Ethernet Topology Discovery: A Survey
|
|
|
- Matthew Hopkins
- 9 years ago
- Views:
Transcription
1 Ethernet Topology Discovery: A Survey Kamal A. Ahmat CITY UNIVERSITY OF NEW YORK/Information Technology New York, USA [email protected] ABSTRACT Ethernet networks have undergone impressive growth since the past few decades. This growth can be appreciated in terms of the equipment, such as switches and links, that have been added, as well as in the number of users that it supports. In parallel to this expansion, over the past decade the networking research community has shown a growing interest in discovering and analyzing the Ethernet topology. Research in this area has concentrated on the theoretical analysis of Ethernet topology as well as developing tools and methods for mapping the network layout. These efforts have brought us to a crucial juncture for Ethernet topology measurement infrastructures: while, previously, these were both small (in terms of number of measurement points), we are starting to see the deployment of large-scale distributed systems composed of hundreds or thousands of monitors. As we look forward to this next generation of systems, we take stock of what has been achieved so far. In this survey, we discuss past and current mechanisms for discovering the Ethernet topology from theoretical and practical prospective. In addition to discovery techniques, we provide insights into some of the well known open issues related to Ethernet topology discovery. Keywords Ethernet Topology, Topology Survey, Link Layer Topology, NP-Hard. I. INTRODUCTION This survey focuses on measurements of the Ethernet network topology, i.e., the representation of the interconnection between directly connected peers in the Ethernet network. While information about network devices (i.e nodes) and connections can be obtained by processing the data collected from the network and passive measurements, researchers largely obtain information about network nodes, topology and its characteristics from active measurements. There are three different levels at which to describe the network topology: the link layer topology, the network layer topology, sometimes referred to generically as the internet topology, and the overlay topology. The Internet topology can itself be seen at four different levels. The first one, the IP interface level, considers IP interfaces of routers and end-systems. Usually, this topology is obtained by using data collected with a probing tool such as traceroute [14]. The second level, the router level, treats each router as a single node in the topology graph. It can be obtained by aggregating IP interfaces through a technique called alias resolution [19, 22, 29, 35]. The point of presence (PoP) level, is a third level, that can be obtained by further aggregating the routers, or directly aggregating the interfaces, that are identified as being geographically co-located. Finally, the AS level provides information about the connectivity of autonomous systems (ASes). This information is not primarily drawn from active measurements, but rather from inter-domain routing information and address databases. However, a deep description of the Internet topology discovery mechanisms is beyond the scope of this article. A typical overlay topology would be the topology of a peer-to-peer system. An overlay topology can be unstructured or structured. Structured overlays are exemplified by distributed hash tables, such as Chord [30] or CAN [24]. As explained by Stutzbach et al. [31], peers select neighbors through a predominantly random process. An overlay topology is influenced by peer participation (i.e., join and leave mechanisms) as well as the protocol behavior (i.e., neighbor selection). Characterizing an overlay topology can be done by examining properties of snapshots of the overlay. These snapshots can be gathered using a topology crawler, an engine that queries peers for a list of their neighbors [31-32]. As stated by Stutzback et al. [32], a deep understanding of the topological characteristics in overlay systems is required to meaningfully simulate and evaluate the actual performance of the proposed search and replication techniques. The overlay topology has drawn the attention of the net- in this article; we are not directly concerned with peer-to-peer systems. Consequently, describing the overlay topology in more detail would be beyond the scope of this survey. Interested readers might refer to the work of Ripeanu et al. [26], Stutzbach et al. [32] and Liang et al. [21]. The link layer topology, the subject of this article, as defined by Breitbart et al. [5], refers to the characterization of the physical connectivity relationships that exist among entities in a communications network. In other words, it is the description of how data link layer devices, switches and bridges, are interconnected and 1 / 6
2 how the different hosts are connected to them. Figure 1 depicts a simple typical Ethernet network. Maintaining an accurate and complete knowledge of the link layer topology is a prerequisite to many critical network management tasks such as network diagnostics and resource management. There is considerable scientific literature devoted to techniques for the discovery of link-layer topology. This research was mainly led by Breitbart et al. [5-7], Lowekamp et al. [22], Black et al. [2], Bejerano [3, 4], and, more recently, Gobjuka et al. [15-18]. Figure 1: Simple Ethernet network. The rest of the paper is organized as follows. The next section describes the motivation behind discovering topology of Ethernet networks. Section III describes methods used to discover Layer-2 network elements. In Section IV we focus on topology discovery methods presented in the literature. Section V describes limitations and issues related to Data Link topology discovery. Finally, Section VI concludes the paper. II. MOTIVATIONS Network topology information can be valuable in a variety of situations; it can be used for network administration (including fault-detecting and avoiding [2, 5], network inventory and planning [5, 6], protocol and routing algorithm development [11], performance prediction [22] and monitoring as well as accurate network simulation [20]. From a network security perspective, topology information can find application in threat detection [1], network monitoring [37], network access control [10] and forensic investigations [12, 25]. Manual network mapping is becoming increasingly