MT9076B T1/E1/J1 3.3 V Single Chip Transceiver

Size: px
Start display at page:

Download "MT9076B T1/E1/J1 3.3 V Single Chip Transceiver"

Transcription

1 T1/E1/J1 3.3 V Single Chip Transceiver Features Combined T1/E1/J1 framer and LIU, with PLL and 3 HDLCs In T1/J1 mode the LIU can recover signals attenuated by up to 36 db (at 772 khz) In E1 mode the LIU can recover signals attenuated by up to 40 db (at MHz) Low jitter digital PLL (intrinsic jitter < 0.02UI) HDLCs can be assigned to any timeslot Comprehensive alarm detection, performance monitoring and error insertion functions Mbit/s or Mbit/s ST-BUS streams Support for Inverse Mux for ATM (IMA) Support for V5.1 and V5.2 Access Networks 3.3 V operation with 5 V tolerant inputs Intel or Motorola non-multiplexed 8-bit microprocessor port JTAG boundary scan Applications T1/E1/J1 add/drop multiplexers Access networks Wireless base stations CO and CPE equipment interfaces Primary rate ISDN nodes Digital Cross-connect Systems (DCS) September 2011 Ordering Information MT9076BPR1 68 Pin PLCC* Tape & Reel MT9076BB1 80 Pin LQFP* Trays MT9076BP1 68 Pin PLCC* Tubes *Pb Free Matte Tin -40 C to +85 C TxDL TxDLCLK TxMF TxAO TxB TxA DSTi CSTi Tdi Tdo Tms Tclk Trst IRQ D7~D0 AC4 AC0 R/W/WR CS DS/RD DSTo CSTo IEEE Microprocessor Interface ST-BUS Interface ST Loop ST-BUS Interface Data Link, HDLC0 HDLC1 Transmit Framing, Error, Test Signal Generation and Slip Buffer PL Loop National Bit Buffer CAS Buffer DG Loop Receive Framing, Performance Monitoring, Alarm Detection, 2 Frame Slip Buffer Pulse Generator Jitter Attenuator & Clock Control Clock,Data Recovery Line Driver RM Loop MT Loop Rx Equalizer & Data Slicer TTIP TRING S/FR BS/LS OSC1 OSC2 RTIP RRING RxDLCLK RxDL RxMF/TxFP LOS RxFP Exclk F0b C4b Figure 1 - MT9076 Functional Block 1 Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Copyright , All Rights Reserved.

2 Description The MT9076 is a highly featured single chip solution for terminating T1/E1/J1 trunks. It contains a long-haul LIU, an advanced framer, a high performance PLL and 3 HDLCs. In T1 mode, the MT9076 supports D4, ESF and SLC-96 formats meeting the latest recommendations including AT&T PUB43801, TR-62411; ANSI T1.102, T1.403 and T1.408; Telcordia GR-303-CORE. In E1 mode, the MT9076 supports the latest ITU-T Recommendations including G.703, G.704, G.706, G.732, G.775, G.796, G.823, G.964 (V5.1), G.965 (V5.2) and I.431. It also supports ETSI ETS , ETS , ETS , ETS (V5.1) and ETS (V5.2). Change Summary Changes from the June 2006 issue to the September 2011 issue. Page Item Change 1 Ordering Information Removed leaded packages as per PCN notice. 2

3 CS RESET IRQ D0 D1 D2 D3 VSS5 IC4 INT/MOT VDD5 D4 D5 D6 D7 R/W/WR AC TxAO Trst 58 Tclk Tms 56 Tdo Tdi 54 GNDATX TRING 52 TTIP VDDATX 50 VDD2 VSS2 48 IC1 RxFP 46 F0b C4b 44 Exclk NC NC CS RESET IRQ D0 D1 D2 D3 VSS5 IC4 INT/MOT VDD5 D4 D5 D6 D7 R/W/WR AC0 NC PIN LQFP NC NC TxAO Trst Tclk Tms Tdo Tdi GNDATX TRING TTIP VDDATX VDD2 VSS2 IC1 RxFP F0b C4b Exclk NC NC AC1 AC2 AC3 AC4 GNDARx RTIP RRING VDARx VDD1 VSS1 TXA TXB RXDLCK RXDL TxMF RxMF/TxFP BS/LS NC NC AC1 AC2 AC3 AC4 GNDARx RTIP RRING VDDArx VDD1 VSS1 TXA TXB RxDCLK RxDL TxMF RxMF/TxFP BS/LS DS/RD DSTi DSTo CSTi CSTo VDD4 VSS4 OSC2 OSC1 VSS3 VDD3 S/FR/Exclki TxDL TxDLCK IC3 IC2 LOS PIN PLCC NC DS/RD DSTi DSTo CSTi CSTo VDD4 VSS4 OSC2 OSC1 VSS3 VDD3 S/FR/Exclki TXDL TCDLCK IC3 IC2 LOS NC NC Figure 2 - Pin Connections 3

4 Pin Description Pin # PLCC LQFP Name Description 1 51 OSC1 Oscillator (3 V Input). This pin is either connected via a MHz crystal to OSC2 where a crystal is used, or is directly driven when a MHz. oscillator is employed OSC2 Oscillator (3 V Output). Connect a 20.0 MHz crystal between OSC1 and OSC2. Not suitable for driving other devices V SS4 Negative Power Supply. Digital ground V DD4 Positive Power Supply. Digital supply (+3.3 V 5%) CSTo Control ST-BUS (5 V tolerant Output). CSTo carries serial streams for CAS and CCS respectively a Mbit/s ST-BUS status stream which contains the 30 receive signaling nibbles (ABCDZZZZ or ZZZZABCD). The most significant nibbles of each ST- BUS time slot are valid and the least significant nibbles of each ST-BUS time slot are tristated when control bit MSN (page 01H, address 1AH, bit 1) is set to 1. If MSN=0, the position of the valid and tristated nibbles are reversed CSTi Control ST-BUS (5 V tolerant Input). CSTi carries serial streams for CAS and CCS respectively a Mbit/s ST-BUS control stream which contains the 30 transmit signaling nibbles (ABCDXXXX or XXXXABCD) when RPSIG=0. When RPSIG=1 this pin has no function. The most significant nibbles of each ST-BUS time slot are valid and the least significant nibbles of each ST-BUS time slot are ignored when control bit MSN (page 01H, address 1AH, bit 1) is set to 1. If MSN=0, the position of the valid and ignored nibbles is reversed DSTo Data ST-BUS (5 V tolerant Output). A Mbit/s serial stream which contains the 24/30 PCM(T1/E1) or data channels received on the PCM 24/30 (T1/E1) line DSTi Data ST-BUS (5 V tolerant Input). A Mbit/s serial stream which contains the 24/30 (T1/E1) PCM or data channels to be transmitted on the PCM 24/30 (T1/E1) line DS/RD Data/Read Strobe (5 V tolerant Input). In Motorola mode (DS), this input is the active low data strobe of the processor interface. In Intel mode (RD), this input is the active low read strobe of the processor interface CS Chip Select (5 V tolerant Input). This active low input enables the non-multiplexed parallel microprocessor interface of the MT9076. When CS is set to high, the microprocessor interface is idle and all bus I/O pins will be in a high impedance state RESET RESET (5 V tolerant Input). This active low input puts the MT9076 in a reset condition. RESET should be set to high for normal operation. The MT9076 should be reset after power-up. The RESET pin must be held low for a minimum of 1 sec. to reset the device properly IRQ Interrupt Request (5 V tolerant Output). A low on this output pin indicates that an interrupt request is presented. IRQ is an open drain output that should be connected to V DD through a pull-up resistor. An active low CS signal is not required for this pin to function D0 - D3 Data 0 to Data 3 (5 V tolerant Three-state I/O). These signals combined with D4-D7 form the bidirectional data bus of the parallel processor interface (D0 is the least significant bit). 4

5 Pin Description (continued) Pin # PLCC LQFP Name Description VSS5 Negative Power Supply. Digital ground IC4 Internal Connection (3 V Input). Tie to V SS (Ground) for normal operation INT/MOT Intel/Motorola Mode Selection (5 V tolerant Input). A high on this pin configures the processor interface for the Intel parallel non-multiplexed bus type. A low configures the processor interface for the Motorola parallel non-multiplexed type VDD5 Positive Power Supply. Digital supply (+3.3 V 5%) D4 - D7 Data 4 to Data 7 (5 V tolerant Three-state I/O). These signals combined with D0-D3 form the bidirectional data bus of the parallel processor interface (D7 is the most significant bit) R/W/WR Read/Write/Write Strobe (5 V tolerant Input). In Motorola mode (R/W), this input controls the direction of the data bus D[0:7] during a microprocessor access. When R/W is high, the parallel processor is reading data from the MT9076. When low, the parallel processor is writing data to the MT9076. For Intel mode (WR), this active low write strobe configures the data bus lines as output , 2-5 AC0 - AC4 Address/Control 0 to 4 (5 V tolerant Inputs). Address and control inputs for the non-multiplexed parallel processor interface. AC0 is the least significant input GNDARx Receive Analog Ground. Analog ground for the LIU receiver RTIP RRING Receive TIP and RING (3 V Input). Differential inputs for the receive line signal - must be transformer coupled (See Figure 5 on page 24). In digital framer mode these pins accept digital 3 volt signals from a physical layer device. They may accept a split phase unipolar signal (RTIP and RRING employed) or an NRZ signal (RTIP only used) VDDARx Receive Analog Power Supply. Analog supply for the LIU receiver (+3.3 V 5%) VDD1 Positive Power Supply. Digital supply (+3.3 V 5%) VSS1 Negative Power Supply. Digital ground TxA Transmit A (5 V tolerant Output). When the internal LIU is disabled (digital framer only mode), if control bit NRZ=1, an NRZ output data is clocked out on pin TxA with the rising edge of Exclk (TxB has no function when NRZ format is selected). If NRZ=0, pins TxA and TxB are a complementary pair of signals that output digital dual-rail data clocked out with the rising edge of Exclk TxB Transmit B (5 V tolerant Output). When the internal LIU is disabled and control bit NRZ=0, pins TxA and TxB are a complementary pair of signals that output digital dualrail data clocked out with the rising edge of Exclk RxDLCLK Data Link Clock (5 V tolerant Output). A gapped clock signal derived from the extracted line clock, available for an external device to clock in RxDL data (at 4, 8, 12, 16 or 20 khz) on the rising edge RxDL Receive Data Link (5 V tolerant Output). A serial bit stream containing received line data after zero code suppression. This data is clocked out with the rising edge of Exclk TxMF Transmit Multiframe Boundary (5 V tolerant Input). An active low input used to set the transmit multiframe boundary (CAS or CRC multiframe). The MT9076 will generate its own multiframe if this pin is held high. This input is usually pulled high for most applications. 5

6 Pin Description (continued) Pin # PLCC LQFP Name Description RxMF/TxF P Receive Multiframe Boundary / Transmit Frame Boundary (5 V tolerant Output). If the control bit Tx8KEN (page 02H address 10H bit 2) is low, this negative output pulse delimits the received multiframe boundary. The next frame output on the data stream (DSTo) is basic frame zero on the T1 or PCM 30 link. In E1 mode this receive multiframe signal can be related to either the receive CRC multiframe (page 01H, address 17H, bit 6, MFSEL=1) or the receive signaling multiframe (MFSEL=0). If the control bit Tx8KEN is set high, this positive output pulse delimits the frame boundary (the first bit transmit in the frame) for the digital output stream on pins TXA and TXB BS/LS Bus/Line Synchronization Mode Selection (5 V tolerant Input). If high, C4b and F0b will be inputs; if low, C4b and F0b will be outputs Exclk MHz in E1 mode or MHz in T1 mode, Extracted Clock (5 V tolerant Output). The clock extracted from the received signal and used internally to clock in data received on RTIP and RRING C4b MHz System Clock (5 V tolerant Input/Output). C4b is the clock for the ST- BUS sections and transmit serial PCM data of the MT9076. In the free-run (S/FR/Exclki=0) or line synchronous mode (S/FR/Exclki=1 and BS/LS=0) this signal is an output, while in bus synchronous mode (S/FR/Exclki=1 and BS/LS=1) this signal is an input clock F0b Frame Pulse (5 V tolerant Input/Output). This is the ST-BUS frame synchronization signal, which delimits the 32 channel frame of CSTi, CSTo, DSTi, DSTo and the PCM30 link. In the free-run (S/FR/Exclki=0) or line synchronous mode (S/FR/Exclki=1 and BS/LS=0) this signal is an output, while in bus synchronous mode (S/FR/Exclki=1 and BS/LS=1) this signal is an input RxFP Receive Frame Pulse/Receive CCS Clock (5 V tolerant Output). An 8kHz pulse signal, which is low for one extracted clock period. This signal is synchronized to the receive DS1 or PCM 30 basic frame boundary IC1 Internal Connection. Must be left open for normal operation V SS2 Negative Power Supply. Digital ground V DD2 Positive Power Supply. Digital supply (+3.3 V 5%) VDD ATx Transmit Analog Power Supply. Analog supply for the LIU transmitter (+3.3 V 5%) TTIP TRING Transmit TIP and RING(Output). Differential outputs for the transmit line signal - must be transformer coupled (See Figure 5 on page 24) GND ATx Transmit Analog Ground. Analog ground for the LIU transmitter Tdi IEEE a Test Data Input (3 V Input). If not used, this pin should be pulled high Tdo IEEE a Test Data Output (5 V tolerant Output). If not used, this pin should be left unconnected Tms IEEE a Test Mode Selection (3 V Input). If not used, this pin should be pulled high Tclk IEEE a Test Clock Signal (3 V Input). If not used, this pin should be pulled high Trst IEEE a Reset Signal (3 V Input). If not used, this pin should be held low. 6

