uniform workloads show benefits too Baraat is 48% faster than fair-sharing Size-based policies have serious starvation issues, and ends up 50% slower than fair-sharing.
18 Very small tasks The ns-2 network simulator was used to microbenchmark small tasks with tiny flows. Still provides significant benefits over fair-sharing due to minimal setup overhead We can improve performance even more by breaking our one-task-per-priority-class invariant, and aggregating multiple tiny tasks into a single class. But only up to a point! Otherwise it degenerates into fair-sharing.
19 Discussion and further work Multi-pathing Data centers often have multi-root topologies for path diversity. Existing mechanisms for spreading traffic among paths maintain flow-to-path affinity. So Baraat can be used even in multi-root topologies. Senders can load-balance by sending SRQ packets among different paths Non-network resources Baraat doesn t try to schedule non-network resources like CPU This is generally not an issue: Baraat will either saturate the CPU or the network link depending on which is the bottleneck Future work: improve performance even more by coordinating multiple resources.
Decentralized Task-Aware Scheduling for Data Center Networks
Decentralized Task-Aware Scheduling for Data Center Networks Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron Microsoft Research {fdogar, thomkar, hiballan, antr}@microsoft.com ABSTRACT
Friends, not Foes Synthesizing Existing Transport Strategies for Data Center Networks
Friends, not Foes Synthesizing Existing Transport Strategies for Data Center Networks Ali Munir Michigan State University Ghufran Baig, Syed M. Irteza, Ihsan A. Qazi, Alex X. Liu, Fahad R. Dogar Data Center
Towards Predictable Datacenter Networks
Towards Predictable Datacenter Networks Hitesh Ballani, Paolo Costa, Thomas Karagiannis and Ant Rowstron Microsoft Research, Cambridge This talk is about Guaranteeing network performance for tenants in
Predictable Data Centers
Predictable Data Centers Thomas Karagiannis Hitesh Ballani, Paolo Costa, Fahad Dogar, Keon Jang, Greg O Shea, Eno Thereska, and Ant Rowstron Systems & Networking Microsoft Research, Cambridge http://research.microsoft.com/datacenters/
Advanced Computer Networks. Scheduling
Oriana Riva, Department of Computer Science ETH Zürich Advanced Computer Networks 263-3501-00 Scheduling Patrick Stuedi, Qin Yin and Timothy Roscoe Spring Semester 2015 Outline Last time Load balancing
Load Balancing in Data Center Networks
Load Balancing in Data Center Networks Henry Xu Computer Science City University of Hong Kong HKUST, March 2, 2015 Background Aggregator Aggregator Aggregator Worker Worker Worker Worker Low latency for
Small is Better: Avoiding Latency Traps in Virtualized DataCenters
Small is Better: Avoiding Latency Traps in Virtualized DataCenters SOCC 2013 Yunjing Xu, Michael Bailey, Brian Noble, Farnam Jahanian University of Michigan 1 Outline Introduction Related Work Source of
Multipath TCP in Data Centres (work in progress)
Multipath TCP in Data Centres (work in progress) Costin Raiciu Joint work with Christopher Pluntke, Adam Greenhalgh, Sebastien Barre, Mark Handley, Damon Wischik Data Centre Trends Cloud services are driving
Data Center Content Delivery Network
BM 465E Distributed Systems Lecture 4 Networking (cont.) Mehmet Demirci Today Overlay networks Data centers Content delivery networks Overlay Network A virtual network built on top of another network Overlay
Influence of Load Balancing on Quality of Real Time Data Transmission*
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 6, No. 3, December 2009, 515-524 UDK: 004.738.2 Influence of Load Balancing on Quality of Real Time Data Transmission* Nataša Maksić 1,a, Petar Knežević 2,
Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic
On real-time delay monitoring in software-defined networks
On real-time delay monitoring in software-defined networks Victor S. Altukhov Lomonosov Moscow State University Moscow, Russia [email protected] Eugene V. Chemeritskiy Applied Research Center for
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms
Chatty Tenants and the Cloud Network Sharing Problem
Chatty Tenants and the Cloud Network Sharing Problem Hitesh Ballani, Keon Jang, Thomas Karagiannis Changhoon Kim, Dinan Gunawardena, Greg O Shea MSR Cambridge, Windows Azure This talk is about... How to
PACE Your Network: Fair and Controllable Multi- Tenant Data Center Networks
PACE Your Network: Fair and Controllable Multi- Tenant Data Center Networks Tiago Carvalho Carnegie Mellon University and Universidade de Lisboa Hyong S. Kim Carnegie Mellon University Pittsburgh, PA,
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Cof low. Mending the Application-Network Gap in Big Data Analytics. Mosharaf Chowdhury. UC Berkeley
Cof low Mending the Application-Network Gap in Big Data Analytics Mosharaf Chowdhury UC Berkeley Big Data The volume of data businesses want to make sense of is increasing Increasing variety of sources
phost: Distributed Near-Optimal Datacenter Transport Over Commodity Network Fabric
phost: Distributed Near-Optimal Datacenter Transport Over Commodity Network Fabric Peter X. Gao [email protected] Rachit Agarwal [email protected] Akshay Narayan [email protected] Sylvia Ratnasamy
Silo: Predictable Message Completion Time in the Cloud
Silo: Predictable Message Completion Time in the Cloud Keon Jang Justine Sherry Hitesh Ballani Toby Moncaster Microsoft Research UC Berkeley University of Cambridge September, 2013 Technical Report MSR-TR-2013-95
First Midterm for ECE374 02/25/15 Solution!!