difficult [9] (if not impossible [38]) due to the size and dynamic behavior of networks. Automatic topology discovery tools and algorithms will therefore play an important role in network security, management and administration. Research efforts concerned with physical topology discovery have focused mainly on cooperative network environments [2] where it is assumed that network elements are intelligent and can be queried for topology related information. A. Administration and Planning Network administrators are often faced with network problems where fault-detecting and avoiding need to be performed [2, 39]. In order to troubleshoot network problems, a topology map of the network can effectively be used to isolate the problem area [4, 46]. The topology map can also help identify infrastructural vulnerabilities and the network can then be adapted to provide more redundancy. From network management prospective, network topology information can be applied to network management. Network topology information is useful in deciding where to add new routers and to figure out whether current hardware is correctly configured. It also allows network managers to find bottlenecks and failures in the network. Also, network expansion planning and decisions regarding the placement of new infrastructure are also aided by accurate knowledge of the network topology. Network Management Systems (NMS) also employ topology information to help with network administration. The most notable systems include IBM's Tivoli1, Hewlett-Packard's OpenView2 and the open source Open-NMS3. B. Performance Prediction In a second application area, that of performance prediction, topology information can be used to optimize the performance of network aware applications as well as the performance of distributed, either grid or cluster, applications. Topology knowledge can help determine if a given network would provide a certain Quality of Service (QoS). As an example, in order to determine if a network would support multimedia technologies such as Voice over IP (VOIP), knowledge of the network topology is essential. Multimedia content is increasingly shared between Ethernet network users. In order to improve the quality of service (QoS) offered to users and provide a high availability of the shared data, it is common to store the data in replicated servers distributed across the internet. The replication of data over different machines makes the choice of its location a challenging problem that can be addressed with knowledge of the internet topology. C. Algorithm and Protocol Design Protocol design can use network topology knowledge. For instance, Radoslavov et al. discuss the impact of topology on the design and evaluation of four multicast protocols [40]. Also, a network's topology influences the dynamics of routing protocols [40] and should therefore be taken into account during the design of the protocols [24]. Large network topology visualization has proved to be a challenging task and algorithms have been developed for effectively presenting the topology information [24]. D. Simulation The accuracy of network simulations, a fourth application area, depends on realistic and accurate network 2 / 6
3 topologies [31]. Generated topologies for use in simulation do not always match real-world topologies [32] and create the need for accurately measuring realworld network topologies. Network simulation can not only help researchers understand the current behavior of a network, but also the effects of possible future changes to the network. E. Security Knowledge of the internet topology might have some applications in security. For instance, Burch and Cheswick propose to use internet topology information to track anonymous packets back to their source [9]. Firewalls have traditionally been placed at the network edge to protect against external threats. Insider threats to networks have become more common and it is estimated that they account for around 30% of security incidents. These security incidents also lead to significant financial losses [10]. Firewall placement and the management of a network security policy should therefore be influenced by the network topology. Another perimeter defense mechanism, Intrusion Detection Systems (IDS), can also benefit by taking network topology information into account. If an IDS is not placed correctly it could generate both false positives and false negatives. The problems with firewall and intrusion detection systems have generated research interest in the areas of Network Access Control (NAC, also called Network Admission Control [10]). These systems are proactive and attempt to enforce a network security policy at either layer 2 or 3 of the network [10]. Devices that do not conform to the security policy can for example be denied access to the network infrastructure by physically disabling switch ports. A lack of knowledge about the network's topology and the connected devices can however seriously hamper the effectiveness of NAC solutions [10]. III. NETWORK NODE DISCOVERY The first step in gaining knowledge about an Ethernet network is identifying unique network nodes. Ethernet network nodes can be active, or passive. While the first type of nodes (e.g. switches) can be used to obtain information that can be used in the node and topology discovery process, passive Figure 2: A typical multi-vendor, multi-protocol based network. 3 / 6 nodes (e.g. hubs) don t provide any useful information that can be used for the discovery process. Nodes in an Ethernet network are uniquely identified by their MAC addresses at layer 2, but this raw number by itself does not provide a lot of information about the node. Other sources of information were therefore combined, where possible, with this number to provide more information about each node. Even though dumb network devices, such as hubs, may be transparent to the network, influence the performance and behavior of the network. Thus, it is significantly important to discover the presence of such nodes and their accurate locations and interconnectivity with other visible devices. IV. NETWORK TOPOLOGY INFERENCE A network's physical topology can potentially correspond to several logical topologies depending on the level of abstraction used. In 2000 Breitbart et al [5] realized that network management tools as well as previous research efforts focused on layer 3 topology discovery and ignored the connectivity of layer 2 network elements. Where layer 