7 Pin Description (continued) Pin # PLCC LQFP Name Description TxAO Transmit All Ones (Input). High - TTIP, TRING will transmit data normally. Low - TTIP, TRING will transmit an all ones signal LOS Loss of Signal or Synchronization (5 V tolerant Output). When high, and LOS/LOF (page 0, this signal indicates that the receive portion of the MT9076 is either not detecting an incoming signal (bit LLOS on page 03H address 16H is one) or is detecting a loss of basic frame alignment condition (bit TSYNC (T1), SYNC (E1) on page 03H address 10H is one). If LOS/LOF=1, a high on this pin indicates a loss of signal condition IC2 Internal Connection (3 V Input). Tie to V SS (Ground) for normal operation IC3 Internal Connection (3 V Input). Tie to V SS (Ground) for normal operation TxDLCLK Transmit Data Link Clock (5 V tolerant Output). A gapped clock signal derived from a gated Mbit/s clock for transmit data link at 4, 8, 12, 16 or 20 khz. The transmit data link data (TxDL) is clocked in on the rising edge of TxDLCLK. TxDLCLK can also be used to clock DL data out of an external serial controller TxDL Transmit Data Link (5 V tolerant Input). An input serial stream of transmit data link data at 4, 8, 12, 16 or 20 kbit/s S/FR/Excl ki Device Overview Synchronization/ Freerun / Extracted Clock (5 V tolerant Input). If low, and the internal LIU is enabled, the MT9076 is in free run mode. Pins 45 C4b and 46 F0b are outputs generating system clocks. Slips will occur in the receive slip buffer as a result of any deviation between the MT9076's internal PLL (which is free - running) and the frequency of the incoming line data. If high, and the internal LIU is enabled, the MT9076 is in Bus or Line Synchronization mode depending on the BS/LS pin. If the internal LIU is disabled, in digital framer mode, this pin (Exclki) takes an input clock MHz (T1)/ MHz (E1) that clocks in the received digital data on pins RXA and RXB with its rising edge VDD3 Positive Power Supply. Digital supply (+3.3 V 5%) VSS3 Negative Power Supply. Digital ground. The MT9076 is a T1/E1/J1 single chip transceiver that incorporates an advanced framer, a long-haul LIU (Line Interface Unit), a low jitter PLL (Phase Locked Loop) and 3 HDLCs (High-level Data Link Controller). The T1, E1 and J1 operating modes are selectable under software control. Standards Compliance In T1 mode, the MT9076 meets or supports the latest recommendations including Telcordia GR-303-CORE, AT&T PUB43801, TR-62411, ANSI T1.102, T1.403 and T In T1 ESF mode the CRC-6 calculation and yellow alarm can be configured to meet the requirements of a J1 interface. In E1 mode, the MT9076 meets or supports the latest ITU-T Recommendations for PCM 30 and ISDN primary rate including G.703, G.704, G.706, G.732, G.775, G.796, G.823, G.964 (V5.1), G.965 (V5,2) and I.431. It also meets or supports ETSI ETS , ETS , ETS , ETS (V5.1) and ETS (V5.2). 7

8 Microprocessor Port The MT9076 registers are accessible via an 8-bit parallel Motorola or Intel non-multiplexed microprocessor interface. LIU The MT9076 LIU interfaces the digital framer functions to either the DS1 (T1 mode) or PCM 30 (E1 mode) transformer-isolated four wire line. In T1 mode, the LIU can pre-equalize the transmit signal to meet the T1.403 and T1.102 pulse templates after attenuation by feet of 22 AWG PIC cable, alternatively it can provide line build outs of 7.5 db, 15 db and 22.5 db. In T1 mode the receiver can recover signals attenuated by up to 36 db at 772 khz. In E1 mode, the LIU transmits signals that meet the G Mbit/s pulse template and the receiver can recover signals attenuated by up to 40 db at 1024 khz. Digital Framer Only Mode To accommodate some special applications, the MT9076 supports a digital framer only mode that provides direct access to the transmit and receive data in digital format, i.e., by-passing the analog LIU front-end. In digital framer only mode, the MT9076 supports unipolar non-return to zero or bipolar return to zero data. PLL and Slip Buffers The MT9076 PLL attenuates jitter from 2.5 Hz with a roll-off of 20 db/decade. The intrinsic jitter is less than 0.02 UI. The device can operate in one of three timing modes: System Bus Synchronous Mode, Line Synchronous Mode, or Free-run Mode. In all three timing modes the low jitter output of the PLL provides timing to the transmit side of the LIU. In T1 mode, the receive and transmit paths both include two-frame slip buffers. The transmit slip buffer features programmable delay and serves as a Jitter Attenuator (JA) FIFO and a rate converter between the ST-BUS and the Mbit/s T1 line rate. In E1 mode, the receive path includes a two-frame slip buffer and the transmit path contains a 128 bit Jitter Attenuator (JA) FIFO with programmable depth. Interface to the System Backplane On the system side the MT9076 framers can interface to a Mbit/s or Mbit/s ST-BUS backplane. There is an asynchronous mode for Inverse MUX for ATM (IMA) applications, this enables the framer to interface to a Mbit/s (T1) or Mbit/s (E1) serial bus with asynchronous transmit and receive timing. Framing Modes The MT9076 framers operate in termination mode or transparent mode. In the receive transparent mode, the received line data is channelled to the DSTo pin with arbitrary frame alignment. In the transmit transparent mode, no framing or signaling is imposed on the data transmitted from the DSTi pin onto the line. In T1 mode, the framers operate in any of the following framing modes: D4, Extended Superframe (ESF) or SLC- 96. In E1 mode, the framers run three framing algorithms: basic frame alignment, signaling multiframe alignment and CRC-4 multiframe alignment. The Remote Alarm Indication (RAI) bit is automatically controlled by an internal state machine. 8

9 Access to the Maintenance Channel The T1 ESF Facility Data Link (FDL) bits can be accessed in the following three ways: Through the data link pins TxDL, RxDL, RxDLC and TxDLC; through internal registers for Bit Oriented Messages; through an embedded HDLC. In E1 mode, the Sa bits (bits 4-8 of the non-frame alignment signal) can be accessed in four ways: Through data link pins TxDL, RxDL, RxDLC and TxDLC, through single byte transmit and receive registers; through five byte transmit and receive national bit buffers; through an embedded HDLC. Robbed Bit Signaling/Channel Associated Signaling Robbed bit signaling and channel associated signaling information can be accessed two ways: Via the microport; via the CSTi and CSTo pins. Signaling information is frozen upon loss of multiframe alignment. In T1 mode, the MT9076 supports AB and ABCD robbed bit signaling. Robbed bit signaling can be enabled on a channel by channel basis. In E1 mode the MT9076 supports Channel Associated Signaling (CAS) multiframing. HDLCs The MT9076 provides three embedded HDLCs with 128 byte deep transmit and receive FIFOs. In T1 mode, the embedded HDLCs can be assigned to any channel and can operate at 56 kbit/s or 64 kbit/s. In T1 ESF mode, HDLCO can be assigned to the 4 kbit/s FDL. In E1 mode, the embedded HDLCs can be assigned to any timeslot and can operate at 64 kbit/s. HDLCO can be assigned to timeslot 0 Sa bits (bits 4-8 of the non-frame alignment signal) and can operate at 4,8,12,16 or 20 kbit/s. Performance Monitoring and Debugging The MT9076 has a comprehensive suite of performance monitoring and debugging features. These include error counters, loopbacks, deliberate error insertion and a QRS/PRBS generator/detector. Interrupts The MT9076 provides a comprehensive set of maskable interrupts. Interrupt sources consist of synchronization status, alarm status, counter indication and overflow, timer status, slip indication, maintenance functions and receive signaling bit changes. 9

10 MT9076 Detailed Feature List Standards Compliance and Support T1/J1 Mode ANSI: T1.102,T1.231, T1.403, T1.408 AT&T: TR 62411, PUB43801 Telcordia: GR-303-CORE E1 Mode ETSI: ETS , ETS , ETS , ETS , ETS ITU: G.703, G.704, G.706, G.732 G.775, G.796, G.823, I.431, G.964, G.965 TTC: JT-G703, JT-G704, JT-G706 Line Interface Unit (LIU) T1 and E1 modes use the same 1:1 transmit and receive transformers Internal register allows termination impedance to be changed under software control. Programmable pulse shapes and pulse amplitudes Automatic or manual receiver equalization Receive signal peak amplitude is reported with 8-bit resolution Output pin to indicate Loss Of Signal/ Loss Of Frame synchronization LIU output is disabled at power-up until enabled by software Input pin to force transmission of AIS T1/J1 Mode Reliably recovers signals with cable attenuation up to khz Transmit pulse meets T1.403 and T1.102 pulse templates Indicates analog Los Of Signal if the received signal is more than 20 db or 40 db below nominal for more than 1 ms Receiver tolerates jitter as required by AT&T TR62411 E1 Mode Reliably recovers signals with cable attenuation up to khz Transmit pulse meets G.703 pulse template Indicates analog Los Of Signal if the received signal is more than 20 db or 40 db below nominal for more than 1 ms Receiver tolerates jitter as required by ETSI ETS

11 T1/J1 Mode E1 Mode Transmit Pre-equalization and Line Build Out options: feet feet feet feet feet -7.5 db -15 db db Digital Framer Mode The LIU can be disabled and bypassed to allow the MT9076 to be used as a digital framer Single phase NRZ or two phase NRZ modes are software selectable Line coding is software selectable Phase Lock Loop Locks to a MHz input clock, or to the MHz / MHz extracted clock IMA mode locks to 1,544 MHz or 2,048 MHz external clock Attenuates jitter from less than 2.5 Hz with a roll off of 20 db/decade Attenuates jitter in the transmit or receive direction Intrinsic jitter less than 0.02 UI Meets the jitter characteristics as specified in AT&T TR62411 Meets the jitter characteristics as specified in ETS Can be operated in Free-run, Line Synchronous or System Bus Synchronous modes Access and Control MT9076 registers can be accessed via an 8-bit non-multiplexed parallel microprocessor port The parallel port can be configured for Motorola or Intel style control signals Backplane Interfaces Mbit/s or Mbit/s ST-BUS IMA mode, Mbit/s (T1) or Mbit/s (E1) serial bus with asynchronous transmit and receive timing for Inverse MUX for ATM (IMA) applications. Slip buffers are bypassed and signaling is disabled. CSTo/CSTi pins can be used to access the receive/transmit signaling data RxDL pin can be used to access the entire B8ZS/HDB3 decoded receive stream including framing bits TxDL pin can be used to transmit data on the FDL (T1) or the Sa bits (E1) T1/J1 Mode PCM-24 channels 1-24 are mapped to ST- BUS channels 0-23 respectively The framing-bit is mapped to ST-BUS channel 31 E1 Mode PCM-30 timeslots 0-31 are mapped to ST- BUS channels 0-31 respectively 11

12 Data Link T1/J1 Mode Three methods are provided to access the datalink: 1. TxDL and RxDL pins support transmit and receive datalinks 2. Bit Oriented Messages are supported via internal registers 3. An internal HDLC can be assigned to transmit/receive over the FDL in ESF mode E1 Mode Two methods are provided to access the datalink: 1. TxDL and RxDL pins support transmit and receive datalinks over the Sa4~Sa8 bits 2. An internal HDLC can be assigned to transmit/receive data via the Sa4~Sa8 bits In transparent mode, if the Sa4 bit is used for an intermediate datalink, the CRC-4 remainder can be updated to reflect changes to the Sa4 bit Access and Monitoring for National (Sa) Bits (E1 mode only) In addition to the datalink functions, the Sa bits can be accessed using: Single byte register Five byte transmit and receive national bit buffers A maskable interrupt is generated on the change of state of any Sa bit Three Embedded Floating HDLCs (HDLC0, HDLC1, HDLC2) Successive writes/reads can be made to the transmit/receive FIFOs at 160 ns or 80 ns intervals Flag generation and Frame Check Sequence (FCS) generation and detection, zero insertion and deletion Continuous flags, or continuous 1s are transmitted between frames Transmit frame-abort Transmit end-of-packet after a programmable number of bytes (up to 65,536 bytes) Invalid frame handling: Frames yielding an incorrect FCS are tagged as bad packets Frames with fewer than 25 bits are ignored Frames with fewer than 32 bits between flags are tagged as bad packets Frames interrupted by a Frame-Abort sequence remain in the FIFO and an interrupt is generated Access is provided to the receive FCS FCS generation can be inhibited for terminal adaptation Recognizes single byte, dual byte and all call addresses Independent, byte deep transmit and receive FIFOs Receive FIFO maskable interrupts for near full (programmable levels) and overflow conditions Transmit FIFO maskable interrupts for nearly empty (programmable levels) and underflow conditions Maskable interrupts for transmit end-of-packet and receive end-of-packet Maskable interrupts for receive bad-frame (includes frame abort) Transmit-to-receive and receive-to-transmit loopbacks are provided Transmit and receive bit rates and enables are independent 12

13 Frame aborts can be sent under software control and they are automatically transmitted in the event of a transmit FIFO underrun T1/J1 Mode HDLC0 Assignable to the ESF Facility Data Link or any channel Operates at 4 kbps, 56 kbps or 64 kbps HDLC1, HDLC2 Assignable to any channel Operates at 56 kbps or 64 kbps E1 Mode HDLC0 Assigned to timeslot-0, bits Sa4~Sa8 or any other timeslot Operates at 4, 8, 12, 16 or 20 kbps depending on which Sa bits are selected for HDLC0 use HDLC1, HDLC2 Assigned to any timeslot except timeslot-0 Operates at 64 kbps Slip Buffers T1/J1 Mode E1 Mode Transmit Slip Buffer Two-frame slip buffer capable of performing a controlled slip Intended for rate conversion and jitter attenuation in the transmit direction Jitter Attenuator FIFO A jitter attenuator FIFO is available on the transmit side in E1 mode and in IMA mode. The depth of the JA FIFO can be configured to be from16 bits deep to 128 bits deep in 16 bit increments Inverse Mux for ATM (IMA) Mode Receive Slip Buffer Two-frame slip buffer capable of performing a controlled slip Wander tolerance of 208 UI peak-to-peak Programmable delay Indication of slip direction Transmit slips are independent of receive slips Indication of slip direction Receive Slip Buffer Two-frame slip buffer capable of performing a controlled slip Wander tolerance of 142 UI (92 s) peak Indication of slip direction T1/J1 Mode Transmit and receive datastreams are independently timed The transmit clock synchronizes to a MHz clock E1 Mode Transmit and receive datastreams are independently timed Receive slip buffer is bypassed CAS and HDLCs are disabled 13

14 T1/J1 Mode E1 Mode Transmit and receive slip buffers are bypassed Robbed bit signaling and HDLCs are disabled Framing Algorithm T1/J1 Mode Synchronizes with D4 or ESF protocols Supports SLC-96 framing Framing circuit is off-line Transparent transmit and receive modes In D4 mode the Fs bits can optionally be cross checked with the Ft bits The start of the ESF multiframe can be determined by the following methods: Free-run Software reset Synchronized to the incoming multiframe An automatic reframe is initiated if the framing bit error density exceeds the programmed threshold In transparent mode, no reframing is forced by the device Software can force a reframe at any time In ESF mode the CRC-6 bits can be optionally confirmed before forcing a new frame alignment During a reframe the signaling bits are frozen and error counting for Ft, Fs, ESF framing pattern and CRC-6 bits is suspended If J1 CRC-6 is selected the Fs bits are included in the CRC-6 calculation J1 CRC-6 and J1 Yellow Alarm can be independently selected Supports robbed bit signaling E1 Mode MT9076 contains 3 distinct and independent framing algorithms 1. Basic frame alignment 2. Signaling multiframe alignment 3. CRC-4 multiframe alignment Transparent transmit and receive modes Automatic interworking between interfaces with and without CRC-4 processing capabilities is supported An automatic reframe is forced if 3 consecutive frame alignment patterns or three consecutive non-frame alignment bits are received in error In transparent mode, no reframing is forced by the device Software can force a reframe at any time Software can force a multiframe reframe at any time E-bits can optionally be set to zero until CRC synchronization is achieved Optional automatic RAI Supports CAS multiframing Optional automatic Y-bit to indicate CAS multiframe alignment Line Coding T1/J1 Mode B8ZS or AMI line coding Pulse density enforcement Forced ones insertion E1 Mode HDB3 or AMI line coding 14