1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
Better Never than Late: Meeting Deadlines in Datacenter Networks
Better Never than Late: Meeting Deadlines in Datacenter Networks Christo Wilson Hitesh Ballani Thomas Karagiannis Ant Rowstron [email protected] [email protected] [email protected]
Windows Server Performance Monitoring
Spot server problems before they are noticed The system s really slow today! How often have you heard that? Finding the solution isn t so easy. The obvious questions to ask are why is it running slowly
Network traffic: Scaling
Network traffic: Scaling 1 Ways of representing a time series Timeseries Timeseries: information in time domain 2 Ways of representing a time series Timeseries FFT Timeseries: information in time domain
How To Model A System
Web Applications Engineering: Performance Analysis: Operational Laws Service Oriented Computing Group, CSE, UNSW Week 11 Material in these Lecture Notes is derived from: Performance by Design: Computer
Lecture 7: Data Center Networks"
Lecture 7: Data Center Networks" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Nick Feamster Lecture 7 Overview" Project discussion Data Centers overview Fat Tree paper discussion CSE
Towards Predictable Datacenter Networks
Towards Predictable Datacenter Networks Hitesh Ballani Paolo Costa Thomas Karagiannis Ant Rowstron [email protected] [email protected] [email protected] [email protected] Microsoft Research
Empowering Software Defined Network Controller with Packet-Level Information
Empowering Software Defined Network Controller with Packet-Level Information Sajad Shirali-Shahreza, Yashar Ganjali Department of Computer Science, University of Toronto, Toronto, Canada Abstract Packet
CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs
CHAPTER 6 VOICE COMMUNICATION OVER HYBRID MANETs Multimedia real-time session services such as voice and videoconferencing with Quality of Service support is challenging task on Mobile Ad hoc Network (MANETs).
Load Balancing Mechanisms in Data Center Networks
Load Balancing Mechanisms in Data Center Networks Santosh Mahapatra Xin Yuan Department of Computer Science, Florida State University, Tallahassee, FL 33 {mahapatr,xyuan}@cs.fsu.edu Abstract We consider
Cisco s Massively Scalable Data Center
Cisco s Massively Scalable Data Center Network Fabric for Warehouse Scale Computer At-A-Glance Datacenter is the Computer MSDC is the Network Cisco s Massively Scalable Data Center (MSDC) is a framework
Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain
Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1
MMPTCP: A Novel Transport Protocol for Data Centre Networks
MMPTCP: A Novel Transport Protocol for Data Centre Networks Morteza Kheirkhah FoSS, Department of Informatics, University of Sussex Modern Data Centre Networks FatTree It provides full bisection bandwidth
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
Storage I/O Control: Proportional Allocation of Shared Storage Resources
Storage I/O Control: Proportional Allocation of Shared Storage Resources Chethan Kumar Sr. Member of Technical Staff, R&D VMware, Inc. Outline The Problem Storage IO Control (SIOC) overview Technical Details
OpenFlow Based Load Balancing
OpenFlow Based Load Balancing Hardeep Uppal and Dane Brandon University of Washington CSE561: Networking Project Report Abstract: In today s high-traffic internet, it is often desirable to have multiple
Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches
Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches Introduction For companies that want to quickly gain insights into or opportunities from big data - the dramatic volume growth in corporate
Testing & Assuring Mobile End User Experience Before Production. Neotys
Testing & Assuring Mobile End User Experience Before Production Neotys Agenda Introduction The challenges Best practices NeoLoad mobile capabilities Mobile devices are used more and more At Home In 2014,
1. Comments on reviews a. Need to avoid just summarizing web page asks you for:
1. Comments on reviews a. Need to avoid just summarizing web page asks you for: i. A one or two sentence summary of the paper ii. A description of the problem they were trying to solve iii. A summary of
OPERATING SYSTEMS SCHEDULING
OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform
15-418 Final Project Report. Trading Platform Server
15-418 Final Project Report Yinghao Wang [email protected] May 8, 214 Trading Platform Server Executive Summary The final project will implement a trading platform server that provides back-end support
PortLand:! A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric
PortLand:! A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya,
Operating Systems. Cloud Computing and Data Centers
Operating ystems Fall 2014 Cloud Computing and Data Centers Myungjin Lee [email protected] 2 Google data center locations 3 A closer look 4 Inside data center 5 A datacenter has 50-250 containers A
ICTCP: Incast Congestion Control for TCP in Data Center Networks
ICTCP: Incast Congestion Control for TCP in Data Center Networks Haitao Wu, Zhenqian Feng, Chuanxiong Guo, Yongguang Zhang {hwu, v-zhfe, chguo, ygz}@microsoft.com, Microsoft Research Asia, China School
