Network traffic: Scaling
|
|
|
- Erica Palmer
- 10 years ago
- Views:
Transcription
1 Network traffic: Scaling 1
2 Ways of representing a time series Timeseries Timeseries: information in time domain 2
3 Ways of representing a time series Timeseries FFT Timeseries: information in time domain FFT: information in frequency (scale) domain 3
4 Ways of representing a time series Timeseries Wavelet transform Timeseries: information in time domain FFT: information in frequency (scale) domain Wavelets: information in time and scale domains 4
5 Wavelet Coefficients: Local averages and differences Intuition: Finest scale: Compute averages of adjacent data points Compute differences between average and actual data Next scale: Repeat based on averages from previous step Use wavelet coefficients to study scale or frequency dependent properties 5
6 Wavelet example s d 1 s 2 s 3 s d 2 d 3 d 4 6
7 Wavelets Timeseries FFT: decomposition in frequency domain Wavelets: localize a signal in both time and scale Wavelet transform FFT 7
8 Wavelets Wavelet coefficients d j,k 8
9 Discrete wavelet transform Definition: From 1D to 2D: Wavelet coefficients at scale j and time 2 j k Wavelets: Wavelet decomposition: 9
10 Global scaling analysis Methodology: Exploit properties of wavelet coefficients Self-similarity: coefficients scale independent of k Algorithm: Compute Discrete Wavelet Transform Compute energy of wavelet coefficients at each scale Plot log 2 E versus scale j Identify scaling regions, break points, etc. Hurst parameter estimation Ref: AV IEEE Transactions on Information Theory
11 Motivation Scaling How does traffic behave at different aggregation levels Large time scales: User dynamics => self-similarity Users act mostly independent of each other Users are unpredictable: Variability in Variability in doc size, # of docs, time between docs Small time scales: Network dynamics Network protocols effects: TCP flow control Queue at network elements: delay Influences user experience How do they interact???? 11
12 Global scaling analysis (large scales) Trivial global scaling == horizontal slope (large scales) Non-trivial global scaling == slope > 0.5 (large scales) 12
13 Global scaling analysis (large scales) Trivial global scaling == horizontal slope (large scales) Non-trivial global scaling == slope > 0.5 (large scales) 13
14 Self-similar traffic 14
15 Self-similar traffic 15
16 Adding periodicity Packets arrive periodically, 1 pkt/2 3 msec Coefficients cancel out at scale s d 1 s d 2 s d 3 s d 4 16
17 Effect of Periodicity self-similar self-similar w/ periodicity 8msec 17
18 A simple topology Used to measure before bottleneck Clients Used to vary delay Server Used to limit capacity Used to vary delay access speed 18
19 Impact of RTT on global scaling Workload Web (Pareto dist.) Network Single RTT delay Examples scale 15 (24 ms) scale 10 (1.3 s) Conclusion Dip at smallest time scale bigger than RTT 19
20 Impact of RTT on global scaling Workload Web (Pareto dist.) Network Single RTT delay Examples scale 15 (24 ms) scale 10 (1.3 s) Conclusion Dip at smallest time scale bigger than RTT 20
21 A more complex topology Servers Clients Used to vary delay 21
22 Impact of different RTTs on global scaling Network variability (delay) => wider dip Self-similar scaling breaks down for small scales 22
23 A more complex topology Servers Clients Unlimited capacity Used to limit capacity 23
24 Impact of different bottlenecks on global scaling Network variability (delay) => wider dip Network variability (congestion) => wider dip Simulation matches traces without explicit modeling 24
25 Impact of different bottlenecks on global scaling Network variability (delay) => wider dip Network variability (congestion) => wider dip Simulation matches traces without explicit modeling 25
26 Impact of different bottlenecks on global scaling Network variability (delay) => wider dip Network variability (congestion) => wider dip Simulation matches traces without explicit modeling 26
27 Small-time scaling - multifractal Wavelet domain: Self-Similarity: coefficients scale independent of k Multifractal: scaling of coefficients depends on k local scaling is time dependent Time domain: Traffic rate process at time t 0 is: # of packets in [t 0, t 0 + δt] Self-Similarity: Multifractal: 27
28 Conclusion Scaling Large time scales: self-similar scaling User related variability Small time scales: multifractal scaling Network variability Topology TCP-like flow control TCP protocol behavior (e.g., Ack compression) 28
29 Summary Identified how IP traffic dynamics are influenced by User variability, network variability, protocol variant Scaling phenomena Self-similar scaling, breakpoints, multifractal scaling Physical understanding guides simulation setup Moving towards right ball park Beware of homogeneous setups Infinite source traffic models 29
Observingtheeffectof TCP congestion controlon networktraffic
Observingtheeffectof TCP congestion controlon networktraffic YongminChoi 1 andjohna.silvester ElectricalEngineering-SystemsDept. UniversityofSouthernCalifornia LosAngeles,CA90089-2565 {yongminc,silvester}@usc.edu
Data Networks Summer 2007 Homework #3
Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.
Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003
Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003 Self-similarity and its evolution in Computer Network Measurements Prior models used Poisson-like models Origins
Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:
Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management
Friends, not Foes Synthesizing Existing Transport Strategies for Data Center Networks
Friends, not Foes Synthesizing Existing Transport Strategies for Data Center Networks Ali Munir Michigan State University Ghufran Baig, Syed M. Irteza, Ihsan A. Qazi, Alex X. Liu, Fahad R. Dogar Data Center
TFTP TRIVIAL FILE TRANSFER PROTOCOL OVERVIEW OF TFTP, A VERY SIMPLE FILE TRANSFER PROTOCOL FOR SIMPLE AND CONSTRAINED DEVICES
TFTP - Trivial File TFTP Transfer Protocol TRIVIAL FILE TRANSFER PROTOCOL OVERVIEW OF TFTP, A VERY SIMPLE FILE TRANSFER PROTOCOL FOR SIMPLE AND CONSTRAINED DEVICES Peter R. Egli INDIGOO.COM 1/10 Contents
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
A Congestion Control Algorithm for Data Center Area Communications
A Congestion Control Algorithm for Data Center Area Communications Hideyuki Shimonishi, Junichi Higuchi, Takashi Yoshikawa, and Atsushi Iwata System Platforms Research Laboratories, NEC Corporation 1753
Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks
Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Vasilios A. Siris and Despina Triantafyllidou Institute of Computer Science (ICS) Foundation for Research and Technology - Hellas
17: Queue Management. Queuing. Mark Handley
17: Queue Management Mark Handley Queuing The primary purpose of a queue in an IP router is to smooth out bursty arrivals, so that the network utilization can be high. But queues add delay and cause jitter.
Performance improvement of active queue management with per-flow scheduling
Performance improvement of active queue management with per-flow scheduling Masayoshi Nabeshima, Kouji Yata NTT Cyber Solutions Laboratories, NTT Corporation 1-1 Hikari-no-oka Yokosuka-shi Kanagawa 239
Applications. Network Application Performance Analysis. Laboratory. Objective. Overview
Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 Comparison of TCP I-Vegas with TCP Vegas in Wired-cum-Wireless Network Nitin Jain & Dr. Neelam Srivastava Abstract
Performance of networks containing both MaxNet and SumNet links
Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for
Multipath TCP in Data Centres (work in progress)
Multipath TCP in Data Centres (work in progress) Costin Raiciu Joint work with Christopher Pluntke, Adam Greenhalgh, Sebastien Barre, Mark Handley, Damon Wischik Data Centre Trends Cloud services are driving
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
How To Model A System
Web Applications Engineering: Performance Analysis: Operational Laws Service Oriented Computing Group, CSE, UNSW Week 11 Material in these Lecture Notes is derived from: Performance by Design: Computer
High-Speed TCP Performance Characterization under Various Operating Systems
High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,
Supporting VoIP in IEEE802.11 Distributed WLANs
Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
Connection-level Analysis and Modeling of Network Traffic
ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP Connection-level Analysis and Modeling of Network Traffic Shriram Sarvotham, Rudolf Riedi, Richard Baraniuk Abstract Most network traffic analysis and modeling
Distributed Denial of Service Attacks & Defenses
Distributed Denial of Service Attacks & Defenses Guest Lecture by: Vamsi Kambhampati Fall 2011 Distributed Denial of Service (DDoS) Exhaust resources of a target, or the resources it depends on Resources:
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