15 Channel Associated Signaling ABCD or AB bits can be automatically inserted and extracted Transmit ABCD or AB bits can be passed via the microport or via the CSTi pin Receive ABCD or AB bits are accessible via the microport or via the CSTo pin Most significant or least significant CSTi/CSTo nibbles can be selected to carry signaling bits Unused nibble positions in the CSTi/CSTo bandwidth are tri-stated An interrupt is provided in the event of changes in any of the signaling bits Receive signaling bits are frozen if signaling multiframe alignment is lost T1/J1 Mode E1 Mode Signaling bits can be debounced by 6 ms Signaling bits can be debounced by 14 ms Alarms T1/J1 Mode D4 Yellow Alarm, two types 1. Bit position 2 is zero for virtually every DS0 over 48ms 2. Two consecutive ones in the S-bit position of the twelfth frame ESF Yellow Alarm, two types 1. Reception of in seven or more codewords out of ten (T1) 2. Reception of in seven or more codewords out of ten (J1) Alarm Indication Signal (AIS) Declared if fewer than six zeros are detected during a 3 ms interval Loss Of Signal (LOS) Analog Loss Of Signal is declared if the received signal is more than 20 db or 40 db below nominal for at least 1 ms Digital Loss Of Signal is declared if 192 or 32 consecutive zeros are received Output pin indicates LOS and/or loss of frame alignment E1 Mode Remote Alarm Indication (RAI) Bit 3 of the receive NFAS Alarm Indication Signal (AIS) Unframed all ones signal for at least a double frame or two double frames Timeslot 16 Alarm Indication Signal All ones signal in timeslot 16 Loss Of Signal (LOS) Analog Loss Of Signal is declared if the received signal is more than 20 db or 40 db below nominal for at least 1 ms Digital Loss Of Signal is declared if 192 or 32 consecutive zeros are received Output pin indicates LOS and/or loss of frame alignment Remote Signaling Multiframe Alarm Y-bit of the multiframe alignment signal 15

16 Maskable Interrupts T1/J1 Mode E1 Mode HDLC Interrupts Change of state of terminal synchronization Change of state of multiframe synchronization Change of received bit oriented message Change of state of reception of AIS Change of state of reception of LOS Reception of a severely errored frame Transmit slip Receive slip Receive framing bit error Receive CRC-6 error Receive yellow alarm Change of receive frame alignment Receive line code violation Receive PRBS error Pulse density violation Framing bit error counter overflow CRC-6 error counter overflow Out of frame alignment counter overflow Change of frame alignment counter overflow Line code violation counter overflow PRBS error counter overflow PRBS multiframe counter overflow Multiframes out of alignment counter overflow Loop code detected One second timer Five second timer Receive new bit oriented message (debounced) Signaling (AB or ABCD) bit change Change of state of basic frame alignment Change of state of multiframe synchronization Change of state of CRC-4 multiframe synchronization Change of state of reception of AIS Change of state of reception of LOS Reception of consecutively errored FASs Receive remote signaling multiframe alarm Receive slip Receive FAS error Receive CRC-4 error Receive E-bit Receive AIS in timeslot 16 Line code violation Receive PRBS error Receive auxiliary pattern Receive RAI FAS error counter overflow CRC-4 error counter overflow Out of frame alignment counter overflow Receive E-bit counter overflow Line code violation counter overflow PRBS error counter overflow PRBS multiframe counter overflow Change of state of any Sa bit or Sa nibble Jitter attenuator within 4 bits of overflow/underflow One second timer Two second timer Signaling (CAS) bit change Go ahead pattern received End of packet received End of packet transmitted End of packet read from receive FIFO Transmit FIFO low Frame abort received Transmit FIFO underrun Receive FIFO full Receive FIFO overflow 16

17 Error Counters All counters can be preset or cleared under software control Maskable occurrence interrupt Maskable overflow interrupt Counters can be latched on one second intervals T1/J1 Mode PRBS Error Counter (16-bit) CRC Multiframe Counter (16-bit) Framing Bit Error Counter (8-bit) Out of Frame Alignment Counter (4-bit) Change of Frame Alignment Counter (4-bit) Multiframes Out of Sync Counter (8-bit) Line Code Violation / Excessive Zeros Counter (16-bit) CRC-6 Error Counter (16-bit) E1 Mode Errored FAS Counter (8-bit) E-bit Counter (10-bit) Line Code Violation / Excessive Zeros Counter (16-bit) CRC-4 Error Counter (16-bit) PRBS Error Counter (8-bit) CRC Multiframe Counter (8-bit) Error Insertion T1/J1 Mode Bipolar Violations CRC-6 Errors Ft Errors Fs Errors Payload Errors Loss of Signal Error E1 Mode Bipolar Violations CRC-4 Errors FAS Errors NFAS Errors Payload Errors Loss of Signal Error Loopbacks Digital loopback Remote loopback ST-BUS loopback Payload loopback Metallic loopback Local timeslot loopback Remote timeslot loopback Per Timeslot Control The following features can be controlled on a per timeslot basis: Clear Channel Capability (only used in T1/J1) Choice of sourcing transmit signaling bits from microport or CSTi pin Remote timeslot loopback Local timeslot loopback PRBS insertion and reception Digital milliwatt pattern insertion Per channel inversion Transmit message mode 17

18 Table of Contents 1.0 MT9076 Line Interface Unit (LIU) Receiver Transmitter MHz Clock Phase Lock Loop (PLL) Clock Jitter Attenuation Modes Jitter Attenuator FIFO IMA Mode T1 Mode E1 Mode The Digital Interface T1 Digital Interface Frame and Superframe Structure in T1 Mode Multiframing E1 Digital Interface Basic Frame Alignment CRC-4 Multiframing in E1 Mode CAS Signaling Multiframing in E1 Mode MT9076 Access and Control The Control Port Interface Control and Status Register Access Identification Code ST-BUS Streams Reset Operation (Initialization) Transmit Data All Ones (TxAO) Operation Data Link Operation Data Link Operation in E1 Mode Data Link Operation in T1 Mode External Data Link Bit - Oriented Messaging Floating HDLC Channels Channel Assignment HDLC Description HDLC Frame Structure Data Transparency (Zero Insertion/Deletion) Invalid Frames Frame Abort Interframe Time Fill and Link Channel States Go-Ahead HDLC Functional Description HDLC Transmitter HDLC Receiver Slip Buffers Slip Buffer in T1 Mode Slip Buffer in E1 Mode Framing Algorithm Frame Alignment in T1 Mode Frame Alignment in E1 Mode Notes for Synchronization State Diagram (Figure 14) Reframe E1 Mode

19 Table of Contents T1 Mode MT9076 Channel Signaling Channel Signaling in T1 Mode Channel Signaling in E1 Mode Loopbacks Performance Monitoring Error Counters T1 Counters Framing Bit Error Counter (FC7-0) Out Of Frame/Change Of Frame Alignment Counter (OOF3-0/COFA3-0) Multiframes out of Sync Counter (MFOOF7-MFOOF0) CRC-6 Error Counter (CC15-0) Line Code Violation Error Counter (LCV15-LCV0) PRBS Error Counter (PS7-0) CRC Multiframe Counter for PRBS (PSM7-0) E1 Counters Errored FAS Counter (EFAS7-EFAS0) E-bit Counter (EC15-0) Line Code Violation Error Counter (LCV15-LCV0) CRC-4 Error Counter (CC15-0) PRBS Error Counter (PS7-0) CRC Multiframe Counter for PRBS (PSM7-0) Error Insertion Per Time Slot Control Words Clear Channel Capability Microport Signaling Per Time Slot Looping PRBS Testing Digital Milliwatt Per Channel Inversion Transmit Message Alarms Automatic Alarms Detected Events T1 Mode Severely Errored Frame Event Loop Code Detect Pulse Density Violation Detect Timer Outputs E1 mode Consecutive Frame Alignment Patterns (CONFAP) Receive Frame Alignment Signals Receive Non Frame Alignment Signal Receive Multiframe Alignment Signals Interrupts Interrupts on T1 Mode Interrupts on E1 Mode Digital Framer Mode T1 Mode E1 mode Control and Status Registers

20 Table of Contents 20.1 T1 Mode Master Control 1 (Page 01H) (T1) Master Control 2 (Page 02H) (T1) Master Status 1 (Page03H) (T1) Master Status 2 (Page 04H) (T1) Per Channel Transmit Signalling (Pages 5 and 6) (T1) Per Time Slot Control Words (Pages 7 and 8) (T1) Per Channel Receive Signaling (T1 and E1 mode) (Pages 9 and 0AH) E1 Mode Master Control 1 (Page 01H) (E1) Master Control 2 (Page-2) Master Control 2 (Page 02H) (E1) Master Status 1 (Page 03H) (E1) Master Status 2 (Page-4) Master Status 2 (Page 04H) (E1) Per Channel Transmit signaling (Pages 5 and 6) (E1) Per Time Slot Control Words (Pages 7 and 8) (E1) Per Channel Receive signaling (Pages 9 and 0AH) (E1) HDLC Control and Status Transmit National Bit Buffer (Page 0EH) Receive National Bit Buffer (Page 0FH) AC/DC Electrical Characteristics

21 List of Figures Figure 1 - MT9076 Functional Block Figure 2 - Pin Connections Figure 3 - Input Jitter Tolerance as Recommended by TR (T1) Figure 4 - Input Jitter Tolerance as Recommended by G.823 and ETSI (E1) Figure 5 - Analog Line Interface Figure 6 - Pulse Template (T1.403)(T1) Figure 7 - Pulse Template (G.703)(E1) Figure 8 - Clock Oscillator Circuit Figure 9 - Crystal Oscillator Circuit Figure 10 - TR Jitter Attenuation Curve Figure 11 - Read and Write Pointers in the Transmit Slip Buffers Figure 12 - Read and Write Pointers in the Receive Slip Buffers Figure 13 - Read and Write Pointers in the Slip Buffers Figure 14 - Synchronization State Diagram Figure 15 - Motorola Microport Timing Figure 16 - Intel Microport Timing Figure 17 - JTAG Port Timing Figure 18 - Transmit Data Link Timing Diagram (T1 mode) Figure 19 - Transmit Data Link Timing Diagram (E1 mode) Figure 20 - Transmit Data Link Functional Timing (E1 mode) Figure 21 - Receive Data Link Functional Timing (T1 mode) Figure 22 - Receive Data Link Diagram (T1 mode) Figure 23 - Receive Data Link Functional Timing (E1 mode) Figure 24 - Receive Data Link Timing Diagram (E1 mode) Figure 25 - ST-BUS Functional Timing Diagram Mb/s Mode Figure 26 - ST-BUS Functional Timing Diagram Mb/s Mode Figure 27 - ST-BUS Timing Diagram (Input Clocks) Figure 28 - ST-BUS Timing Diagram (Output Clocks) Figure 29 - Receive Multiframe Functional Timing (T1 mode) Figure 30 - Receive Multiframe Functional Timing (E1 mode) Figure 31 - Transmit Multiframe Functional Timing (T1 mode or E1 mode) Figure 32 - Multiframe Timing Diagram (T1 mode or E1 mode) Figure 33 - TXA/TXB Functional Timing (T1 mode) Figure 34 - TXA/TXB Functional Timing (E1 mode) Figure 35 - TXA/TXB Timing Diagram (T1 mode or E1 mode) Figure 36 - Tx IMA Functional Timing (T1 mode) Figure 37 - Rx IMA Functional Timing (T1 mode) Figure 38 - Tx IMA Functional Timing (E1 mode) Figure 39 - Rx IMA Functional Timing (E1 mode) Figure 40 - Tx IMA Timing Diagram (T1 mode or E1 mode) Figure 41 - Rx IMA Timing Diagram (T1 mode or E1 mode) Figure 42 - D4 Format Figure 43 - PCM 30 Format Figure 44 - ST-BUS Stream Format Mb/s Figure 45 - ST-BUS Stream Format Mb/s

22 1.0 MT9076 Line Interface Unit (LIU) 1.1 Receiver The receiver portion of the MT9076 LIU consists of an input signal peak detector, an optional equalizer with separate high pass sections, a smoothing filter, data and clock slicers and a clock extractor. Receive equalization gain can be set manually (i.e., software) or it can be determined automatically by peak detectors. The output of the receive equalizer is conditioned by a smoothing filter and is passed on to the clock and data slicer. The clock slicer output signal drives a phase locked loop, which generates an extracted clock (Exclk). This extracted clock is used to sample the output of the data comparator. In T1 mode, the receiver portion of the LIU can recover clock and data from the line signal for loop lengths of ft. of 22 AWG cable and tolerate jitter to the maximum specified by AT&T TR 62411(Figure 3). The LOS output pin function is selectable to indicate any combination of loss of signal and/or loss of basic frame synchronization condition. The LLOS (Loss of Signal) status bit indicates when the receive signal level is lower than the analog threshold for at least 1 millisecond, or when the number of consecutive received zeros exceeds the digital loss threshold. In E1 mode, the analog threshold is either of -20 db or -40 db. The digital loss threshold is either 32 or 192. In T1 mode, the receive LIU circuit requires a terminating resistor of 100 across the device side of the receive 1:1 transformer. In E1 mode, the receive LIU circuit requires a terminating resistor of either 120 or 75 across the device side of the receive 1:1 transformer. The jitter tolerance of the clock extractor circuit exceeds the requirements of TR in T1 mode (see Figure 3) and G.823 in E1 mode (see Figure 4). Peak to Peak Jitter Amplitude (log scale) 138UI 100UI 28UI 10UI 1.0UI 0.4UI Jitter Frequency (log scale) 0.1 Hz 1.0Hz 10Hz 100 Hz 1.0kHz 10kHz 100kHz 4.9 Hz Figure 3 - Input Jitter Tolerance as Recommended by TR (T1) 22

23 Peak to Peak Jitter Amplitude (log scale) 18UI MT9076 Tolerance 1.5UI 0.2UI 1.667Hz 20Hz 2.4kHz 18kHz 100kHz Jitter Frequency (log scale) 1.2 Transmitter Figure 4 - Input Jitter Tolerance as Recommended by G.823 and ETSI (E1) The transmit portion of the MT9076 LIU consists of a high speed digital-to-analog converter and complementary line drivers. When a pulse is to be transmitted, a sequence of digital values (dependent on transmit equalization) are read out of a ROM by a high speed clock. These values drive the digital-to-analog converter to produce an analog signal, which is passed to the complementary line drivers. The complementary line drivers are designed to drive a 1:2.4 step-up transformer in T1 mode and either a 1:2 or 1:2.4 step-up transformer in E1 mode (see Figure 5). A 0.47 uf capacitor is required between the TTIP and the transmit transformer. Resistors RT (as shown in Figure 5) are for termination for transmit return loss. The values of RT may be optimized for T1 mode, E1 120 lines, E1 75 lines or set at a compromise value to serve multiple applications. Program the Tx LIU Control Word (page 02H, address 11H) to adjust the pulse amplitude accordingly. Alternatively, the pulse level and shape may be discretely programmed by writing to the Custom Pulse Level registers (page 2, addresses 1CH to 1FH) and setting the Custom Transmit Pulse bit high (bit 3 of the Tx LIU Control Word). In this case the output of each of the registers directly drives the D/A converter going to the line driver. Table 1 and Table 2 show recommended transmit pulse amplitude settings. In T1 mode, the template for the transmitted pulse (the DSX-1 template) is shown in Figure 6. The nominal peak voltage of a mark is 3 volts. The ratio of the amplitude of the transmit pulses generated by TTIP and TRING lie between 0.95 and In E1 mode, the template for the transmitted pulse, as specified in G.703, is shown in Figure 7. The nominal peak voltage of a mark is 3 volts for 120 twisted pair applications and 2.37 volts for 75 coax applications. The ratio of the amplitude of the transmit pulses generated by TTIP and TRING lie between 0.95 and