2 topology discovery tools did exist, they were found to specifically target single vendor products [5]. Breitbart et al therefore developed algorithms that could perform layer 2 topology discovery in multi-vendor (heterogeneous) networks (See Figure 2) by using standard Simple Network Management Protocol (SNMP) Management Information Base (MIB) data. The initial algorithm developed by Breitbart et al [5] depended on perfect Address Forwarding Table (AFT) data collected from every single element in the network. Breitbart et al also observed that for multisubnet networks the network topology may not be unique even for the set of complete AFTs obtained from a simple Ethernet network. Breitbart et al proposed a newer algorithm that could successfully discover the target network topology, provided that the network was uniquely described by the SNMP MIB data obtained [6]. In such a case finding an exact topology is not possible. However, their algorithm from generates some network fragments that can be uniquely determined. Lowekamp et al. relaxed the dependency on complete AFTs information [22] and proposed a necessary and sufficient condition for two AFTs to be connected
4 (directly or indirectly). Their work also addressed the topologies that may contain uncooperative nodes, which are the nodes that can appear in other nodes AFTs but don t provide access to their own AFTs. The work described in [22] could discover the topology with only limited AFT data collected from SNMP enabled network elements. However, their approach may fail to discover the topology even in simple networks as observed by Gobjuka and Breitbart [16, 17]. Bejerano et al. [3] proposed the first formal algorithm to discover the topology in presence of uncooperative elements (i.e. hubs.) Uncooperative elements do not speak SNMP, do not allow access or do not even have layer 2 addresses. The main issue with this algorithm was its complexity; the algorithm was too complex to understand and implement in practice. Furthermore, this method may not discover any topology if the given input set of AFTs defines a non-unique topology. Sun et al [33, 34] proposed an algorithm based on connections reasoning technique that was claimed to be necessary and sufficient to discover the layer 2 topology even when the information provided by nodes MIBs is incomplete. However, their claim was not supported by proofs. Furthermore, the incorrectness of these claims was shown by Gobjuka and Breitbart [16, 17] by proving that discovering Ethernet topology when AFTs are incomplete is, in fact, an NP-hard problem, even if the network comprises a single subnet. Further work by Bejerano [4] showed the limitations of the algorithms developed by Lowekamp et al [22] and Breitbart et al [5, 6] in multi-subnet networks or in the presence of uncooperative switches and hubs. Bejerano s algorithm was simple and could discover the topology in most of cases. However, it cannot guarantee a topology discovery. Also, his method also requires a completeness of input AFTs. Research by Stott [41] also employed SNMP MIB data, but instead of using forwarding table data, the algorithm used data from the Bridge-MIB. However, the method described in this paper assumes that each device has knowledge of the spanning tree root, which doesn t happen always in practice. Gobjuka and Breitbart [7, 15] described the first formal method to determine whether a given set of complete AFTs define a unique topology when the network doesn t contain hubs. They also showed that there is proportional relationship between the number of subnets in the network and non-uniqueness of the discovered topology. Further work by Gobjuka and Breitbart [18] described the first practical algorithm to discover the Ethernet network topology when the network contains hubs. Their methods discover the all network topologies when the MIB information defines more than one topology. Furthermore, they proposed criteria to decide the uniqueness of network topology from a complete set of AFTs when the network contains hubs. More recently, Gobjuka and Breitbart [16, 17] investigated the problem of finding the layer 2 topology for networks that may include uncooperative nodes when the available AFTs are incomplete. They proved that finding a layer 2 network topology for a given set of incomplete AFTs is an NP-hard problem even for single subnet networks and deciding whether a given set of AFTs defines a unique network topology is a co-np-hard problem. The authors showed that the topology discovery problem is NP-hard even if there are two nodes a and b in the network such that node a appears in some AFTs and node b appears in some AFTs but neither a nor b appears in all AFTs. This condition was probably the strongest which makes the problem NP-hard as they also showed that the topology can be discovered in polynomial time if all AFTs include node a. They also proposed heuristic algorithms to find network topology [16, 17]. Their also described methods for inferring complete AFTs from incomplete information. This approach is used in heuristic that discovers the topology from incomplete AFTs. The Internet Engineering Task Force (IETF) attempted to create a standard for SNMP topology discovery by creating the Physical Topology MIB, but adoption of the proposal was hampered by the fact that it did not include details on how to actually populate the required MIB objects. To remedy the situation, the IEEE developed the Link Layer Discovery Protocol (LLDP) as part of the 802.1AB-2005 standard. The LLDP allows neighboring devices to become aware of each other and populate their Physical Topology MIBs. The efforts surrounding LLDP clearly shows an industry need for topology discovery in heterogeneous networks at layer 2; however, LLDP cannot easily be deployed on legacy equipment. All the layer 2 topology discovery techniques and algorithms discussed thus far depend on SNMP enabled network elements. The reliance on SNMP can prove problematic in quite a number of network environments. As networks grow and management becomes decentralized it cannot be assumed that SNMP would be enabled or that administrative SNMP access would be granted. A lot of small business, home office and branch office networks are built using consumer-grade network equipment that do not even support SNMP. A need for topology discovery techniques that do not require network cooperation and for tools that can augment SNMP-based techniques therefore exists. A technique for layer 2 topology discovery without network element cooperation has been implemented by Black et al [2]. The technique exploits the packet forwarding properties of network elements, specifically those of switches. The algorithm requires specialized software on many edge nodes (hosts) that are controlled from a master node to execute the distributed discovery algorithm [2]. Cooperating hosts train switches they are connected to in order to only pass packets with specific addresses. The master node then instructs other hosts to send probe packets with the specific addresses. Depending on where the probe packets are delivered to (or not), a picture of the network internals can be formed. The problem with this method is that special software agents have to be installed on network hosts. Other efforts worth mentioning are proprietary protocols by network vendors used prior to the 4 / 6