CS551 End-to-End Internet Packet Dynamics [Paxson99b]
CS551 End-to-End Internet Packet Dynamics [Paxson99b] Bill Cheng http://merlot.usc.edu/cs551-f12 1 End-to-end Packet Dynamics How do you measure Internet performance? Why do people want to know? Are ISPs
Network Performance Monitoring at Small Time Scales
Network Performance Monitoring at Small Time Scales Konstantina Papagiannaki, Rene Cruz, Christophe Diot Sprint ATL Burlingame, CA [email protected] Electrical and Computer Engineering Department University
Network Performance Measurement and Analysis
Network Performance Measurement and Analysis Outline Measurement Tools and Techniques Workload generation Analysis Basic statistics Queuing models Simulation CS 640 1 Measurement and Analysis Overview
2 TCP-like Design. Answer
Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about
Master s Thesis. A Study on Active Queue Management Mechanisms for. Internet Routers: Design, Performance Analysis, and.
Master s Thesis Title A Study on Active Queue Management Mechanisms for Internet Routers: Design, Performance Analysis, and Parameter Tuning Supervisor Prof. Masayuki Murata Author Tomoya Eguchi February
Decentralized Task-Aware Scheduling for Data Center Networks
Decentralized Task-Aware Scheduling for Data Center Networks Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, Ant Rowstron Presented by Eric Dong (yd2dong) October 30, 2015 Tasks in data centers Applications
Requirements for Simulation and Modeling Tools. Sally Floyd NSF Workshop August 2005
Requirements for Simulation and Modeling Tools Sally Floyd NSF Workshop August 2005 Outline for talk: Requested topic: the requirements for simulation and modeling tools that allow one to study, design,
First Midterm for ECE374 02/25/15 Solution!!
1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
On the Placement of Management and Control Functionality in Software Defined Networks
On the Placement of Management and Control Functionality in Software Defined Networks D.Tuncer et al. Department of Electronic & Electrical Engineering University College London, UK ManSDN/NfV 13 November
Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic
Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke
Multipath TCP design, and application to data centers Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Packet switching pools circuits. Multipath pools links : it is Packet Switching 2.0.
TCP/IP Over Lossy Links - TCP SACK without Congestion Control
Wireless Random Packet Networking, Part II: TCP/IP Over Lossy Links - TCP SACK without Congestion Control Roland Kempter The University of Alberta, June 17 th, 2004 Department of Electrical And Computer
SJBIT, Bangalore, KARNATAKA
A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,
An Improved Available Bandwidth Measurement Algorithm based on Pathload
An Improved Available Bandwidth Measurement Algorithm based on Pathload LIANG ZHAO* CHONGQUAN ZHONG Faculty of Electronic Information and Electrical Engineering Dalian University of Technology Dalian 604
Analysis of TCP Performance Over Asymmetric Wireless Links
Virginia Tech ECPE 6504: Wireless Networks and Mobile Computing Analysis of TCP Performance Over Asymmetric Kaustubh S. Phanse ([email protected]) Outline Project Goal Notions of Asymmetry in Wireless Networks
Optimizing TCP Forwarding
Optimizing TCP Forwarding Vsevolod V. Panteleenko and Vincent W. Freeh TR-2-3 Department of Computer Science and Engineering University of Notre Dame Notre Dame, IN 46556 {vvp, vin}@cse.nd.edu Abstract
THE UNIVERSITY OF AUCKLAND
COMPSCI 742 THE UNIVERSITY OF AUCKLAND SECOND SEMESTER, 2008 Campus: City COMPUTER SCIENCE Data Communications and Networks (Time allowed: TWO hours) NOTE: Attempt all questions. Calculators are NOT permitted.