24 TTIP 0.47 uf RT 1:2.4 Tx RT TRING R T : refer to datasheet RTIP RRING :1 Figure 5 - Analog Line Interface Notes: 1) Protection circuitry (i.e., voltage clamps, line fuses, common mode choke etc.) depends on the application and is not shown. For a reference design, refer to the evaluation board schematic. 2) The transformer shown is a Pulse Engineering T1144. Rx Name Functional Description TXL2-0 Transmit Line Build Out 2-0. Setting these bits shapes the transmit pulse as detailed in the table below: TXL2 TXL1 TXL0 Line Build Out to 133 feet/ 0 db to 266 feet to 399 feet to 533 feet to 655 feet db db db After reset these bits are zero. Table 1 - Transmit Line Build Out (T1) 24

25 Name Functional Description WR TX2-0 Winding Ratio. Set this pin low if a 1:2.4 transformer is used on the transmit side. Set this pin high if a 1:2 transformer is used. Transmit pulse amplitude. Select the TX2 TX0 bits according to the line type, value of termination resistors (RT), and transformer turns ratio used. TX2 TX1 TX After reset, these bits are zero. Line Impedance (ohms) RT(ohms) Transformer Ratio 1:2.4 1:2.4 1:2.4 1:2.4-1:2 1:2 1:2.4 WR (bit 7) Table 2 - Transmit Pulse Amplitude (E1) NORMALIZED AMPLITUDE NOTE: 1 Unit Interval = 648 nanoseconds Time, in unit intervals (UI) Figure 6 - Pulse Template (T1.403)(T1) 25

26 Time (Nanoseconds) Time U.I Normalized Amplitude Table 3 - Maximum Curve for Figure 5 Time (Nanoseconds) Time U.I Normalized Amplitude Table 4 - Minimum Curve for Figure 5 Percentage of Nominal Peak Voltage 269 ns ns 194 ns Nominal Pulse ns 488 ns Figure 7 - Pulse Template (G.703)(E1) 26

27 MHz Clock The MT9076 requires a 20 MHz clock. This may be provided by a 50 ppm oscillator as per Figure V OSC1 20 MHz OUT Vdd GND.1 F OSC2 (open) Figure 8 - Clock Oscillator Circuit Alternatively, a crystal oscillator may be used. A complete oscillator circuit made up of a crystal, resistors and capacitors is shown in Figure 9. The crystal specification is as follows. Frequency: Tolerance: Oscillation Mode: Resonance Mode: Load Capacitance: Maximum Series Resistance: Approximate Drive Level: 20 MHz 50 ppm Fundamental Parallel 32 pf 35 1 mw OSC1 20 MHz 56 pf 39 pf 1M 1 H* OSC2 100 Note: the 1 H inductor is optional Figure 9 - Crystal Oscillator Circuit 1.4 Phase Lock Loop (PLL) The MT9076 contains a PLL, which can be locked to either an input MHz clock or the extracted line clock. The PLL will attenuate jitter from less than 2.5 Hz and roll-off at a rate of 20 db/decade. Its intrinsic jitter is less than 0.02 UI. The PLL will meet the jitter transfer characteristics as specified by AT&T document TR and the relevant recommendations as shown in Figure 3. 27

28 db -0.5 JITTER ATTENUATION (db) db/decade K Frequency (Hz) Figure 10 - TR Jitter Attenuation Curve 2.0 Clock Jitter Attenuation Modes MT9076 has three basic jitter attenuation modes of operation, selected by the BS/LS and S/FR/Exclki control pins. System Bus Synchronous Mode Line Synchronous Mode Free-run mode Depending on the mode selection above, the PLL can either attenuate transmit clock jitter or the receive clock jitter. Table 5 shows the appropriate configuration of each control pin to achieve the appropriate mode and Jitter attenuation capability of the MT9076. Mode Name BS/LS S/FR/Exclki Note System Bus Synchronous 1 1 PLL locked to C4b Line Synchronous 0 1 PLL locked to Exclk Free-Run x 0 PLL free - running Table 5 - Selection of Clock Jitter Attenuation Modes using the M/S and MS/FR Pins In System Bus Synchronous mode, pins C4b and F0b are always configured as inputs, while in the Line Synchronous and Free-Run modes C4b and F0b are configured as outputs. Referring to the mode names given in Table 5 the basic operation of the jitter attenuation modes are: In System Bus Synchronous mode an external clock is applied to C4b. The applied clock is dejittered by the internal PLL before being used to synchronize the transmitted data. The clock extracted (with no jitter attenuation performed) from the receive data can be monitored on pin Exclk. 28

29 In Line Synchronous mode, the clock extracted from the receive data is dejittered using the internal PLL and then output on pin C4b. Pin Exclk provides the extracted receive clock before it has been dejittered. The transmit data is synchronous to the clean receive clock. In Free-Run mode the transmit data is synchronized to the internally generated clock. The internal clock is output on pin C4b. The clock signal extracted from the receive data is not dejittered and is output directly on Exclk. 2.1 Jitter Attenuator FIFO In System Bus Synchronous operation, a data buffer is required between the jittered input clock and the clean transmit clock. In normal T1 mode, the transmit slip buffer performs this function. In T1 IMA mode, the transmit slip buffer is unused, instead a jitter attenuator FIFO is employed. In an E1 mode System Bus Synchronous configuration, the jitter attenuator FIFO is always used. In this case the C4b signal clocks the data into the FIFO, the PLL de-jitters the C4b clock and the resulting clean C4b signal clocks the data out of the FIFO. The JA meets the jitter transfer characteristics as proposed by ETSI ETS , G.735 and the relevant recommendations as shown in Figure 10. The JA FIFO depth can be selected to be from 16 to 128 words deep, in multiples of 16 (2-bit) words. Its read pointer can be centered by changing the JFC bit (address 13H of page 02H) to provide maximum jitter tolerance. If the read pointer should come within 4 bits of either end of the FIFO, the read clock frequency will be increased or decreased by UI to correct the situation. The maximum time needed to centre is T max = 3904 Depth ns, where Depth is the selected JA FIFO depth. During this time the JA will not attenuate jitter. 2.2 IMA Mode T1 Mode In T1 IMA Mode, neither the transmit nor the receive slip buffers are activated. Channel Associated signaling (CAS) and HDLC operation is not supported. The input pin C4b accepts a MHz clock and it clocks incoming data from DSTi into a jitter attenuator FIFO. This clock is dejittered with the internal PLL. The dejittered clock clocks data out of the FIFO for transmission onto the line. Receive clock (1.544 MHz) and data is extracted from the line and routed to pins Exclk and DSTo respectively. The receive clock Exclk is not dejittered before being driven off chip. For operation in IMA mode, the MT9076 should be programmed in System Bus Synchronous mode (BS/LS and S/FR/Exclki set high) E1 Mode In E1 IMA Mode neither the transmit nor the receive slip buffers are activated. The input pin C4b accepts a MHz clock and it clocks incoming data from DSTi into a jitter attenuator FIFO. This clock is dejittered with the internal PLL. The dejittered clock clocks data out of the FIFO for transmission onto the line. Receive clock (2.048 MHz) and data is extracted from the line and routed to pins Exclk and DSTo respectively. The receive clock Exclk is not dejittered before being driven off chip. For operation in IMA mode, the MT9076 should be programmed in System Bus Synchronous mode (BS/LS and S/FR/Exclki set high). 3.0 The Digital Interface 3.1 T1 Digital Interface In T1 mode, DS1 frames are 193 bits long and are transmitted at a frame repetition rate of 8000 Hz, which results in an aggregate bit rate of 193 bits x 8000/sec= Mbits/sec. The actual bit rate is Mbits/sec +/-50 ppm optionally encoded in B8ZS format. The Zero Suppression control register (page 1, address 15H,) selects either B8ZS encoding, forced one stuffing or alternate mark inversion (AMI) encoding. Basic frames are divided into 24 time slots numbered 1 to 24. Each time slot is 8 bits in length and is transmitted most significant bit first (numbered bit 1). This results in a single time slot data rate of 8 bits x 8000/sec. = 64 kbits/sec. 29

30 It should be noted that the Zarlink ST-BUS has 32 channels numbered 0 to 31. When mapping to the DS1 payload only the first 24 time slots and the last (time slot 31, for the overhead bit) of an ST-BUS are used (see Table 6). All unused channels are tristate. When signaling information is written to the MT9076 in T1 mode using ST-BUS control links (as opposed to direct writes by the microport to the on - board signaling registers), the CSTi channels corresponding to the selected DSTi channels streams are used to transmit the signaling bits. Since the maximum number of signaling bits associated with any channel is 4 (in the case of ABCD), only half a CSTi channel is required for sourcing the signaling bits. The choice of which half of the channel to use is selected by the control bit MSN (page 01H address 14H). The same control bit selects which half of the CSTo channel will contain receive signaling information (the other nibble in the channel being tristate). Unused channels are tristate. The most significant bit of an eight bit ST-BUS channel is numbered bit 7 (see Zarlink Application Note MSAN-126). Therefore, ST-BUS bit 7 is synonymous with DS1 bit 1; bit 6 with bit 2: and so on. DS1 Timeslots Voice/Data Channels (DSTi/o and CSTi/o) DS1 Timeslots Voice/Data Channels (DSTi/o and CSTi/o) x 25 x 26 x 27 x 28 x 29 x 30 x 31 Sbit 3.2 Frame and Superframe Structure in T1 Mode Multiframing Table 6 - ST-BUS vs. DS1 to Channel Relationship(T1) In T1 mode, DS1 trunks contain 24 bytes of serial voice/data channels bundled with an overhead bit. The frame overhead bit contains a fixed repeating pattern used to enable DS1 receivers to deliniate frame boundaries. Overhead bits are inserted once per frame at the beginning of the transmit frame boundary. The DS1 frames are further grouped in bundles of frames, generally 12 (for D4 applications) or 24 frames (for ESF - extended superframe applications) deep. Table 7 and Table 8 illustrate the D4 and ESF frame structures respectively. For D4 links the frame structure contains an alternating pattern inserted into every second overhead bit position. These bits are intended for determination of frame boundaries, and they are referred to as Ft bits. A separate fixed pattern, repeating every superframe, is interleaved with the Ft bits. This fixed pattern (001110), is used to deliniate the 12 frame superframe. These bits are referred to as the Fs bits. In D4 frames # 6 and #12, the LSB of each channel byte may be replaced with A bit (frame #6) and B bit (frame #12) signaling information. For ESF links the 6 bit framing pattern , inserted into every 4th overhead bit position, is used to deliniate both frame and superframe boundaries. Frames #6, 12, 18 and 24 contain the A, B, C and D signaling bits, respectively. A 4 khz data link is embedded in the overhead bit position, interleaved between the framing pattern sequence (FPS) and the transmit CRC-6 remainder (from the calculation done on the previous superframe), see Table 8. The SLC-96 frame structure is similar to the D4 frame structure, except a facility management overlay is superimposed over the erstwhile Fs bits, see Table 9. The protocol appropriate for the application is selected via the Framing Mode Selection Word, address 10H of Master Control page 1. In T1 mode, MT9076 is capable of generating the overhead bit framing pattern and (for ESF links) the CRC remainder for transmission onto the DS1 trunk. The beginning of the transmit multiframe may be determined by any of the following criteria: 30

31 (i) It may free - run with the internal multiframe counters; (ii) The multiframe counters may be reset with the external hardware pin TxMF. If this signal is not synchronous with the current transmit frame count it may cause the far end to go temporarily out of sync. (iii) Under software control (by setting the TxSYNC bit in page 01 address 12H) the transmit multiframe counters will be synchronized to the framing pattern present in the overhead bits multiplexed into channel 31 bit 0 of the incoming Mb/s digital stream DSTi. Note that the overhead bits extracted from the receive signal are multiplexed into outgoing DSTo channel 31 bit 0. (iv) In SLC - 96 mode the transmit frame counters synchronize to the framing pattern clocked in on the TXDL input Frame # Ft Fs Signaling A B Table 7 - D4 Superframe Structure(T1) Frame # FPS FDL CRC Signaling 1 X 2 CB1 3 X X 6 CB2 A 7 X X 10 CB3 11 X 12 1 B 13 X 14 CB4 15 X X 18 CB5 C 19 X 20 1 Table 8 - ESF Superframe Structure (T1) 31

32 Frame # FPS FDL CRC Signaling 3.3 E1 Digital Interface 21 X 22 CB6 23 X 24 1 D Table 8 - ESF Superframe Structure (T1) (continued) Frame # Ft Fs Notes Frame # Ft Fs Notes Frame # Ft Fs Notes C R 26 X o 50 S S = Spoiler Bits 3 0 e 27 0 n s 28 X c 52 S 5 1 y 29 1 e n 30 X n 54 C C = Maintenance Field Bits 7 0 c 31 0 t h 32 X r 56 C 9 1 r 33 1 a o 34 X t 58 C 11 0 n 35 0 o i 36 X r 60 A A = Alarm Field Bits 13 1 z a 38 X F 62 A 15 0 t 39 0 i i 40 X e 64 L L = Line Switch Field Bits 17 1 o 41 1 l n 42 X d 66 L d 44 X B 68 L 21 1 a 45 1 i t 46 X t 70 L 23 0 a 47 0 s S 72 S S = Spoiler Bits Table 9 - SLC-96 Framing Structure(T1) PCM 30 (E1) basic frames are 256 bits long and are transmitted at a frame repetition rate of 8000 Hz, which results in an aggregate bit rate of 256 bits x 8000/sec = Mbits/sec. The actual bit rate is Mbits/sec +/-50 ppm encoded in HDB3 format. The HDB3 control bit (page 01H, address 15H, bit 5) selects either HDB3 encoding or alternate mark inversion (AMI) encoding. Basic frames are divided into 32 time slots numbered 0 to 31, see Figure 43 on page 168. Each time slot is 8 bits in length and is transmitted most significant bit first (numbered bit 1). This results in a single time slot data rate of 8 bits x 8000/sec. = 64 kbits/sec. It should be noted that the Zarlink ST-BUS also has 32 channels numbered 0 to 31, but the most significant bit of an eight bit channel is numbered bit 7 (see Zarlink Application Note MSAN-126). Therefore, ST-BUS bit 7 is synonymous with PCM 30 bit 1; bit 6 with bit 2: and so on (Figure 44). PCM 30 time slot 0 is reserved for basic frame alignment, CRC-4 multiframe alignment and the communication of maintenance information. In most configurations time slot 16 is reserved for either Channel Associated signaling 32