5 standardization of the LLDP. These include the Cisco Discovery Protocol (CDP), Enterasys Networks' Cabletron Discovery Protocol (also CDP), Extreme Networks' Extreme Discovery Protocol (EDP) and Nortel Networks' Nortel Discovery Protocol (NDP). The use of Ethernet as an access technology, especially in the telecommunication industry, has also led to efforts to add and standardize Ethernet capabilities for Operational, Administration and Maintenance (OAM) management. The main operational issues addressed are discovery, link monitoring, and fault signaling and remote loopback. The added functionality is not aimed specifically at topology discovery in enterprise networks, but could potentially be used. V. LIMITATIONS AND ISSUES Even though the techniques used for network layer topology discovery so far can discover the topology in wide range of case, there are several important cases where these methods may fail to discover the Ethernet network topology. In practice, network topology can change during the discovery process. Furthermore, AFTs can be stale. Both situations can result in AFTs that are not consists with the actual network topology. Unfortunately, none of the methods published so far in the research community or industry addresses this important issue. Another limitation with Ethernet topology discovery is the existence of VLANs. In fact, it is very common for Ethernet networks to have VLANs. VLANs are used similarly to subnets but it not necessary and they allow Ethernet networks to spread over large geographical distance. The main issue with networks that have VLANs is that the network may have cycles and the topology is no longer tree. Breitbart et al. described method to discover the topology in the presence of VLANs []. However, since VLANs can spread large geographical areas, and consequently network devices, it is impractical to assume that AFTs will be complete in the presence of VLANs. Figure 3 depicts a typical VLAN and its topological layout. The third limitation with the current approaches occurs with the existence of wireless and mobile nodes. Wireless and mobile nodes don t follow the classical AFT approach to communicate with other network devices. Consequently, the current methods cannot be reused to infer the topology in the presence of wireless and mobile networks. VI. CONCLUSION The past ten years have seen the rise of a new networking measurement area: the internet topology discovery. Due to its particular structure, the network topology can be understood at various levels. In this article, we focused on the work performed by the research community on the network layer topology, sometimes also called the internet topology. In this article, we first explained that the internet topology discovery is driven by important questions. For instance, one might want to model the internet in order to reproduce its behavior in a laboratory. However, although the amount of work performed by the research community is huge, this is not the end of the story. We are starting to see the deployment of largescale distributed measurement infrastructures made of hundreds or thousands REFERENCES [1] D. Apostal, T. Foote-Lennox, T. Markham, A. Down, R. Lu, and D. O'Brien. Checkmate network security modeling. In DARPA Information Survivability Conference & Exposition II, DISCEX '01.,volume 1, pages 214{226, , 23 [2] R. Black, A. Donnelly, C. Fournet, Ethernet Topology Discovery without Network Assistance, In Proc. ICNP, 2004, pp [3] Y. Bejerano, Y. Breitbart, M. Garofalakis, R. Rastogi, Physical Topology Discovery for Large Multi-Subnet Networks, In Proc. IEEE INFOCOM, 2003, pp [4] Y. Bejerano, Taking the Skeletons Out of the Closets: A Simple and Efficient Topology Discovery Scheme for Large Multisubnet Networks, In Proc. of IEEE INFOCOM, 2006, pp [5] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, and A. Silberschatz, Topology Discovery in Heterogeneous IP Networks, In Proc. IEEE INFOCOM, 2000, pp [6] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, and A. Silberschatz, Topology Discovery in Heterogeneous IP Networks: The NetInventory System, IEEE/ACM Transactions on Networking, vol. 12, no. 3, June 2004, pp [7] Y. Breitbart and H. Gobjuka, Characterization of layer-2 unique topologies, Information Processing Letters, vol. 105, no. 2, Jan. 2008, pp [8] B. Boardman, Layer 2 Layout: Layer 2 Discovery Digs Deep, Network and System Management Workshop, Nov [9] H. Burch and B. Cheswick. Mapping the Internet. Computer, 32(4):97{98,102, [10] Cisco Network Admission Control (NAC) solution addresses today's security challenges. White paper, Cisco Systems, [11] K. C. Clay. CAIDA: Visualizing the Internet. IEEE Internet Computing, 5(1):88, , 21, 23 [12] V. Corey, C. Peterman, S. Shearin, M. S. Greenberg, and J. V. Bokkelen. Network forensics analysis. IEEE Internet Computing, 6(6):60{66, [13] J. Delport, Link layer topology discovery in an uncooperative ethernet environment, Master Thesis, University of Pretoria, [14] E. Gavron, NANOG Traceroute, see ftp://ftp.login.com/pub/software/traceroute/ [15] H. Gobjuka and Y. Breitbart, Characterization of Layer-2 Unique Topologies in Multisubnet Local Networks, In Proc. IEEE LCN, 2006, pp [16] H. Gobjuka, Y. Breitbart, Ethernet Topology Discovery for Networks with Incomplete Information, In Proc. IEEE ICCCN, 2007, pp [17] H. Gobjuka, Y. Breitbart, Finding Ethernet-Type Network Topology is Not Easy, Technical Report: TR-KSU-CS , Kent State University, / 6