LOAD BALANCING MECHANISMS IN DATA CENTER NETWORKS
LOAD BALANCING Load Balancing Mechanisms in Data Center Networks Load balancing vs. distributed rate limiting: an unifying framework for cloud control Load Balancing for Internet Distributed Services using
A Review on Load Balancing In Cloud Computing 1
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12333-12339 A Review on Load Balancing In Cloud Computing 1 Peenaz Pathak, 2 Er.Kamna
A Load Balancing Algorithm based on the Variation Trend of Entropy in Homogeneous Cluster
, pp.11-20 http://dx.doi.org/10.14257/ ijgdc.2014.7.2.02 A Load Balancing Algorithm based on the Variation Trend of Entropy in Homogeneous Cluster Kehe Wu 1, Long Chen 2, Shichao Ye 2 and Yi Li 2 1 Beijing
The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM. 2012-13 CALIENT Technologies www.calient.
The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM 2012-13 CALIENT Technologies www.calient.net 1 INTRODUCTION In datacenter networks, video, mobile data, and big data
Switching Architectures for Cloud Network Designs
Overview Networks today require predictable performance and are much more aware of application flows than traditional networks with static addressing of devices. Enterprise networks in the past were designed
Load balancing; Termination detection
Load balancing; Termination detection Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 14, 2013 CPD (DEI / IST) Parallel and Distributed
Outline. VL2: A Scalable and Flexible Data Center Network. Problem. Introduction 11/26/2012
VL2: A Scalable and Flexible Data Center Network 15744: Computer Networks, Fall 2012 Presented by Naveen Chekuri Outline Introduction Solution Approach Design Decisions Addressing and Routing Evaluation
Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke
Multipath TCP design, and application to data centers Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Packet switching pools circuits. Multipath pools links : it is Packet Switching 2.0.
Improving our Evaluation of Transport Protocols. Sally Floyd Hamilton Institute July 29, 2005
Improving our Evaluation of Transport Protocols Sally Floyd Hamilton Institute July 29, 2005 Computer System Performance Modeling and Durable Nonsense A disconcertingly large portion of the literature
CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING
CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility
TRILL Large Layer 2 Network Solution
TRILL Large Layer 2 Network Solution Contents 1 Network Architecture Requirements of Data Centers in the Cloud Computing Era... 3 2 TRILL Characteristics... 5 3 Huawei TRILL-based Large Layer 2 Network
Computer Networks COSC 6377
Computer Networks COSC 6377 Lecture 25 Fall 2011 November 30, 2011 1 Announcements Grades will be sent to each student for verificagon P2 deadline extended 2 Large- scale computagon Search Engine Tasks
Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter Networks
Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter Networks Henrique Rodrigues, Yoshio Turner, Jose Renato Santos, Paolo Victor, Dorgival Guedes HP Labs WIOV 2011, Portland, OR The
CPU Scheduling Outline
CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different
Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage
Lecture 16: Quality of Service CSE 123: Computer Networks Stefan Savage Final Next week (trust Blink wrt time/location) Will cover entire class Style similar to midterm I ll post a sample (i.e. old) final
Internet Content Distribution
Internet Content Distribution Chapter 2: Server-Side Techniques (TUD Student Use Only) Chapter Outline Server-side techniques for content distribution Goals Mirrors Server farms Surrogates DNS load balancing
Load balancing; Termination detection
Load balancing; Termination detection Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 13, 2014 CPD (DEI / IST) Parallel and Distributed
Content Delivery Networks. Shaxun Chen April 21, 2009
Content Delivery Networks Shaxun Chen April 21, 2009 Outline Introduction to CDN An Industry Example: Akamai A Research Example: CDN over Mobile Networks Conclusion Outline Introduction to CDN An Industry
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
Small is Better: Avoiding Latency Traps in Virtualized Data Centers
Small is Better: Avoiding Latency Traps in Virtualized Data Centers Yunjing Xu, Michael Bailey, Brian Noble, Farnam Jahanian University of Michigan {yunjing, mibailey, bnoble, farnam}@umich.edu Abstract
6.6 Scheduling and Policing Mechanisms
02-068 C06 pp4 6/14/02 3:11 PM Page 572 572 CHAPTER 6 Multimedia Networking 6.6 Scheduling and Policing Mechanisms In the previous section, we identified the important underlying principles in providing
Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani
Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani Overview:
Comparative Analysis of Congestion Control Algorithms Using ns-2
www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,
Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers
Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François ICTEAM, Université catholique de Louvain (UCL), Belgium.