33 (CAS or ABCD bit signaling) or Common Channel signaling (CCS). The remaining 30 time slots are called channels and carry either PCM encoded voice signals or digital data. Channel alignment and bit numbering is consistent with time slot alignment and bit numbering. However, channels are numbered 1 to 30 and relate to time slots as per Table 10. PCM 30 Timeslots 0 1,2, ,18,19, Voice/Data Channels (DSTi/o and CSTi/o) 0 1,2, ,18,19, Basic Frame Alignment Table 10 - ST-BUS vs. PCM-30 to Channel Relationship(E1) Time slot 0 of every basic frame is reserved for basic frame alignment and contains either a Frame Alignment Signal (FAS) or a Non-Frame Alignment Signal (NFAS). FAS and NFAS occur in time slot zero of consecutive basic frames as shown in Table 10. Bit two is used to distinguish between FAS (bit two = 0) and NFAS (bit two = 1). Basic frame alignment is initiated by a search for the bit sequence which appears in the last seven bit positions of the FAS, see the Frame Algorithm section. Bit position one of the FAS can be either a CRC-4 remainder bit or an international usage bit. Bits four to eight of the NFAS (i.e., S a4 - S a8 ) are additional spare bits which may be used as follows: S a4 to S a8 may be used in specific point-to-point applications (e.g., transcoder equipments conforming to G.761) S a4 may be used as a message-based data link for operations, maintenance and performance monitoring S a5 to S a8 are for national usage A maintenance channel or data link at 4,8,12,16,or 20 khz for selected S a bits is provided by the MT9076 in E1 mode to implement these functions. Note that for simplicity all S a bits including S a4 are collectively called national bits throughout this document. Bit three (designated as A ), the Remote Alarm Indication (RAI), is used to indicate the near end basic frame synchronization status to the far end of a link. Under normal operation, the A (RAI) bit should be set to 0, while in alarm condition, it is set to 1. Bit position one of the NFAS can be either a CRC-4 multiframe alignment signal, an E-bit or an international usage bit. Refer to an approvals laboratory and national standards bodies for specific requirements. 33

34 CRC Sub Multi Frame 1 Sub Multi Frame 2 CRC Frame/Type PCM 30 Channel Zero /FAS C /NFAS 0 1 A S a4 S a5 S a6 S a7 S a8 2/FAS C /NFAS 0 1 A S a4 S a5 S a6 S a7 S a8 4/FAS C /NFAS 1 1 A S a4 S a5 S a6 S a7 S a8 6/FAS C /NFAS 0 1 A S a4 S a5 S a6 S a7 S a8 8/FAS C /NFAS 1 1 A S a4 S a5 S a6 S a7 S a8 10/FAS C /NFAS 1 1 A S a4 S a5 S a6 S a7 S a8 12/FAS C /NFAS E 1 1 A S a4 S a5 S a6 S a7 S a8 14/FAS C /NFAS E 2 1 A S a4 S a5 S a6 S a7 S a8 Table 11 - FAS and NFAS Structure indicates position of CRC-4 multiframe alignment signa CRC-4 Multiframing in E1 Mode The primary purpose for CRC-4 multiframing is to provide a verification of the current basic frame alignment, although it can also be used for other functions such as bit error rate estimation. The CRC-4 multiframe consists of 16 basic frames numbered 0 to 15, and has a repetition rate of 16 frames X 125 microseconds/frame = 2 msec. CRC-4 multiframe alignment is based on the bit sequence, which appears in bit position one of the first six NFASs of a CRC-4 multiframe. The CRC-4 multiframe is divided into two submultiframes, numbered 1 and 2, which are each eight basic frames or 2048 bits in length. The CRC-4 frame alignment verification functions as follows. Initially, the CRC-4 operation must be activated and CRC-4 multiframe alignment must be achieved at both ends of the link. At the local end of a link, all the bits of every transmit submultiframe are passed through a CRC-4 polynomial (multiplied by X 4 then divided by X 4 + X + 1), which generates a four bit remainder. This remainder is inserted in bit position one of the four FASs of the following submultiframe before it is transmitted (see Table 12). The submultiframe is then transmitted and, at the far end, the same process occurs. That is, a CRC-4 remainder is generated for each received submultiframe. These bits are compared with the bits received in position one of the four FASs of the next received submultiframe. This process takes place in both directions of transmission. When more than 914 CRC-4 errors (out of a possible 1000) are counted in a one second interval, the framing algorithm will force a search for a new basic frame alignment. See Frame Algorithm section for more details. The result of the comparison of the received CRC-4 remainder with the locally generated remainder will be transported to the far end by the E-bits. Therefore, if E 1 = 0, a CRC-4 error was discovered in a submultiframe 1 received at the far end; and if E 2 = 0, a CRC-4 error was discovered in a submultiframe 2 received at the far end. 34

35 No submultiframe sequence numbers or re-transmission capabilities are supported with layer 1 PCM 30 protocol. See ITU-T G.704 and G.706 for more details on the operation of CRC-4 and E-bits. There are two CRC multiframe alignment algorithm options selected by the AUTC control bit (address 10H, page 01H). When AUTC is zero, automatic CRC-to-non-CRC interworking is selected. When AUTC is one and ARAI is low, if CRC-4 multiframe alignment is not found in 400 msec, the transmit RAI will be continuously high until CRC-4 multiframe alignment is achieved. The control bit for transmit E bits (TE, address 11H of page 01H) will have the same function in both states of AUTC. That is, when CRC-4 synchronization is not achieved the state of the transmit E-bits will be the same as the state of the TE control bit. When CRC-4 synchronization is achieved the transmit E-bits will function as per ITU-T G.704. Table 12 outlines the operation of the AUTC, ARAI and TALM control bits of the MT9076. AUTC ARAI TALM Description 0 0 X Automatic CRC-interworking is activated. If no valid CRC MFAS is being received, transmit RAI will flicker high with every reframe (8 msec.), this cycle will continue for 400 msec., then transmit RAI will be low continuously. The device will stop searching for CRC MFAS, continue to transmit CRC-4 remainders, stop CRC-4 processing, indicate CRC-to-non-CRC operation and transmit E-bits to be the same state as the TE control bit (page 01H, address 16H) Automatic CRC-interworking is activated. Transmit RAI is low continuously Automatic CRC-interworking is activated. Transmit RAI is high continuously. 1 0 X Automatic CRC-interworking is de-activated. If no valid CRC MFAS is being received, transmit RAI flickers high with every reframe (8 msec.), this cycle continues for 400 msec, then transmit RAI becomes high continuously. The device continues to search for CRC MFAS and transmit E-bits are the same state as the TE control bit. When CRCSYN = 0, the CRC MFAS search is terminated and the transmit RAI goes low Automatic CRC-interworking is de-activated. Transmit RAI is low continuously Automatic CRC-interworking is de-activated. Transmit RAI is high continuously. Table 12 - Operation of AUTC, ARAI and TALM Control Bits (E1 Mode) CAS Signaling Multiframing in E1 Mode The purpose of the signaling multiframing algorithm is to provide a scheme that will allow the association of a specific ABCD signaling nibble with the appropriate PCM 30 channel. Time slot 16 is reserved for the communication of Channel Associated signaling (CAS) information (i.e., ABCD signaling bits for up to 30 channels). Refer to ITU-T G.704 and G.732 for more details on CAS multiframing requirements. A CAS signaling multiframe consists of 16 basic frames (numbered 0 to 15), which results in a multiframe repetition rate of 2 msec. It should be noted that the boundaries of the signaling multiframe may be completely distinct from those of the CRC-4 multiframe. CAS multiframe alignment is based on a multiframe alignment signal (a 0000 bit sequence), which occurs in the most significant nibble of time slot 16 of basic frame 0 of the CAS multiframe. Bit 6 of this time slot is the multiframe alarm bit (usually designated Y). When CAS multiframing is acquired on the receive side, the transmit Y-bit is zero; when CAS multiframing is not acquired, the transmit Y-bit is one. Bits 5, 7 and 8 (usually designated X) are spare bits and are normally set to one if not used. 35

36 Time slot 16 of the remaining 15 basic frames of the CAS multiframe (i.e., basic frames 1 to 15) are reserved for the ABCD signaling bits for the 30 payload channels. The most significant nibbles are reserved for channels 1 to 15 and the least significant nibbles are reserved for channels 16 to 30. That is, time slot 16 of basic frame 1 has ABCD for channel 1 and 16, time slot 16 of basic frame 2 has ABCD for channel 2 and 17, through to time slot 16 of basic frame 15 has ABCD for channel 15 and MT9076 Access and Control 4.1 The Control Port Interface The control and status registers of the MT9076 are accessible through a non-multiplexed parallel microprocessor port. The parallel port may be configured for Motorola style control signals (by setting pin INT/MOT low) or Intel style control signals (by setting pin INT/MOT high). 4.2 Control and Status Register Access The controlling microprocessor gains access to specific registers of the MT9076 through a two step process. First, writing to the Command/Address Register (CAR) selects one of the 15 pages of control and status registers (CAR address: AC4 = 0, AC3-AC0 = don't care, CAR data D7 - D0 = page number). Second, each page has a maximum of 16 registers that are addressed on a read or write to a non-car address (non-car: address AC4 = 1, AC3-AC0 = register address, D7-D0 = data). Once a page of memory is selected, it is only necessary to write to the CAR when a different page is to be accessed. See the AC Electrical Characteristics section. Page Address D 7 - D 0 Register Description Processor Access ST-BUS Access (01H) Master R/W (02H) Control R/W (03H) Master R (04H) Status R/W (05H) Per Channel Transmit signaling R/W CSTi (06H) Per Channel Transmit signaling R/W CSTi (07H) Per Time Slot Control (08H) Per Time Slot Control R/W (09H) Per Channel Receive signaling R/W CSTo (0AH) Per Channel Receive signaling R/W CSTo (0BH) HDLC0 Control and Status R/W (0CH) HDLC1 Control and Status R/W (0DH) HDLC2 Control and Status R/W (0EH) Tx National Bit Buffer R/W (0FH) Rx National Bit Buffer R - - Table 13 - Page Summary Please note that for microprocessors with read/write cycles less than 200 ns, a wait state or a dummy operation (for C programming) between two successive read/write operations to the HDLC FIFO is required. Table 13 associates the MT9076 control and status pages with access and page descriptions. 36

37 4.3 Identification Code The MT9076 shall be identified by the code , read from the identification code status register (page 03H, address 1FH) ST-BUS Streams In T1 mode, there is one control and one status ST-BUS stream that can be used to program / access channel associated signaling nibbles. CSTo contains the received channel associated signaling bits, and for those channels whose Per Time Slot Control word bit 1 RPSIG is set low, CSTi is used to control the transmit channel associated signaling. The DSTi and DSTo streams contain the transmit and receive voice and digital data. Only 24 of the 32 ST-BUS channels are used for each of DSTi, DSTo, CSTi and CSTo. In each case individual channel mapping is as illustrated in Table 6, ST-BUS vs. DS1 to Channel Relationship(T1), on page 30. In E1 mode, ST-BUS streams can also be used to access channel associated signaling nibbles. CSTo contains the received channel associated signaling bits (e.g., ITU-T R1 and R2 signaling), and for those channels whose Per Time Slot Control word bit 1 RPSIG is set low, CSTi is used to control the transmit channel associated signaling. The DSTi and DSTo streams contain the transmit and receive voice and digital data. Only 30 of the 32 ST-BUS channels are used for each of DSTi, DSTo, CSTi and CSTo. In each case individual channel mapping is as illustrated in Table 10 Time slot to Channel Relationship. 5.0 Reset Operation (Initialization) The MT9076 can be reset using the hardware RESET pin (pin 11 in PLCC, pin 64 in LQFP) or the software reset bit RST (page 1H, address 1AH). When the device emerges from its reset state it will begin to function with the default settings described in Table 14 (T1) Table 15 (E1). All control registers are set to 00H. A reset operation takes 1 full frame (125 us) to complete. Function Mode Loopbacks SLC-96 Zero Coding Line Codes Data Link signaling AB/ABCD Bit Debounce Interrupts Error Insertion HDLCs Counters Transmit Data Table 14 - Reset Status(T1) Status D4 Deactivated Deactivated Deactivated Deactivated Serial Mode CAS Registers Deactivated masked Deactivated Deactivated Cleared All Ones 37

38 Function Status Mode Termination Loopbacks Deactivated Transmit FAS C n Transmit non-fas 1/S n Transmit MFAS (CAS) Data Link Deactivated CRC Interworking Activated signaling CAS Registers ABCD Bit Debounce Deactivated Interrupts Masked RxMF Output signaling Multiframe Error Insertion Deactivated HDLCs Deactivated Counters Cleared Transmit Data All Ones Table 15 - Reset Status (E1) 6.0 Transmit Data All Ones (TxAO) Operation The TxAO (Transmit all ones) pin allows the PRI interface to transmit an all ones signal under hardware control. 7.0 Data Link Operation 7.1 Data Link Operation in E1 Mode In E1 mode, MT9076 has a user defined 4, 8, 12, 16 or 20 kbit/s data link for transport of maintenance and performance monitoring information across the PCM 30 link. This channel functions using the S a bits (S a4 ~S a8 ) of the PCM 30 timeslot zero non-frame alignment signal (NFAS). Since the NFAS is transmitted every other frame - a periodicity of 250 microseconds - the aggregate bit rate is a multiple of 4 kb/s. As there are five S a bits independently available for this data link, the bit rate will be 4, 8, 12, 16 or 20 kb/s, depending on the bits selected for the Data Link (DL). The S a bits used for the DL are selected by setting the appropriate bits, S a4 ~S a8, to one in the Data Link Select Word (page 01H, address 17H, bits 4-0). Access to the DL is provided by pins TxDLCLK, TxDL, RxDLCLK and RxDL, which allow easy interfacing to an external controller. Data to be transmit onto the line in the S a bit position is clocked in from the TxDL pin (pin 65 in PLCC, pin 47 in LQFP) with the clock TxDLCLK (pin 64 in PLCC, pin 46 pin LQFP). Although the aggregate clock rate equals the bit rate, it has a nominal pulse width of 244 ns, and it clocks in the TxDL as if it were a Mb/s data stream. The clock can only be active during bit times 4 to 0 of the STBUS frame. The TxDL input signal is clocked into the MT9076 by the rising edge of TxDLCLK. If bits are selected to be a part of the DL, all other programmed functions for those S a bit positions are overridden. 38

39 The RxDLCLK signal (pin 39 - PLCC, pin 14 - LQFP) is derived from the receive extracted clock and is aligned with the receive data link output RxDL. The HDB3 decoded receive data, at Mbit/s, is clocked out of the device on pin RxDL (pin 40 in PLCC, pin 15 in LQFP). In order to facilitate the attachment of this data stream to a Data Link controller, the clock signal RxDLCLK consists of positive pulses, of nominal width of 244 ns, during the S a bit cell times that are selected for the data link.this selection is made by programming address 17H of master control page 01H. No DL data will be lost or repeated when a receive frame slip occurs. See AC Electrical Characteristics for timing requirements. 7.2 Data Link Operation in T1 Mode SLC-96 and ESF protocol allow for carrier messages to be embedded in the overhead bit position. The MT9076 provides 3 separate means of controlling these data links. See Data Link Control Word - address 12H, page 1H. The data links (transmit and receive) may be sourced (sunk) from an external controller using dedicated pins on the MT9076 in T1 mode (enabled by setting the bit 7 - EDL of the Data link Control Word). Bit Oriented Messages may be transmit and received via a dedicated TxBOM register (page 1H, address 13H) and a RxBOM (page 3H, address 15H). Transmission is enabled by setting bit 6 - BIOMEn in the Data link Control Word. Bit - oriented messages may be periodically interrupted (up to once per second) for a duration of up to 100 milliseconds. This is to accommodate bursts of message - oriented protocols. See Table 16 for message structure. Octet # Content 1 F L A G S A P I C / R EA or T E I EA C O N T R O L G3 LV G4 U1 U2 G5 SL G6 t0 6 FE SE LB G1 R G2 Nm NI t0 7 G3 LV G4 U1 U2 G5 SL G6 t0-1 8 FE SE LB G1 R G2 Nm NI t0-1 9 G3 LV G4 U1 U2 G5 SL G6 t FE SE LB G1 R G2 Nm NI t G3 LV G4 U1 U2 G5 SL G6 t FE SE LB G1 R G2 Nm NI t F C S VARIABLE 14 Table 16 - Message Oriented Performance Report Structure (T1.403 and T1.408) 39