6 [18] H. Gobjuka and Y. Breitbart, Discovering Network Topology of Large Multisubnet Ethernet Networks, In Proc. IEEE LCN, 2007, pp [19] R. Govindan and H. Tangmunarunkit, Heuristics for Internet Map Discovery, Proc. IEEE INFOCOM, Mar [20] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz. On realistic network topologies for simulation. In MoMeTools '03: Proceedings of the ACM SIGCOMM workshop on Models, methods and tools for reproducible network research, pages 28{32, New York, NY, USA, ACM Press. 1, 21, 85. [21] J. Liang, R. Kumar, and K. W. Ross, The Kazaa Overlay: A Measurement Study, Computer Networks, vol. 49, no. 6, Oct [22] B. Lowekamp, D. O'Hallaron, and T. Gross, Topology Discovery for Large Ethernet Networks, In Proc. ACM SIGCOMM, 2001, pp [23] J. J. Pansiot and D. Grad, On Routes and Multicast Trees in the Internet, ACM SIGCOMM Computer Commun. Review, vol. 28, no. 1, Jan. 1998, pp [24] S. Ratnasamy et al., A Scalable Content Addressable Network, Proc. ACM SIGCOMM, Aug [25] W. Ren and H. Jin. Distributed agent-based real time network intrusion forensics system architecture design. In AINA '05: Proceedings of the 19th International Conference on Advanced Information Networking and Applications, pages 177{182, Washington, DC, USA, IEEE Computer Society. [26] M. Ripeanu, I. Foster, and A. Iamnitchi, Mapping the Gnutella Network: Properties of Large-Scale Peer-to-Peer Systems and Implications for System Design, IEEE Internet Computing J., vol. 6, no. 1, Aug [27] M. SON, B. Joo, B. KIM, and J. LEE, Physical Topology Discovery for Metro Ethernet Networks, ETRI Journal, 2005, pp [28] M. SON, B. KIM, and J. LEE, Topology Discovery in Large Ethernet Mesh Networks, IEICE Transactions on Communications, 2006, pp [29] N. Spring, R. Mahajan, and D. Wetherall, Measuring ISP Topologies with Rocketfuel, Proc. ACM SIGCOMM, Aug [30] I. Stoica et al., Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications, IEEE/ACM Trans. Net., vol. 11, no. 1, Feb. 2003, pp [31] D. Stutzbach and R. Rejaie, Capturing Accurate Snapshots of the Gnutella Network, Proc. IEEE Global Internet Symp., Mar [32] D. Stutzbach, R. Rejaie, and S. Sen, Characterizing Unstructured Overlay Topologies in Modern p2p File- Sharing Systems, Proc. ACM SIGCOMM Internet Measurement Conf. (IMC), Oct [33] Y. Sun, Z. Wu, Z. Shi, The Physical Topology Discovery for Switched Ethernet Based on Connection Reasoning, In Proc. ISCIT, 2005, pp [34] Y. Sun, Z. Shi, Z. Wu, A Discovery Algorithm for Physical Topology in Switched Networks, In Proc. IEEE LCN, 2005, pp [35] R. Teixeira, K. Marzullo, S. Savage, and G. Voelker, In Search of Path Diversity in ISP Networks, Proc. ACM SIGCOMM Internet Measurement Conf. (IMC), Oct [36] Uzair, U. Ahmad, H.F. Ali, A. Suguri, H., An Efficient Algorithm for Ethernet Topology Discovery in Large Multi-subnet Networks, In Proc. SoSE 07. [37] G. Vigna, F. Valeur, J. Zhou, and R. A. Kemmerer. Composable tools for network discovery and security analysis. In ACSAC '02: Proceedings of the 18th Annual Computer Security Applications Conference, page 14, Washington, DC, USA, IEEE Computer Society. [38] D. G. Waddington, F. Chang, R. Viswanathan, and B. Yao. Topology discovery for public IPv6 networks. SIGCOMM Computer Communication Review, 33(3):59{68, [39] A.Westerinen and W. Bumpus. The continuing evolution of distributed systems management. IEICE Transactions on Information and Systems, E86-D:2256{2261, November [40] P. Radoslavov et al., On Characterizing Network Topologies and Analyzing Their Impact on Protocol Design, Computer Science Department, University of Southern California, Tech. Rep , Feb [41] D. T. Stott. Layer-2 path discovery using spanning tree MIBs. Technical report, Avaya Laboratories, March Figure 3: A typical VLAN and its topology layout. 6 / 6
Ethernet Topology Discovery: A Survey
Journal of Communication and Computer 10 (2013) 951-959 Kamal A. Ahmat Department of Information Technology, City University of New York, New York 10075, USA Received: May 10, 2012 / Accepted: June 12,
Finding Ethernet-Type Network Topology is Not Easy
Finding Ethernet-Type Network Topology is Not Easy Hassan Gobjuka, Yuri Breitbart Department of Computer Science Kent State University Kent, OH 44242 {hgobjuka,yuri}@cs.kent.edu 1 Abstract In this paper
Network Discovery Protocol LLDP and LLDP- MED
Network LLDP and LLDP- MED Prof. Vahida Z. Attar College of Engineering, Pune Wellesely Road, Shivajinagar, Pune-411 005. Maharashtra, INDIA Piyush chandwadkar College of Engineering, Pune Wellesely Road,
Network Discovery Protocol LLDP and LLDP- MED
Network LLDP and LLDP- MED Prof. Vahida Z. Attar College of Engineering, Pune Wellesely Road, Shivajinagar, Pune-411 005. Maharashtra, INDIA Piyush chandwadkar College of Engineering, Pune Wellesely Road,
Graph Theory Applications in Network Security
Graph Theory Applications in Network Security Jonathan Webb1, Fernando Docemmilli2, and Mikhail Bonin3 Theory Lab - Central Queensland University Wayville SA 5034 E-mail addresses: (1) [email protected]
TOPOLOGIES NETWORK SECURITY SERVICES
TOPOLOGIES NETWORK SECURITY SERVICES 1 R.DEEPA 1 Assitant Professor, Dept.of.Computer science, Raja s college of Tamil Studies & Sanskrit,Thiruvaiyaru ABSTRACT--In the paper propose about topology security
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004 401
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004 401 Topology Discovery in Heterogeneous IP Networks: The NetInventory System Yuri Breitbart, Minos Garofalakis, Member, IEEE, Ben Jai, Cliff
IP NETWORK MONITORING AND AUTOMATIC ANOMALY DETECTION
IP NETWORK MONITORING AND AUTOMATIC ANOMALY DETECTION Michael de Castro, DEEC, Instituto Superior Técnico, Lisboa, Portugal November 2008 Abstract. This paper presents a new tool designed to assist in
Network Discovery Tool
Bestin Jose Mahesh Kumar Shyamsunder Computer Science and Engineering Indian Institue of Technology Bombay November 28, 2004 1 Problem Statement 2 Introduction to Netdisco Features of NetDisco 3 4 5 Problem
IP Network Topology Discovery Using SNMP
IP Network Topology Discovery Using SNMP Suman Pandey #1, Mi-Jung Choi #2, Sung-Joo Lee #3, James W. Hong #4 # Dept. of Computer Science and Engineering, POSTECH, Korea 1 [email protected], 2 [email protected],
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS Matt Eclavea ([email protected]) Senior Solutions Architect, Brocade Communications Inc. Jim Allen ([email protected]) Senior Architect, Limelight
Research Article Volume 6 Issue No. 4