Lecture 18: Interconnection Networks. CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)
Lecture 18: Interconnection Networks CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012) Announcements Project deadlines: - Mon, April 2: project proposal: 1-2 page writeup - Fri,
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
CPU Scheduling. Core Definitions
CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases
Chapter 4. VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network)
Chapter 4 VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network) 4.1 Introduction Traffic Engineering can be defined as a task of mapping traffic
Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14
1 Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit
Advanced Computer Networks Project 2: File Transfer Application
1 Overview Advanced Computer Networks Project 2: File Transfer Application Assigned: April 25, 2014 Due: May 30, 2014 In this assignment, you will implement a file transfer application. The application
Data Warehousing and Analytics Infrastructure at Facebook. Ashish Thusoo & Dhruba Borthakur athusoo,[email protected]
Data Warehousing and Analytics Infrastructure at Facebook Ashish Thusoo & Dhruba Borthakur athusoo,[email protected] Overview Challenges in a Fast Growing & Dynamic Environment Data Flow Architecture,
Data Center Network Topologies: FatTree
Data Center Network Topologies: FatTree Hakim Weatherspoon Assistant Professor, Dept of Computer Science CS 5413: High Performance Systems and Networking September 22, 2014 Slides used and adapted judiciously
CS640: Introduction to Computer Networks. Why a New Service Model? Utility curve Elastic traffic. Aditya Akella. Lecture 20 QoS
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 QoS Why a New Service Model? Best effort clearly insufficient Some applications need more assurances from the network What is the basic
A SIMULATOR FOR LOAD BALANCING ANALYSIS IN DISTRIBUTED SYSTEMS
Mihai Horia Zaharia, Florin Leon, Dan Galea (3) A Simulator for Load Balancing Analysis in Distributed Systems in A. Valachi, D. Galea, A. M. Florea, M. Craus (eds.) - Tehnologii informationale, Editura
Performance Workload Design
Performance Workload Design The goal of this paper is to show the basic principles involved in designing a workload for performance and scalability testing. We will understand how to achieve these principles
SiteCelerate white paper
SiteCelerate white paper Arahe Solutions SITECELERATE OVERVIEW As enterprises increases their investment in Web applications, Portal and websites and as usage of these applications increase, performance
Quality of Service (QoS) on Netgear switches
Quality of Service (QoS) on Netgear switches Section 1 Principles and Practice of QoS on IP networks Introduction to QoS Why? In a typical modern IT environment, a wide variety of devices are connected
Deploying in a Distributed Environment
Deploying in a Distributed Environment Distributed enterprise networks have many remote locations, ranging from dozens to thousands of small offices. Typically, between 5 and 50 employees work at each
Main Points. Scheduling policy: what to do next, when there are multiple threads ready to run. Definitions. Uniprocessor policies
Scheduling Main Points Scheduling policy: what to do next, when there are multiple threads ready to run Or multiple packets to send, or web requests to serve, or Definitions response time, throughput,
APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
PCIe Storage Performance Testing Challenge
PCIe Storage Performance Testing Challenge Tien Pham SSD Applications Manager Advantest America, Inc. Santa Clara, CA 1 Outline PCIe Storage Test Challenges PCIe Storage Production Test Items And Bottlenecks
Effects of Filler Traffic In IP Networks. Adam Feldman April 5, 2001 Master s Project
Effects of Filler Traffic In IP Networks Adam Feldman April 5, 2001 Master s Project Abstract On the Internet, there is a well-documented requirement that much more bandwidth be available than is used
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
SIGCOMM Preview Session: Data Center Networking (DCN)
SIGCOMM Preview Session: Data Center Networking (DCN) George Porter, UC San Diego 2015 These slides are licensed under a Creative Commons Attribution- NonCommercial- ShareAlike 4.0 International license
Quality of Service (QoS)) in IP networks
Quality of Service (QoS)) in IP networks Petr Grygárek rek 1 Quality of Service (QoS( QoS) QoS is the ability of network to support applications without limiting it s s function or performance ITU-T T
Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR
Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR GUIDOUM AMINA University of SIDI BEL ABBES Department of Electronics Communication Networks,
Scalable Internet Services and Load Balancing
Scalable Services and Load Balancing Kai Shen Services brings ubiquitous connection based applications/services accessible to online users through Applications can be designed and launched quickly and
Data Networks Summer 2007 Homework #3
Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.