40 Note: ADDRESS INTERPRETATION CONTROL SAPI = 14, C/R = 0 (CI) EA = 0 SAPI = 14, C/R = 1(Carrier) EA = 0 TEI = 0, EA =1 INTERPRETATION Unacknowledged Information Transfer ONE SECOND REPORT G1 = 1 G2 =1 G3 =1 G4 =1 G5 =1 G6 =1 SE=1 FE-=1 LV=1 SL=1 LB=1 U1,U2=0 R=0 NmNI=00,01,10,11 FCS VARIABLE INTERPRETATION CRC Error Event =1 1 < CRC Error Event < 5 5 < CRC Error Event < < CRC Error Event < < CRC Error Event < 319 CRC Error Event > 320 Severely - Errored Framing Event >=1 Frame Synchronization Bit Error Event >=1 Line code Violation Event >=1 Slip Event >=1 Payload Loopback Activated Under Study for sync. Reserved - set to 0 One Second Module 4 counter INTERPRETATION CRC16 Frame Check Sequence External Data Link In T1 mode, MT9076 has two pairs of pins (TxDL and TxDLCLK, RxDL and RxDLCLK) dedicated to transmitting and receiving bits in the selected overhead bit positions. Pins TxDLCLK and RxDLCLK are clock outputs available for clocking data into the MT9076 (for transmit) or external device (for receive information). Each clock operates at 4 Khz. In the SLC-96 mode the optional serial data link is multiplexed into the Fs bit position. In the ESF mode, the serial data link is multiplexed into odd frames, i.e., the FDL bit positions Bit - Oriented Messaging In T1 mode, MT9076 Bit oriented messaging may be selected by setting bit 6 (BIOMEn) in the Data Link Control Word (page 1H, address 12H). The transmit data link will contain the repeating serial data stream xxxxxx0 where the byte 0xxxxxx0 originates from the user programmed register Transmit Bit Oriented Message - page 1H address 13H. The receive BIOM register Receive Bit Oriented Message - page 3H, address 15H, will contain the last received valid message (the 0xxxxxx0 portion of the incoming serial bit stream). To prevent spurious inputs from creating false messages, a new message must be present in 7 of the last 10 appropriate byte positions before being loaded into the receive BIOM register. When a new message has been received, a maskable interrupt (maskable by setting bit 1 low in Interrupt Mask Word Three - page 1H, address 1EH) may occur. 8.0 Floating HDLC Channels MT9076 has three embedded HDLC controllers (HDLC0, HDLC1, HDLC2) each of which includes the following features: Independent transmit and receive FIFO's; Receive FIFO maskable interrupts for nearly full (programmable interrupt levels) and overflow conditions; Transmit FIFO maskable interrupts for nearly empty (programmable interrupt levels) and underflow conditions; Maskable interrupts for transmit end-of-packet and receive end-of-packet; 40

41 Maskable interrupts for receive bad-frame (includes frame abort); Transmit end-of-packet and frame-abort functions. Each controller may be attached to any of the active 64 Kkb/s channels (24 in the case of T1, 31 in the case of E1). HDLC0 may also be attached to the FDL in a T1 ESF link by connecting it to phantom channel 31 when programming the HDLC Select Word. If HDLC0 is attached to channel 0 in E1 mode, only the activated Sa bits (as per the Multiframe and Data Selection Word) will be transmit and received by the controller. 8.1 Channel Assignment In T1 mode, any DS1 channel can be connected to either of HDLC0,1 or 2, operating at 56 or 64 Kb/s. Setting control bit H1R64 (address 12 H on page 01H) high selects 64 Kb/s operation for all HDLCs. Setting this bit low selects 56 Kb/s for all HDLC. Interrupts from any of the HDLCs are masked when they are disconnected. In E1 mode, all PCM-30 channels except channel 0 can be connected to either of HDLC0,1 or 2. HDLC1 and HDLC2 operate at 64 Kb/s. HDLC0 operates at 64 kb/s when connected to any of channels 1 to 31. When connected to channel 0 HDLC0 operates at 4, 8, 12, 16 or 20 Kb/s depending on the number of activated Sa bits. HDLCs can be activated by programming the HDLC Select Words (page 02H, addresses 19H, 1AH and 1BH for HDLC0, HDLC1 and HDLC2 respectively). 8.2 HDLC Description The HDLC handles the bit oriented packetized data transmission as per X.25 level two protocol defined by CCITT. It provides flag and abort sequence generation and detection, zero insertion and deletion, and Frame Check Sequence (FCS) generation and detection. A single byte, dual byte and all call address in the received frame can be recognized. Access to the receive FCS and inhibiting of transmit FCS for terminal adaptation are also provided. Each HDLC controller has a 128 byte deep FIFO associated with it. The status and interrupt flags are programmable for FIFO depths that can vary from 16 to 128 bytes in steps of 16 bytes. These and other features are enabled through the HDLC control registers on page 0BH and 0CH HDLC Frame Structure In T1 mode or E1 mode, a valid HDLC frame begins with an opening flag, contains at least 16 bits of address and control or information, and ends with a 16 bit FCS followed by a closing flag. Data formatted in this manner is also referred to as a packet. Refer to Table 17: HDLC Frame Format Flag (7E) Data Field FCS Flag (7E) One Byte n Bytes n 2 Two Bytes One Byte Table 17 - HDLC Frame Format All HDLC frames start and end with a unique flag sequence The transmitter generates these flags and appends them to the packet to be transmitted. The receiver searches the incoming data stream for the flags on a bit- by-bit basis to establish frame synchronization. The data field consists of an address field, control field and information field. The address field consists of one or two bytes directly following the opening flag. The control field consists of one byte directly following the address field. The information field immediately follows the control field and consists of N bytes of data. The HDLC does not distinguish between the control and information fields and a packet does not need to contain an information field to be valid. The FCS field, which precedes the closing flag, consists of two bytes. A cyclic redundancy check utilizing the CRC-CCITT standard generator polynomial X 16 +X 12 +X 5 +1 produces the 16-bit FCS. In the transmitter the FCS is 41

42 calculated on all bits of the address and data field. The complement of the FCS is transmitted, most significant bit first, in the FCS field. The receiver calculates the FCS on the incoming packet address, data and FCS field and compares the result to F0B8. If no transmission errors are detected and the packet between the flags is at least 32 bits in length then the address and data are entered into the receive FIFO minus the FCS which is discarded Data Transparency (Zero Insertion/Deletion) Transparency ensures that the contents of a data packet do not imitate a flag, go-ahead, frame abort or idle channel. The contents of a transmitted frame, between the flags, is examined on a bit-by-bit basis and a 0 bit is inserted after all sequences of 5 contiguous 1 bits (including the last five bits of the FCS). Upon receiving five contiguous 1s within a frame the receiver deletes the following 0 bit Invalid Frames A frame is invalid if one of the following four conditions exists (Inserted zeros are not part of a valid count): If the FCS pattern generated from the received data does not match the F0B8 pattern then the last data byte of the packet is written to the received FIFO with a bad packet indication. A short frame exists if there are less than 25 bits between the flags. Short frames are ignored by the receiver and nothing is written to the receive FIFO. Packets which are at least 25 bits in length but less than 32 bits between the flags are also invalid. In this case the data is written to the FIFO but the last byte is tagged with a bad packet indication. If a frame abort sequence is detected the packet is invalid. Some or all of the current packet will reside in the receive FIFO, assuming the packet length before the abort sequence was at least 26 bits long Frame Abort The transmitter will abort a current packet by substituting a zero followed by seven contiguous 1s in place of the normal packet. The receiver will abort upon reception of seven contiguous 1s occurring between the flags of a packet which contains at least 26 bits. Note that should the last received byte before the frame abort end with contiguous 1s, these are included in the seven 1s required for a receiver abort. This means that the location of the abort sequence in the receiver may occur before the location of the abort sequence in the originally transmitted packet. If this happens then the last data written to the receive FIFO will not correspond exactly with the last byte sent before the frame abort Interframe Time Fill and Link Channel States When the HDLC transmitter is not sending packets it will wait in one of two states Interframe Time Fill state: This is a continuous series of flags occurring between frames indicating that the channel is active but that no data is being sent. Idle state: An idle Channel occurs when at least 15 contiguous 1s are transmitted or received. In both states the transmitter will exit the wait state when data is loaded into the transmitter FIFO Go-Ahead A go ahead is defined as the pattern (contiguous 7Fs) and is the occurrence of a frame abort sequence followed by a zero, outside of the boundaries of a normal packet. Being able to distinguish a proper (in packet) frame abort sequence from one occurring outside of a packet allows a higher level of signaling protocol which is not part of the HDLC specifications. 42

43 8.3 HDLC Functional Description The HDLC transceiver can be reset by either the power reset input signal or by the HRST Control bit in the test control register (software reset). When reset, the HDLC Control Registers are cleared, resulting in the transmitter and receiver being disabled. The Receiver and Transmitter can be enabled independent of one another through Control Register 1. The transceiver input and output are enabled when the enable control bits in Control Register 1 are set. Transmit to receive loopback as well as a receive to transmit loopback are also supported. Transmit and receive bit rates and enables can operate independently. In MT9076 the transceiver can operate at a continuous rate independent of RXcen and TXcen (free run mode) by setting the Frun bit of Control Register 1. Received packets from the serial interface are sectioned into bytes by an HDLC receiver that detects flags, checks for go-ahead signals, removes inserted zeros, performs a cyclical redundancy check (CRC) on incoming data, and monitors the address if required. Packet reception begins upon detection of an opening flag. The resulting bytes are concatenated with two status bits (RQ9, RQ8) and placed in a receiver first-in-first-out (Rx FIFO); a buffer register that generates status and interrupts for microprocessor read control. In conjunction with the control circuitry, the microprocessor writes data bytes into a Tx buffer register (Tx FIFO) that generates status and interrupts. Packet transmission begins when the microprocessor writes a byte to the Tx FIFO. Two status bits are added to the Tx FIFO for transmitter control of frame aborts (FA) and end of packet (EOP) flags. Packets have flags appended, zeros inserted, and a CRC, also referred to as frame checking sequence (FCS), added automatically during serial transmission. When the Tx FIFO is empty and finished sending a packet, Interframe Time Fill bytes (continuous flags (7E hex)), or Mark Idle (continuous ones) are transmitted to indicate that the channel is idle HDLC Transmitter Following initialization and enabling, the transmitter is in the Idle Channel state (Mark Idle), continuously sending ones. Interframe Time Fill state (Flag Idle) is selected by setting the Mark idle bit in Control Register 1 high 1. The Transmitter remains in either of these two states until data is written to the Tx FIFO. Control Register 1 bits EOP (end of packet) and FA (Frame Abort) are set as status bits before the microprocessor loads 8 bits of data into the 10 bit wide FIFO (8 bits data and 2 bits status). To change the tag bits being loaded in the FIFO, Control Register 1 must be written to before writing to the FIFO. However, EOP and FA are reset after writing to the TX FIFO. The Transmit Byte Count Registers may also be used to tag an end of packet. The total packet size may be programmed to be up to 65,535 bytes. For a packet length of 1 to 255 bytes it is only necessary to write the packet size into the Lower Transmit Byte Count Register. For a packet length of 256 to 65,535 bytes it is necessary to write the 16 bit binary count into the Extended Transmit Byte Count Register (MSByte) and the Lower Transmit Byte Count Register (LSByte). Note that the order of writing the upper byte before the lower byte must be observed even when the lower byte is all zero. Internal registers are loaded with the number of bytes in the packet and decremented after every write to the Tx FIFO. When a count of one is reached, the next byte written to the FIFO is tagged as an end of packet. The register may be made to cycle through the same count if the packets are of the same length by setting Control Register 2 bit Cycle. If the transmitter is in the Idle Channel state when data is written to the Tx FIFO, then an opening flag is sent and data from Tx FIFO follows. Otherwise, data bytes are transmitted as soon as the current flag byte has been sent. Tx FIFO data bytes are continuously transmitted until either the FIFO is empty or an EOP or FA status bit is read by the transmitter. After the last bit of the EOP byte has been transmitted, a 16-bit FCS is sent followed by a closing flag. When multiple packets of data are loaded into Tx FIFO, only one flag is sent between packets. 1. If the MT9076 HDLC transmitter is set up in the Mark-Idle state (YF2 MI is 1) then it will occasionally (less than 1% of the time) fail to transmit the opening flag when it is changed from the disabled state to the enabled state (YF2 TXEN changed from 0 to 1). A missing opening flag will cause the packet to be lost at the receiving end. This problem only affects the first packet transmitted after the HDLC transmitter is enabled. Subsequent packets ar unaffected. 43

44 Frame aborts (the transmission of 7F hex), are transmitted by tagging a byte previously written to the Tx FIFO. When a byte has an FA tag, then an FA is sent instead of that tagged byte. That is, all bytes previous to but not including that byte are sent. After a Frame Abort, the transmitter returns to the Mark Idle or Interframe Time Fill state, depending on the state of the Mark idle control bit. Tx FIFO underrun will occur if the FIFO empties and the last byte did not have either an EOP or FA tag. A frame abort sequence will be sent when an underrun occurs. The following list is an example of the transmission of a three byte packet ( AA hex) (Interframe time fill). TXcen can be enabled before or after this sequence. (a) Write 04 hex to Control Register 1 (b) Write AA hex to TX FIFO (c) Write 03 hex to TX FIFO (d) Write 34 hex to Control Register 1 (e) Write 77 hex to TX FIFO -Mark idle bit set -Data byte -Data byte -TXEN; EOP; Mark idle bits set -Final data byte The transmitter may be enabled independently of the receiver. This is done by setting the TXEN bit of the Control Register. Enabling happens immediately upon writing to the register. Disabling using TXen will occur after the completion of the transmission of the present packet; the contents of the FIFO are not cleared. Disabling will consist of stopping the transmitter clock. The Status and Interrupt Registers may still be read and the FIFO and Control Registers may be written to while the transmitter is disabled. The transmitted FCS may be inhibited using the Tcrci bit of Control Register 2. In this mode the opening flag followed by the data and closing flag is sent and zero insertion still included, but no CRC. That is, the FCS is injected by the microprocessor as part of the data field. This is used in V.120 terminal adaptation for synchronous protocol sensitive UI frames HDLC Receiver After initialization and enabling, the receiver clocks in serial data, continuously checking for Go-aheads ( ), flags ( ), and Idle Channel states (at least fifteen ones). When a flag is detected, the receiver synchronizes itself to the serial stream of data bits, automatically calculating the FCS. If the data length between flags after zero removal is less than 25 bits, then the packet is ignored so no bytes are loaded into Rx FIFO. When the data length after zero removal is between 25 and 31 bits, a first byte and bad FCS code are loaded into the Rx FIFO (see definition of RQ8 and RQ9 below). For an error-free packet, the result in the CRC register should match the HEX pattern of F0B8 when a closing flag is detected. If address recognition is required, the Receiver Address Recognition Registers are loaded with the desired address and the Adrec bit in the Control Register 1 is set high. Bit 0 of the Address Registers is used as an enable bit for that byte, thus allowing either or both of the first two bytes to be compared to the expected values. Bit 0 of the first byte of the address received (address extension bit) will be monitored to determine if a single or dual byte address is being received. If this bit is 0 then a two byte address is being received and then only the first six bits of the first address byte are compared. An all call condition is also monitored for the second address byte; and if received the first address byte is ignored (not compared with mask byte). If the address extension bit is a 1 then a single byte address is being received. In this case, an all call condition is monitored for in the first byte as well as the mask byte written to the comparison register and the second byte is ignored. Seven bits of address comparison can be realized on the first byte if this is a single byte address by setting the Seven bit of Control Register 2. 44