DOI 10.4010/2016.863 ISSN 2321 3361 2016 IJESC Research Article Volume 6 Issue No. 4 Different Modes of Discovery of Network Nodes Using SNMP and Reconciliation HemlataL.Eglambe 1, Divyani R.Vade 2, Megha
IBM Tivoli Network Manager software
Perform real-time network discovery, topology visualization and root-cause analysis IBM Tivoli Network Manager software Highlights Help increase the availability and performance of critical business services
The impact of active network devices mis-configuration in network security
The impact of active network devices mis-configuration in network security Research Design 1. Background: Adversaries take advantage of the fact that network devices may become less securely configured
Cisco Change Management: Best Practices White Paper
Table of Contents Change Management: Best Practices White Paper...1 Introduction...1 Critical Steps for Creating a Change Management Process...1 Planning for Change...1 Managing Change...1 High Level Process
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 2, Issue 9, September 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Experimental
Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs
Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs As a head of the campus network department in the Deanship of Information Technology at King Abdulaziz University for more
OAM Operations Administration and Maintenance
OAM Operations Administration and Maintenance IERU Communications Ltd OAM Rev. A Page 1 of 9 Operations Administration and Maintenance 1. Overview This paper describes the Ethernet and Multi-Protocol Label
Constella: A Complete IP Network Topology Discovery Solution
Constella: A Complete IP Network Topology Discovery Solution Fawad Nazir 1,2,4, Tallat Hussain Tarar 3,4, Faran Javed 4, Hiroki Suguri 5, Hafiz Farooq Ahmad 4,5, and Arshad Ali 4 1 National ICT Australia
Network Virtualization for Large-Scale Data Centers
Network Virtualization for Large-Scale Data Centers Tatsuhiro Ando Osamu Shimokuni Katsuhito Asano The growing use of cloud technology by large enterprises to support their business continuity planning
Cisco Active Network Abstraction 4.0
Cisco Active Network Abstraction 4.0 Product Overview Cisco Active Network Abstraction (ANA) is a flexible, vendor-neutral network resource management solution for a multitechnology, multiservice network
SSVVP SIP School VVoIP Professional Certification
SSVVP SIP School VVoIP Professional Certification Exam Objectives The SSVVP exam is designed to test your skills and knowledge on the basics of Networking, Voice over IP and Video over IP. Everything that
Configuring and Managing Token Ring Switches Using Cisco s Network Management Products
Configuring and Managing Token Ring Switches Using Cisco s Network Management Products CHAPTER 12 Cisco offers several network management applications that you can use to manage your Catalyst Token Ring
Network System Design Lesson Objectives
Network System Design Lesson Unit 1: INTRODUCTION TO NETWORK DESIGN Assignment Customer Needs and Goals Identify the purpose and parts of a good customer needs report. Gather information to identify network
TRILL Large Layer 2 Network Solution
TRILL Large Layer 2 Network Solution Contents 1 Network Architecture Requirements of Data Centers in the Cloud Computing Era... 3 2 TRILL Characteristics... 5 3 Huawei TRILL-based Large Layer 2 Network
A Link Layer Discovery Protocol Fuzzer
The University of Texas at Austin, Department of Computer Sciences, Technical Report TR-07-24 A Link Layer Discovery Protocol Fuzzer Jeremy Hollander Department of Computer Sciences The University of Texas
Extreme Networks CoreFlow2 Technology TECHNOLOGY STRATEGY BRIEF
Extreme Networks CoreFlow2 Technology TECHNOLOGY STRATEGY BRIEF TECHNOLOGY STRATEGY BRIEF Extreme Networks CoreFlow2 Technology Benefits INCREASED VISIBILITY Detailed monitoring of applications, their
Networking 4 Voice and Video over IP (VVoIP)
Networking 4 Voice and Video over IP (VVoIP) Course Objectives This course will give delegates a good understanding of LANs, WANs and VVoIP (Voice and Video over IP). It is aimed at those who want to move
Network Topology. White Paper
White Paper Network Topology JANUARY 2015 This document describes the benefits of Cisco Meraki s Network Topology technology and how you can use it to visualize and troubleshoot your network. In addition,
A Framework for End-to-End Proactive Network Management
A Framework for End-to-End Proactive Network Management S. Hariri, Y. Kim, P. Varshney, Department of Electrical Engineering and Computer Science Syracuse University, Syracuse, NY 13244 {hariri, yhkim,varshey}@cat.syr.edu
Traceroute-Based Topology Inference without Network Coordinate Estimation
Traceroute-Based Topology Inference without Network Coordinate Estimation Xing Jin, Wanqing Tu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Clear Water
A Topology-Aware Relay Lookup Scheme for P2P VoIP System
Int. J. Communications, Network and System Sciences, 2010, 3, 119-125 doi:10.4236/ijcns.2010.32018 Published Online February 2010 (http://www.scirp.org/journal/ijcns/). A Topology-Aware Relay Lookup Scheme
Internet Traffic Measurement
Internet Traffic Measurement Internet Traffic Measurement Network Monitor Placement Measurement Analysis Tools Measurement Result Reporting Probing Mechanism Vantage Points Edge vs Core Hardware vs Software
CLOUD NETWORKING FOR ENTERPRISE CAMPUS APPLICATION NOTE
CLOUD NETWORKING FOR ENTERPRISE CAMPUS APPLICATION NOTE EXECUTIVE SUMMARY This application note proposes Virtual Extensible LAN (VXLAN) as a solution technology to deliver departmental segmentation, business
DEMYSTIFYING ROUTING SERVICES IN SOFTWAREDEFINED NETWORKING
DEMYSTIFYING ROUTING SERVICES IN STWAREDEFINED NETWORKING GAUTAM KHETRAPAL Engineering Project Manager, Aricent SAURABH KUMAR SHARMA Principal Systems Engineer, Technology, Aricent DEMYSTIFYING ROUTING
Definition. A Historical Example
Overlay Networks This lecture contains slides created by Ion Stoica (UC Berkeley). Slides used with permission from author. All rights remain with author. Definition Network defines addressing, routing,
Lumeta IPsonar. Active Network Discovery, Mapping and Leak Detection for Large Distributed, Highly Complex & Sensitive Enterprise Networks
IPsonar provides visibility into every IP asset, host, node, and connection on the network, performing an active probe and mapping everything that's on the network, resulting in a comprehensive view of
Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.
Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols
How To Manage A Network Management System (Hitachi)
Hitachi Review Vol. 51 (2002), No. 2 65 Integrated Management System Job Management Partner 1 (JP1), Version6i for Broadband Networks Yoshiyuki Kurosaki Toshio Sato Kiminori Sugauchi Tokuji Tamada OVERVIEW:
Packet Sampling and Network Monitoring
Packet Sampling and Network Monitoring CERN openlab Monthly Technical Meeting 13 th November, 2007 Milosz Marian Hulboj [email protected] Ryszard Erazm Jurga [email protected] What is Network
IBM Security QRadar Risk Manager
IBM Security QRadar Risk Manager Proactively manage vulnerabilities and network device configuration to reduce risk, improve compliance Highlights Collect network security device configuration data to
Juniper Networks EX Series/ Cisco Catalyst Interoperability Test Results. May 1, 2009
Juniper Networks EX Series/ Cisco Catalyst Interoperability Test Results May 1, 2009 Executive Summary Juniper Networks commissioned Network Test to assess interoperability between its EX4200 and EX8208
PROPOSAL AND EVALUATION OF A COOPERATIVE MECHANISM FOR HYBRID P2P FILE-SHARING NETWORKS
PROPOSAL AND EVALUATION OF A COOPERATIVE MECHANISM FOR HYBRID P2P FILE-SHARING NETWORKS Hongye Fu, Naoki Wakamiya, Masayuki Murata Graduate School of Information Science and Technology Osaka University
Varalakshmi.T #1, Arul Murugan.R #2 # Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam
A Survey on P2P File Sharing Systems Using Proximity-aware interest Clustering Varalakshmi.T #1, Arul Murugan.R #2 # Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam
Effective Network Monitoring
Effective Network Monitoring Yuri Breitbart, Feodor Dragan, Hassan Gobjuka Department of Computer Science Kent State University Kent, OH 44242 {yuri,dragan,hgobjuka}@cs.kent.edu 1 Abstract Various network
FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE
Form 2A, Page 1 FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE COURSE NUMBER: CET 2600 COURSE TITLE: Network Fundamentals PREREQUISITE(S): CTS 1131 and CTS 1133 COREQUISITE(S): STUDENT
Network Virtualization and Data Center Networks 263-3825-00 Data Center Virtualization - Basics. Qin Yin Fall Semester 2013
Network Virtualization and Data Center Networks 263-3825-00 Data Center Virtualization - Basics Qin Yin Fall Semester 2013 1 Walmart s Data Center 2 Amadeus Data Center 3 Google s Data Center 4 Data Center
Graph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, [email protected] Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents
NOS for Network Support (903)
NOS for Network Support (903) November 2014 V1.1 NOS Reference ESKITP903301 ESKITP903401 ESKITP903501 ESKITP903601 NOS Title Assist with Installation, Implementation and Handover of Network Infrastructure
Secure Networks for Process Control
Secure Networks for Process Control Leveraging a Simple Yet Effective Policy Framework to Secure the Modern Process Control Network An Enterasys Networks White Paper There is nothing more important than
Facility Usage Scenarios
Facility Usage Scenarios GDD-06-41 GENI: Global Environment for Network Innovations December 22, 2006 Status: Draft (Version 0.1) Note to the reader: this document is a work in progress and continues to
INCREASE NETWORK VISIBILITY AND REDUCE SECURITY THREATS WITH IMC FLOW ANALYSIS TOOLS
WHITE PAPER INCREASE NETWORK VISIBILITY AND REDUCE SECURITY THREATS WITH IMC FLOW ANALYSIS TOOLS Network administrators and security teams can gain valuable insight into network health in real-time by
Microsoft Windows Server 2008: MS-6435 Designing Network and Applications Infrastructure MCITP 6435
coursemonster.com/au Microsoft Windows Server 2008: MS-6435 Designing Network and Applications Infrastructure MCITP 6435 View training dates» Overview This course will provide students with an understanding
Analysis of Network Segmentation Techniques in Cloud Data Centers
64 Int'l Conf. Grid & Cloud Computing and Applications GCA'15 Analysis of Network Segmentation Techniques in Cloud Data Centers Ramaswamy Chandramouli Computer Security Division, Information Technology
CompTIA Network+ (Exam N10-005)
CompTIA Network+ (Exam N10-005) Length: Location: Language(s): Audience(s): Level: Vendor: Type: Delivery Method: 5 Days 182, Broadway, Newmarket, Auckland English, Entry Level IT Professionals Intermediate
IBM QRadar Security Intelligence Platform appliances
IBM QRadar Security Intelligence Platform Comprehensive, state-of-the-art solutions providing next-generation security intelligence Highlights Get integrated log management, security information and event
TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems
for Service Provider Data Center and IXP Francois Tallet, Cisco Systems 1 : Transparent Interconnection of Lots of Links overview How works designs Conclusion 2 IETF standard for Layer 2 multipathing Driven
A Fast Path Recovery Mechanism for MPLS Networks
A Fast Path Recovery Mechanism for MPLS Networks Jenhui Chen, Chung-Ching Chiou, and Shih-Lin Wu Department of Computer Science and Information Engineering Chang Gung University, Taoyuan, Taiwan, R.O.C.
A Network Management Framework for Emerging Telecommunications Network. [email protected]
Symposium on Modeling and Simulation Tools for Emerging Telecommunication Networks: Needs, Trends, Challenges, Solutions Munich, Germany, Sept. 8 9, 2005 A Network Management Framework for Emerging Telecommunications
Some Examples of Network Measurements
Some Examples of Network Measurements Example 1 Data: Traceroute measurements Objective: Inferring Internet topology at the router-level Example 2 Data: Traceroute measurements Objective: Inferring Internet
Cisco. A Beginner's Guide Fifth Edition ANTHONY T. VELTE TOBY J. VELTE. City Milan New Delhi Singapore Sydney Toronto. Mc Graw Hill Education
Cisco A Beginner's Guide Fifth Edition ANTHONY T. VELTE TOBY J. VELTE Mc Graw Hill Education New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Contents
Computer Networking Networks
Page 1 of 8 Computer Networking Networks 9.1 Local area network A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as a home, school, office
How To Create An Intelligent Infrastructure Solution
SYSTIMAX Solutions Intelligent Infrastructure & Security Using an Internet Protocol Architecture for Security Applications White Paper July 2009 www.commscope.com Contents I. Intelligent Building Infrastructure
Analysis of Internet Topologies
Analysis of Internet Topologies Ljiljana Trajković [email protected] Communication Networks Laboratory http://www.ensc.sfu.ca/cnl School of Engineering Science Simon Fraser University, Vancouver, British
Additional Information: A link to the conference website is available at: http://www.curtin.edu.my/cutse2008/index.html
Citation: Veeramani, S. and Gopal, Lenin. 2008. Network monitoring tool, in Curtin University of Technology (ed), Curtin University of Technology Science and Engineering International Conference CUTSE
Portable Wireless Mesh Networks: Competitive Differentiation
Portable Wireless Mesh Networks: Competitive Differentiation Rajant Corporation s kinetic mesh networking solutions combine specialized command and control software with ruggedized, high-performance hardware.