Network Traffic Modeling and Prediction with ARIMA/GARCH
Network Traffic Modeling and Prediction with ARIMA/GARCH Bo Zhou, Dan He, Zhili Sun and Wee Hock Ng Centre for Communication System Research University of Surrey Guildford, Surrey United Kingdom +44(0)
Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics
Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002
Disjoint Path Algorithm for Load Balancing in MPLS network
International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 193-199 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/
CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015
CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015 1. Goals and Overview 1. In this MP you will design a Dynamic Load Balancer architecture for a Distributed System 2. You will
PINK: Proactive INjection into ack, a queue manager to impose fair resource allocation among TCP ows
PINK: Proactive INjection into ack, a queue manager to impose fair resource allocation among TCP ows Carlo A. Grazia, Martin Klapez, Natale Patriciello, Maurizio Casoni Department of Engineering Enzo Ferrari
EFFECT OF TRANSFER FILE SIZE ON TCP-ADaLR PERFORMANCE: A SIMULATION STUDY
EFFECT OF TRANSFER FILE SIZE ON PERFORMANCE: A SIMULATION STUDY Modupe Omueti and Ljiljana Trajković Simon Fraser University Vancouver British Columbia Canada {momueti, ljilja}@cs.sfu.ca ABSTRACT Large
Path Selection Analysis in MPLS Network Based on QoS
Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt:36, No: 6 Özel Sayı (2015) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 36, No: 6 Special
SUNYIT. Reaction Paper 2. Measuring the performance of VoIP over Wireless LAN
SUNYIT Reaction Paper 2 Measuring the performance of VoIP over Wireless LAN SUBMITTED BY : SANJEEVAKUMAR 10/3/2013 Summary of the Paper The paper s main goal is to compare performance of VoIP in both LAN
La couche transport dans l'internet (la suite TCP/IP)
La couche transport dans l'internet (la suite TCP/IP) C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham [email protected] Cours de C. Pham,
Network Performance Evaluation of Latest Windows Operating Systems
Network Performance Evaluation of Latest dows Operating Systems Josip Balen, Goran Martinovic, Zeljko Hocenski Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Osijek, Croatia
Measuring CDN Performance. Hooman Beheshti, VP Technology
Measuring CDN Performance Hooman Beheshti, VP Technology Why this matters Performance is one of the main reasons we use a CDN Seems easy to measure, but isn t Performance is an easy way to comparison shop
Effects of Filler Traffic In IP Networks. Adam Feldman April 5, 2001 Master s Project
Effects of Filler Traffic In IP Networks Adam Feldman April 5, 2001 Master s Project Abstract On the Internet, there is a well-documented requirement that much more bandwidth be available than is used
TCP, Active Queue Management and QoS
TCP, Active Queue Management and QoS Don Towsley UMass Amherst [email protected] Collaborators: W. Gong, C. Hollot, V. Misra Outline motivation TCP friendliness/fairness bottleneck invariant principle
Performance Analysis of VoIP Codecs over BE WiMAX Network
Performance Analysis of VoIP Codecs over BE WiMAX Network Muhammad Imran Tariq, Muhammad Ajmal Azad, Razvan Beuran, Yoichi Shinoda Japan Advanced Institute of Science and Technology, Ishikawa, Japan National
Homework 2 assignment for ECE374 Posted: 02/20/15 Due: 02/27/15
1 Homework 2 assignment for ECE374 Posted: 02/20/15 Due: 02/27/15 ote: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit
Sync & Sense Enabled Adaptive Packetization VoIP
Sync & Sense Enabled Adaptive Packetization VoIP by Boonchai Ngamwongwattana B.Eng., King Mongkut s Institute of Technology, Ladkrabang, Thailand, 1994 M.S., Telecommunications, University of Pittsburgh,
Low-rate TCP-targeted Denial of Service Attack Defense
Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu
Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose
Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining
Evaluating Cooperative Web Caching Protocols for Emerging Network Technologies 1