45 The following two Status Register bits (RQ8 and RQ9) are appended to each data byte as it is written to the Rx FIFO. They indicate that a good packet has been received (good FCS and no frame abort), or a bad packet with either incorrect FCS or frame abort. The Status and Interrupt Registers should be read before reading the Rx FIFO since status and interrupt information correspond to the byte at the output of the FIFO (i.e., the byte about to be read). The Status Register bits are encoded as follows: RQ9 RQ8 Byte status 1 1 last byte (bad packet) 0 1 first byte 1 0 last byte (good packet) 0 0 packet byte The end-of-packet-detect (EOPD) interrupt indicates that the last byte written to the Rx FIFO was an EOP byte (last byte in a packet). The end-of-packet-read (EopR) interrupt indicates that the byte about to be read from the Rx FIFO is an EOP byte (last byte in a packet). The Status Register should be read to see if the packet is good or bad before the byte is read. A minimum size packet has an 8-bit address, an 8-bit control byte, and a 16-bit FCS pattern between the opening and closing flags (see Section 9.3.2). Thus, the absence of a data transmission error and a frame length of at least 32 bits results in the receiver writing a valid packet code with the EOP byte into Rx FIFO. The last 16 bits before the closing flag are regarded as the FCS pattern and will not be transferred to the receiver FIFO. Only data bytes (Address, Control, Information) are loaded into the Rx FIFO. In the case of an Rx FIFO overflow, no clocking occurs until a new opening flag is received. In other words, the remainder of the packet is not clocked into the FIFO. Also, the top byte of the FIFO will not be written over. If the FIFO is read before the reception of the next packet then reception of that packet will occur. If two beginning of packet conditions (RQ9=0;RQ8=1) are seen in the FIFO, without an intermediate EOP status, then overflow occurred for the first packet. The receiver may be enabled independently of the transmitter. This is done by setting the RXEN bit of Control Register 1. Enabling happens immediately upon writing to the register. Disabling using RXEN will occur after the present packet has been completely loaded into the FIFO. Disabling can occur during a packet if no bytes have been written to the FIFO yet. Disabling will consist of disabling the internal receive clock. The FIFO, Status, and Interrupt Registers may still be read while the receiver is disabled. Note that the receiver requires a flag before processing a frame, thus if the receiver is enabled in the middle of an incoming packet it will ignore that packet and wait for the next complete one. The receive CRC can be monitored in the Rx CRC Registers. These registers contain the actual CRC sent by the other transmitter in its original form; that is, MSB first and bits inverted. These registers are updated by each end of packet (closing flag) received and therefore should be read when an end of packet is received so that the next packet does not overwrite the registers. 9.0 Slip Buffers 9.1 Slip Buffer in T1 Mode In T1 mode, MT9076 contains two slip buffers, one on the transmit side, and one on the receive side. Both sides may perform a controlled slip. The mechanisms that govern the slip function are a function of backplane timing and the mapping between the ST-BUS channels and the DS1 channels. The slip mechanisms are different for the transmit and receive slip buffers. The extracted MHz clock (Exclk) and the internally generated transmit MHz clock are distinct. Slips on the transmit side are independent from slips on the receive side. In IMA mode neither the transmit nor receive slip buffer is activated. 45

46 The transmit slip buffer has data written to it from the near end Mb/s stream. The data is clocked out of the buffer using signals derived from the transmit MHz clock. The transmit MHz clock is always phase locked to the DSTi Mb/s stream. If the system MHz clock (C4b) is internally generated (pin BS/LS low), then it is hard locked to the MHz clock. No phase drift or wander can exist between the two signals - therefore no slips will occur. The delay through the transmit elastic buffer is then fixed, and is a function of the relative mapping between the DSTi channels and the DS1 timeslots. These delays vary with the position of the channel in the frame. For example, DS1 timeslot 1 sits in the elastic buffer for approximately 1 usec and DS1 timeslot 24 sits in the elastic buffer for approximately 32 usec. Write 0 us Pointer Read Pointer Read Pointer 4 us 221 us 512 Bit 188 us Elastic 62 us Store 92 us Wander Tolerance 129 us Read Pointer 96 us Read Pointer 92 us Read Vectors Minimum Delay Frame 0 Frame 1 Write Vectors Frame 0 Frame 1 Read Vectors - Maximum Delay Frame 0 Frame 1 Figure 11 - Read and Write Pointers in the Transmit Slip Buffers If the system MHz clock (C4b) is externally generated (pin BS/LS high), the transmit MHz clock is phase locked to it, but the PLL is designed to filter jitter present in the C4b clock. As a result phase drift will result between the two signals. The delay through the transmit elastic buffer will vary in accordance with the input clock drift, as well as being a function of the relative mapping between the DSTi channels and the DS1 timeslots. If the read pointers approach the write pointers (to within approximately 1 usec) or the delay through the transmit buffer exceeds 218 usecs a controlled slip will occur. The contents of a single frame of DS1 data will be skipped or repeated; a maskable interrupt (masked by setting bit 1 - TxSLPI high in Interrupt Mask Word Zero - page 1H, address 1bH) will be generated, and the status bit TSLIP (page 3H, address 17H) of MSB Transmit Slip Buffer register will toggle. The direction of the slip is indicated by bit 6 of the same register (TSLPD). The relative phase delay between the system frame boundary and the transmit elastic frame read boundary is measured every frame and reported in the Transmit Slip Buffer Delay register- (page 3H, address 17H). In addition the relative offset between these frame boundaries may be programmed by writing to this register. Every write to Transmit Elastic Buffer Set Delay Word resets the transmit elastic frame count bit TxSBMSB (address 17H, page 3H). After a write the delay through the slip buffer is less than 1 frame in duration. Each write operation will result in a disturbance of the transmit DS1 frame boundary, causing the far end to go out of sync. Writing BC (hex) into the TxSBDLY register maximizes the wander tolerance before a controlled slip occurs. Under normal operation no slips should occur in 46

47 the transmit path. Slips will only occur if the input C4b clock has excess wander, or the Transmit Elastic Buffer Set Delay Word register is initialized too close to the slip pointers after system initialization. The two frame receive elastic buffer is attached between the Mbit/s DS1 receive side and the Mbit/s ST-BUS side of the MT9076. Besides performing rate conversion, this elastic buffer is configured as a slip buffer which absorbs wander and low frequency jitter in multi-trunk applications. The received DS1 data is clocked into the slip buffer with the Exclk clock and is clocked out of the slip buffer with the system C4b clock. The Exclk extracted clock is generated from, and is therefore phase-locked with, the receive DS1 data. In the case of Internal mode (pin BS/LS set low) operation, the Exclk clock may be phase-locked to the C4b clock by an internal phase locked loop (PLL). Therefore, in a single trunk system the receive data is in phase with the Exclk clock, the C4b clock is phase locked to the E1.5o clock, and the read and write positions of the slip buffer track each other. In a multi-trunk slave or loop-timed system (i.e., PABX application) a single trunk will be chosen as a network synchronizer, which will function as described in the previous paragraph. The remaining trunks will use the system timing derived from the synchronizer to clock data out of their slip buffers. Even though the DS1 signals from the network are synchronous to each other, due to multiplexing, transmission impairments and route diversity, these signals may jitter or wander with respect to the synchronizing trunk signal. Therefore, the Exclk clocks of non-synchronized trunks may wander with respect to the Exclk clock of the synchronizer and the system bus. Network standards state that, within limits, trunk interfaces must be able to receive error-free data in the presence of jitter and wander (refer to network requirements for jitter and wander tolerance). The MT9076 will allow 92 usec (140 UI, DS1 unit intervals) of wander and low frequency jitter before a frame slip will occur. When the C4b and the Exclk clocks are not phase-locked, the rate at which data is being written into the slip buffer from the DS1 side may differ from the rate at which it is being read out onto the ST-BUS. If this situation persists, the delay limits stated in the previous paragraph will be violated and the slip buffer will perform a controlled frame slip. That is, the buffer pointers will be automatically adjusted so that a full DS1 frame is either repeated or lost. All frame slips occur on frame boundaries. The minimum delay through the receive slip buffer is approximately 1 usec and the maximum delay is approximately 249 us. Figure 12 illustrates the relationship between the read and write pointers of the receive slip buffer (contiguous time slot mapping). Measuring clockwise from the write pointer, if the read page pointer comes within 8 usec of the write page pointer a frame slip will occur, which will put the read page pointer 157 usec from the write page pointer. Conversely, if the read page pointer moves more than 249 usec from the write page pointer, a slip will occur, which will put the read page pointer 124 usec from the write page pointer. This provides a worst case hysteresis of 92 usec peak = 142 U.I. 47

48 Write Pointer Read Pointer 0 us 249 us 32 us Read Pointer 92 us Wander Tolerance 512 Bit 188 us Elastic 62 us Store 92 us Read Pointer 157 us 124 us Read Pointer Read Vectors Minimum Delay Frame 0 XXX Frame 1 XXX Write Vectors Frame 0 Frame 1 Read Vectors - Maximum Delay Frame 0 XXX Frame 1 XXX Figure 12 - Read and Write Pointers in the Receive Slip Buffers The RSLIP and RSLPD status bits (page 3H, address 13H, bits 7 and 6 respectively) give indication of a receive slip occurrence and direction. A maskable interrupt RxSLPI (page 1H, address 1BH, bit 0 - set high to mask) is also provided. RSLIP changes state in the event of a slip. If RSLPD=0, the slip buffer has overflowed and a frame was lost; if RSLPD=1, a underflow condition occurred and a frame was repeated. 9.2 Slip Buffer in E1 Mode In E1 mode, in addition to the elastic buffer in the jitter attenuator(ja), another elastic buffer (two frames deep) is present, attached between the receive side and the ST-BUS side of the MT9076. This elastic buffer is configured as a slip buffer which absorbs wander and low frequency jitter in multi-trunk applications. The received PCM 30 data is clocked into the slip buffer with the Exclk clock and is clocked out of the slip buffer with the C4b clock. The Exclk extracted clock is generated from, and is therefore phase-locked with, the receive PCM 30 data. In normal operation, the C4b clock will be phase-locked to the Exclk clock by a phase locked loop (PLL). Therefore, in a single trunk system the receive data is in phase with the Exclk clock, the C4b clock is phase-locked to the Exclk clock, and the read and write positions of the slip buffer will remain fixed with respect to each other. In a multi-trunk slave or loop-timed system (i.e., PABX application) a single trunk will be chosen as a network synchronizer, which will function as described in the previous paragraph. The remaining trunks will use the system timing derived from the synchronizer to clock data out of their slip buffers. Even though the PCM 30 signals from the network are synchronous to each other, due to multiplexing, transmission impairments and route diversity, these signals may jitter or wander with respect to the synchronizing trunk signal. Therefore, the Exclk clocks of non-synchronizer trunks may wander with respect to the Exclk clock of the synchronizer and the system bus. 48

49 Network standards state that, within limits, trunk interfaces must be able to receive error-free data in the presence of jitter and wander (refer to network requirements for jitter and wander tolerance). The MT9076 will allow a maximum of 26 channels (208 UI, unit intervals) of wander and low frequency jitter before a frame slip will occur. The minimum delay through the receive slip buffer is approximately two channels and the maximum delay is approximately 60 channels (see Figure 13). When the C4b and the Exclk clocks are not phase-locked, the rate at which data is being written into the slip buffer from the PCM 30 side may differ from the rate at which it is being read out onto the ST-BUS. If this situation persists, the delay limits stated in the previous paragraph will be violated and the slip buffer will perform a controlled frame slip. That is, the buffer pointers will be automatically adjusted so that a full PCM 30 frame is either repeated or lost. All frame slips occur on PCM 30 frame boundaries. Two status bits, RSLIP and RSLPD (page03h, address13h) give indication of a slip occurrence and direction. RSLIP changes state in the event of a slip. If RSLPD=0, the slip buffer has overflowed and a frame was lost; if RSLPD=1, a underflow condition occurred and a frame was repeated. A maskable interrupt SLPI (page 01H, address 1BH) is also provided. Figure 13 illustrates the relationship between the read and write pointers of the receive slip buffer. Measuring clockwise from the write pointer, if the read pointer comes within two channels of the write pointer a frame slip will occur, which will put the read pointer 34 channels from the write pointer. Conversely, if the read pointer moves more than 60 channels from the write pointer, a slip will occur, which will put the read pointer 28 channels from the write pointer. This provides a worst case hysteresis of 13 channels peak (26 channels peak-to-peak) or a wander tolerance of 208 UI. Read Pointer Write Pointer Read Pointer 60 CH 2 CH 13 CH 512 Bit 47 CH Elastic 15 CH Store 26 Channels Wander Tolerance 34 CH 28 CH -13 CH Read Pointer Read Pointer Figure 13 - Read and Write Pointers in the Slip Buffers 10.0 Framing Algorithm 10.1 Frame Alignment in T1 Mode In T1 mode, MT9076 will synchronize to DS1 lines formatted with either the D4 or ESF protocol. In either mode the framer maintains a running 3 bit history of received data for each of the candidate bit positions. Candidate bit positions whose incoming patterns fail to match the predicted pattern (based on the 3 bit history) are winnowed out. If, after a 10 bit history has been examined, only one candidate bit position remains within the framing bit period, the receive side timebase is forced to align to that bit position. If no candidates remain after a 10 bit history, the process is re-initiated. If multiple candidates exist after a 24 bit history timeout period, the framer forces the receive side 49