Auditing the LAN with Network Discovery
Application Note Auditing the LAN with Network Discovery Introduction This application note is one in a series of papers about troubleshooting local area networks (LAN) from JDSU Communications Test and
Designing a Windows Server 2008 Network Infrastructure
Designing a Windows Server 2008 Network Infrastructure MOC6435 About this Course This five-day course will provide students with an understanding of how to design a Windows Server 2008 Network Infrastructure
A Novel Pathway for Portability of Networks and Handing-on between Networks
A Novel Pathway for Portability of Networks and Handing-on between Networks D. S. Dayana #1, S. R. Surya #2 Department of Computer Applications, SRM University, Chennai, India 1 [email protected]
QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities)
QoS Switching H. T. Kung Division of Engineering and Applied Sciences Harvard University November 4, 1998 1of40 Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p
The WestNet Advantage: -- Textbooks, ebooks, ecourses -- Instructor Resourse Center -- Student Resource Center
The WestNet Advantage: -- Textbooks, ebooks, ecourses -- Instructor Resourse Center -- Student Resource Center The entire cost of the program is funded by the textbook, ebook or ecourse purchase by your
Analysis of Internet Topologies: A Historical View
Analysis of Internet Topologies: A Historical View Mohamadreza Najiminaini, Laxmi Subedi, and Ljiljana Trajković Communication Networks Laboratory http://www.ensc.sfu.ca/cnl Simon Fraser University Vancouver,
Module 1: Overview of Network Infrastructure Design This module describes the key components of network infrastructure design.
SSM6435 - Course 6435A: Designing a Windows Server 2008 Network Infrastructure Overview About this Course This five-day course will provide students with an understanding of how to design a Windows Server
HARTING Ha-VIS Management Software
HARTING Ha-VIS Management Software People Power Partnership HARTING Management Software Network Management Automation IT - with mcon Switches from HARTING With the Ha-VIS mcon families, HARTING has expanded
Visio Enabled Solution: One-Click Switched Network Vision
Visio Enabled Solution: One-Click Switched Network Vision Tim Wittwer, Senior Software Engineer Alan Delwiche, Senior Software Engineer March 2001 Applies to: All Microsoft Visio 2002 Editions All Microsoft
Entropy-Based Collaborative Detection of DDoS Attacks on Community Networks
Entropy-Based Collaborative Detection of DDoS Attacks on Community Networks Krishnamoorthy.D 1, Dr.S.Thirunirai Senthil, Ph.D 2 1 PG student of M.Tech Computer Science and Engineering, PRIST University,
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1681 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1681 Software as a Model for Security in Cloud over Virtual Environments S.Vengadesan, B.Muthulakshmi PG Student,
Huawei One Net Campus Network Solution
Huawei One Net Campus Network Solution 2 引 言 3 园 区 网 面 临 的 挑 战 4 华 为 园 区 网 解 决 方 案 介 绍 6 华 为 园 区 网 解 决 方 案 对 应 产 品 组 合 6 结 束 语 Introduction campus network is an internal network of an enterprise or organization,
Research on P2P-SIP based VoIP system enhanced by UPnP technology
December 2010, 17(Suppl. 2): 36 40 www.sciencedirect.com/science/journal/10058885 The Journal of China Universities of Posts and Telecommunications http://www.jcupt.com Research on P2P-SIP based VoIP system
"Charting the Course...
Description "Charting the Course... Course Summary Interconnecting Cisco Networking Devices: Accelerated (CCNAX), is a course consisting of ICND1 and ICND2 content in its entirety, but with the content
On A Network Forensics Model For Information Security
On A Network Forensics Model For Information Security Ren Wei School of Information, Zhongnan University of Economics and Law, Wuhan, 430064 [email protected] Abstract: The employment of a patchwork
Cisco Discovery 3: Introducing Routing and Switching in the Enterprise 157.8 hours teaching time
Essential Curriculum Computer Networking II Cisco Discovery 3: Introducing Routing and Switching in the Enterprise 157.8 hours teaching time Chapter 1 Networking in the Enterprise-------------------------------------------------
Distributed Dynamic Load Balancing for Iterative-Stencil Applications
Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,
Expert Reference Series of White Papers. VMware vsphere Distributed Switches
Expert Reference Series of White Papers VMware vsphere Distributed Switches [email protected] www.globalknowledge.net VMware vsphere Distributed Switches Rebecca Fitzhugh, VCAP-DCA, VCAP-DCD, VCAP-CIA,
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 349 Load Balancing Heterogeneous Request in DHT-based P2P Systems Mrs. Yogita A. Dalvi Dr. R. Shankar Mr. Atesh
A UBIQUITOUS PROTOCOL FOR ADDRESS DYNAMICALLY AUTO CONFIGURATION FOR MOBILE AD HOC NETWORKS
A UBIQUITOUS PROTOCOL FOR ADDRESS DYNAMICALLY AUTO CONFIGURATION FOR MOBILE AD HOC NETWORKS Chandanpreet Kaur Global Institute of Management and Emerging Technologies, Amritsar, Punjab, India, [email protected]
International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.
RESEARCH ARTICLE ISSN: 2321-7758 GLOBAL LOAD DISTRIBUTION USING SKIP GRAPH, BATON AND CHORD J.K.JEEVITHA, B.KARTHIKA* Information Technology,PSNA College of Engineering & Technology, Dindigul, India Article
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering
Building Reliable, Scalable AR System Solutions. High-Availability. White Paper
Building Reliable, Scalable Solutions High-Availability White Paper Introduction This paper will discuss the products, tools and strategies available for building reliable and scalable Action Request System
Course Contents CCNP (CISco certified network professional)
Course Contents CCNP (CISco certified network professional) CCNP Route (642-902) EIGRP Chapter: EIGRP Overview and Neighbor Relationships EIGRP Neighborships Neighborship over WANs EIGRP Topology, Routes,