Evaluating Cooperative Web Caching Protocols for Emerging Network Technologies 1 Christoph Lindemann and Oliver P. Waldhorst University of Dortmund Department of Computer Science August-Schmidt-Str. 12
Mobile Communications Chapter 9: Mobile Transport Layer
Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery
Inside Dropbox: Understanding Personal Cloud Storage Services
Inside Dropbox: Understanding Personal Cloud Storage Services Idilio Drago Marco Mellia Maurizio M. Munafò Anna Sperotto Ramin Sadre Aiko Pras IRTF Vancouver Motivation and goals 1 Personal cloud storage
Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow
International Journal of Soft Computing and Engineering (IJSCE) Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow Abdullah Al Masud, Hossain Md. Shamim, Amina Akhter
IP Network Monitoring and Measurements: Techniques and Experiences
IP Network Monitoring and Measurements: Techniques and Experiences Philippe Owezarski LAAS-CNRS Toulouse, France [email protected] 1 Outline 4 Introduction 4 Monitoring problematic 8Only based on network administration
A Talari Networks White Paper. Turbo Charging WAN Optimization with WAN Virtualization. A Talari White Paper
A Talari Networks White Paper Turbo Charging WAN Optimization with WAN Virtualization A Talari White Paper 2 Introduction WAN Virtualization is revolutionizing Enterprise Wide Area Network (WAN) economics,
PART III. OPS-based wide area networks
PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity
How Router Technology Shapes Inter-Cloud Computing Service Architecture for The Future Internet
How Router Technology Shapes Inter-Cloud Computing Service Architecture for The Future Internet Professor Jiann-Liang Chen Friday, September 23, 2011 Wireless Networks and Evolutional Communications Laboratory
TCP Pacing in Data Center Networks
TCP Pacing in Data Center Networks Monia Ghobadi, Yashar Ganjali Department of Computer Science, University of Toronto {monia, yganjali}@cs.toronto.edu 1 TCP, Oh TCP! 2 TCP, Oh TCP! TCP congestion control
COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination
COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This
Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------
Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------
Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control
Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP
Introduction to LAN/WAN. Network Layer
Introduction to LAN/WAN Network Layer Topics Introduction (5-5.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues Store-and-Forward Packet Switching Services
TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the
Measurement and Modelling of Internet Traffic at Access Networks
Measurement and Modelling of Internet Traffic at Access Networks Johannes Färber, Stefan Bodamer, Joachim Charzinski 2 University of Stuttgart, Institute of Communication Networks and Computer Engineering,
Round-Trip Time Inference Via Passive Monitoring
Round-Trip Time Inference Via Passive Monitoring Ryan Lance Department of Mathematics University of Maryland College Park, Maryland [email protected] Ian Frommer Applied Mathematics and Scientific Computation
Denial-of-Service Shrew Attacks
Denial-of-Service Shrew Attacks Bhuvana Mahalingam [email protected] 1. Introduction A Denial of Service Attack is defined as An incident in which a user or organization is deprived of the services of
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
Recommendations for Performance Benchmarking
Recommendations for Performance Benchmarking Shikhar Puri Abstract Performance benchmarking of applications is increasingly becoming essential before deployment. This paper covers recommendations and best
Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford
Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this
Burst (of packets) and Burstiness
66th IETF - Montreal, Quebec, Canada Burst (of packets) and Burstiness R. Krzanowski Ver 1.0 7/10/2006 1 Outline Objectives Definition of a phenomena Definition of Burst and burstiness Future research
A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks
A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks T.Chandrasekhar 1, J.S.Chakravarthi 2, K.Sravya 3 Professor, Dept. of Electronics and Communication Engg., GIET Engg.