50 timebase to synchronize to the next incoming valid candidate bit position. In the event of a reframe, the framer starts searching at the next bit position over. This prevents persistent locking to a mimic as the controller may initiate a software controlled reframe in the event of locking to a mimic. Under software control the framing criteria may be tuned (see Framing Mode Select Register, page 1H, address 10H). Selecting D4 framing invites a further decision whether or not to include a cross check of Fs bits along with the Ft bits. If Fs bits are checked (by setting control bit CXC high - bit 5 of the Framing Mode Select Word, page 1H, address 10H), multiframe alignment is forced at the same time as terminal frame alignment. If only Ft bits are checked, multiframe alignment is forced separately, upon detection of the Fs bit history of (for normal D4 trunks) or (for SLC-96 trunks). For D4 trunks, a reframe on the multiframe alignment may be forced at any time without affecting terminal frame alignment. In ESF mode, the circuit will optionally confirm the CRC-6 bits before forcing a new frame alignment. This is programmed by setting control bit CXC high (bit 5 of the Framing Mode Select Word, page 1H, address 10H). A CRC-6 confirmation adds a minimum of 6 milliseconds to the reframe time. If no CRC-6 match is found after 16 attempts, the framer moves to the next valid candidate bit position (assuming other bit positions contain a match to the framing pattern) or re-initiates the whole framing procedure (assuming no bit positions have been found to match the framing pattern). The framing circuit is off - line. During a reframe, the rest of the circuit operates synchronous with the last frame alignment. Until such time as a new frame alignment is achieved, the signaling bits are frozen in their states at the time that frame alignment was lost, and error counting for Ft, Fs, ESF framing pattern or CRC-6 bits is suspended Frame Alignment in E1 Mode In E1 mode, MT9076 contains three distinct framing algorithms: basic frame alignment, signaling multiframe alignment and CRC-4 multiframe alignment. Figure 14 is a state diagram that illustrates these algorithms and how they interact. After power-up, the basic frame alignment framer will search for a frame alignment signal (FAS) in the PCM 30 receive bit stream. Once the FAS is detected, the corresponding bit 2 of the non-frame alignment signal (NFAS) is checked. If bit 2 of the NFAS is zero a new search for basic frame alignment is initiated. If bit 2 of the NFAS is one and the next FAS is correct, the algorithm declares that basic frame synchronization has been found (i.e., page 03H, address 10H, bit 7, SYNC is zero). Once basic frame alignment is acquired the signaling and CRC-4 multiframe searches will be initiated. The signaling multiframe algorithm will align to the first multiframe alignment signal pattern (MFAS = 0000) it receives in the most significant nibble of channel 16 (page 3, address 10H, bit 6, MFSYNC = 0). signaling multiframing will be lost when two consecutive multiframes are received in error. The CRC-4 multiframe alignment signal is a bit sequence that appears in PCM 30 bit position one of the NFAS in frames 1, 3, 5, 7, 9 and 11 (see Table 11). In order to achieve CRC-4 synchronization two consecutive CRC-4 multiframe alignment signals must be received without error (page 03H, address 10H CRCSYN = 0). The E1 framing algorithm supports automatic interworking of interfaces with and without CRC-4 processing capabilities. That is, if an interface with CRC-4 capability, achieves valid basic frame alignment, but does not achieve CRC-4 multiframe alignment by the end of a predefined period, the distant end is considered to be a non-crc-4 interface. When the distant end is a non-crc-4 interface, the near end automatically suspends receive CRC-4 functions, continues to transmit CRC-4 data to the distant end with its E-bits set to zero, and provides a status indication. Naturally, if the distant end initially achieves CRC-4 synchronization, CRC-4 processing will be carried out by both ends. This feature is selected when control bit AUTC (page 01H, address 10H) is set to zero. 50

51 Out of synchronization YES NO >914 CRC errors in one second NO Search for primary basic frame alignment signal RAI=1, Es=0. YES Verify Bit 2 of non-frame alignment signal. 3 consecutive incorrect frame alignment signals YES No CRC multiframe alignment. 8 msec. timer expired* Verify second occurrence of frame alignment signal. YES NO CRC-4 multi-frame alignment Start 400 msec timer. Note 7. Primary basic frame synchronization acquired. Enable traffic RAI=0, E s=0. Start loss of primary basic frame alignment checking. Notes 7 & 8. Signalling multi-frame alignment Search for multiframe alignment signal. Note 7. NO YES Start 8 msec timer. Note 7. Basic frame alignment acquired RAI = 0 Multiframe synchronization acquired as per G.732. Note 7. NO YES Find two CRC frame alignment signals. Note 7. CRC multiframe alignment 8 msec. timer expired** No CRC multiframe alignment. Check for two consecutive errored multiframe alignment signals. Notes 7 & 8. CRC-to-CRC interworking. Re-align to new basic frame alignment. Start CRC-4 processing. E-bits set as per G.704 and I.431. Indicate CRC synchronization achieved. Notes 7& 8. Parallel search for new basic frame alignment signal. Notes 6 & msec timer expired * only if CRC-4 synchronization is selected and automatic CRC-4 interworking is de-selected. ** only if automatic CRC-4 interworking is selected. CRC-to-non-CRC interworking. Maintain primary basic frame alignment. Continue to send CRC-4 data, but stop CRC processing. E-bits set to 0. Indicate CRC-to-non-CRC operation. Note 7. Figure 14 - Synchronization State Diagram 51

52 Notes for Synchronization State Diagram (Figure 14) 1) The basic frame alignment, signaling multiframe alignment, and CRC-4 multiframe alignment functions operate in parallel and are independent. 2) The receive channel associated signaling bits and signaling multiframe alignment bit will be frozen when multiframe alignment is lost. 3) Manual re-framing of the receive basic frame alignment and signaling multiframe alignment functions can be performed at any time. 4) The transmit RAI bit will be one until basic frame alignment is established, then it will be zero. 5) E-bits can be optionally set to zero until the equipment interworking relationship is established. When this has been determined one of the following will take place: a) CRC-to-non-CRC operation - E-bits = 0, b) CRC-to-CRC operation - E-bits as per G.704 and I ) All manual re-frames and new basic frame alignment searches start after the current frame alignment signal position. 7) After basic frame alignment has been achieved, loss of frame alignment will occur any time three consecutive incorrect basic frame alignment signals are received. Loss of basic frame alignment will reset the complete framing algorithm. 8) When CRC-4 multiframing has been achieved, the primary basic frame alignment and resulting multiframe alignment will be adjusted to the basic frame alignment determined during CRC-4 synchronization. Therefore, the primary basic frame alignment will not be updated during the CRC-4 multiframing search, but will be updated when the CRC-4 multiframing search is complete Reframe E1 Mode The MT9076 will automatically force a reframe, if three consecutive frame alignment patterns or three consecutive non-frame alignment bits are in error T1 Mode The MT9076 will automatically force a reframe if the framing bit error density exceeds the threshold programmed by control bits RS1-0 (Framing Mode Select Word page 1H, address 10H). RS1 = RS0 = 0 forces a reframe for 2 errors out of a sliding window of 4 framing bits. RS1 = 0, RS0 = 1 forces a reframe with 2 errors out of 5. RS1 = 1, RS0 = 0 forces a reframe with 2 errors out of 6. RS1 = RS0 = 1 disables the automatic reframe. In ESF mode, all framing bits are checked. In D4 mode, either Ft bits only (if control bit 2 - FSI - of Framing Mode Select Register is set low) or Ft and Fs bits are checked (FSI set high). If the D4 secondary yellow alarm is enabled (control bit 1 - D4SECY of Transmit Alarm Control Word page 1H, address 11H) then the Fs bit of frame 12 is not verified for the loss of frame circuit. In E1 or T1 mode, receive transparent mode (selected when bit 3 page 1 address 12H is high) no reframing is forced by the device. The user may initiate a software reframe at any time by setting bit 1, page 1, address 10H high (ReFR). Once the circuit has commenced reframing the signaling bits are frozen until multiframe synchronization has been achieved MT9076 Channel Signaling 11.1 Channel Signaling in T1 Mode In T1 mode, when control bit RBEn (page 1H, address 14H) is low the MT9076 will insert ABCD or AB signaling bits into bit 8 of every transmit DS0 channel every 6th frame. The AB or ABCD signaling bits from received frames 6 52

53 and 12 (AB) or from frames 6, 12, 18 and 24 (ABCD) will be loaded into an internal storage RAM. The transmit AB/ ABCD signaling nibbles can be passed either via the micro-ports (for channels with bit 1 set high in the Per Time Slot Control Word - pages 7H and 8H) or through related channels of the CSTi serial links, see ST-BUS vs. DS1 to Channel Relationship(T1) on page 30. The receive signaling bits are always mapped to the equivalent ST-BUS channels on CSTo. Memory pages five and six contain the transmit AB or ABCD nibbles and pages eight and nine the receive AB or ABCD nibbles for micro-port CAS access. The serial control streams that contain the transmit / receive signaling information (CSTi and CSTo respectively) are clocked at MHz. The number of signaling bits to be transmit / received = 24 (timeslots) x 4 bits per timeslot (ABCD) = 24 nibbles. This leaves many unused nibble positions in the MHz CSTi / CSTo bandwidth. These unused nibble locations are tristated. The usage of the bit stream is as follows: the signaling bits are inserted / reported in the same CSTi / CSTo channels that correspond to the DS1 channels used in DSTi / DSTo - see Table 6, ST-BUS vs. DS1 to Channel Relationship(T1), on page 30. The control bit MSN (signaling Control Word, page 01H, address 14H) allows for the ABCD bit to use the most significant nibble of CSTi / CSTo (MSN set high) or the least significant nibble (MSN set low). Unused nibbles and timeslots are tristate. In order to facilitate multiplexing on the CSTo control stream, an additional control bit CSToEn (signaling Control Word, page 01H, address 14H) will tristate the whole stream when set low. This control bit is forced low with the reset pin. In the case of D4 trunks, only AB bits are reported. The control bits SM1-0 allow the user to program the 2 unused bits reported on CSTo in the signaling nibble otherwise occupied by CD signaling bits in ESF trunks. A receive signaling bit debounce of 6 msec. can be selected (DBEn set high - signaling Control Word, page 01H, address 14H). It should be noted that there may be as much as 3 msec. added to this duration because signaling equipment state changes are not synchronous with the D4 or ESF multiframe. If multi - frame synchronization is lost (page 3H, address 10H, bit 6 MFSYNC = 1) all receive signaling bits are frozen. They will become unfrozen when multi - frame synchronization is acquired (this is the same as terminal frame synchronization for ESF links). When the SIGI interrupt is unmasked, IRQ will become active when a signaling state change is detected in any of the 24 receive channels. The SIGI interrupt mask is located on page 1, address 1EH, bit 0 (set high to enable interrupt); and the SIGI interrupt vector is located on page 4, address 1EH Channel Signaling in E1 Mode In E1 mode, when control bit TxCCS is set to one, the MT9076 is in Common Channel signaling (CCS) mode. When TxCCS is low it is in Channel Associated signaling mode (CAS). The CAS mode ABCD signaling nibbles can be passed either via the micro-ports (when RPSIG = 1) or through related channels of the CSTo and CSTi serial links (when RPSIG = 0). Memory pages 09H and 0AH contain the receive ABCD nibbles and pages 05H and 06H the transmit ABCD nibbles for micro-port CAS access. In CAS operation, an ABCD signaling bit debounce of 14 msec. can be selected by writing a one to DBNCE control bit. This is consistent with the signaling recognition time of ITU-T Q.422. It should be noted that there may be as much as 2 msec. added to this duration because signaling equipment state changes are not synchronous with the PCM 30 multiframe. If multiframe synchronization is lost (page 03H, address 10H, when MFSYNC = 1) all receive CAS signaling nibbles are frozen. Receive CAS nibbles will become unfrozen when multiframe synchronization is acquired. When the CAS signaling interrupt is unmasked (page 01H, address 1EH, SIGIM=1), pin IRQ (pin 12 in PLCC, 65 in LQFP) will become active when a signaling nibble state change is detected in any of the 30 receive channels. In CCS mode, the data transmitted on channel 16 is sourced from channel 16 data on DSTi. 53

54 12.0 Loopbacks In order to meet PRI Layer 1 requirements and to assist in circuit fault sectioning, the MT9076 has six loopback functions. These are as follows: a) Digital loopback (DSTi to DSTo at the framer/liu interface). Bit DLBK = 0 normal; DLBK = 1 activate. MT9076 DSTi System DSTo Tx Line b) Remote loopback (RTIP and RRING to TTIP and TRING respectively at the Line side). Bit RLBK = 0 normal; RLBK = 1 activate. MT9076 System DSTo Tx Line Rx c) ST-BUS loopback (DSTi to DSTo at the system side). Bit SLBK = 0 normal; SLBK = 1 activate. MT9076 DSTi System DSTo Tx Line d) Payload loopback (RTIP and RRING to TTIP and TRING respectively at the system side). Bit PLBK = 0 normal; PLBK = 1 activate. The payload loopback is effectively a physical connection of DSTo to DSTi within the MT9076. Sbit information and the DL originate at the point of loopback. MT9076 DSTi System DSTo Tx Rx Line e) Metallic Loopback. MLBK = 0 normal; MLBK = 1 activate, will isolate the external signals RTIP and RRING from the receiver and internally connect the analog output TTIP and TRING to the receiver analog input. MT9076 DSTi System DSTo Tx Rx Line f) Per time slot local and remote loopback. Remote time slot loopback control bit RTSL = 0 normal; RTSL = 1 activate, will loop around transmit ST-BUS time slots to the DSTo stream. Local time slot loopback bits LTSL = 0 normal; LTSL = 1 activate, will loop around receive PCM 30 time slots towards the remote PCM 30 end. MT9076 DSTi System DSTo Tx Line Rx 54

55 The digital, remote, ST-BUS, payload and metallic loopbacks are located on page 1, address 15H - Coding and Loopback Control Word. The remote and local time slot loopbacks are controlled through control bits 5 and 4 of the Per Time Slot Control Words, pages 7H and 8H Performance Monitoring 13.1 Error Counters In T1 mode, MT9076 has eight error counters, which can be used for maintenance testing and ongoing measurement of the quality of a DS1 link and to assist the designer in meeting specifications such as TR62411 and T All counters can be preset or cleared by writing to the appropriate locations. Associated with each counter is a maskable event occurrence interrupt and a maskable counter overflow interrupt. Overflow interrupts are useful when cumulative error counts are being recorded. For example, every time the framing bit error counter overflow interrupt (FERO) occurs, 256 frame errors have been received since the last FERO (page 04H, address 1DH)interrupt. All counters are cleared and held low by programming the counter clear bit -CNTCLR - high (bit 4 of the Reset Control Word, page 1H, address 1AH). An alternative approach to event reporting is to mask error events and to enable the 1 second sample bit (SAMPLE - bit 3 of the Reset Control Word). When this bit is set the counters for change of frame alignment, loss of frame alignment, line code violation errors, crc errors, errored framing bits, and multiframes out of sync are updated on one second intervals coincident with the maskable one second interrupt timer. In E1 mode, MT9076 has six error counters, which can be used for maintenance testing, and ongoing measurement of the quality of a PCM 30 link and to assist the designer in meeting specifications such as ITU-T I.431 and G.821. All counters can be preset or cleared by writing to the appropriate locations. Associated with each counter is a maskable event occurrence interrupt and a maskable counter overflow interrupt. Overflow interrupts are useful when cumulative error counts are being recorded. For example, every time the frame error counter overflow (FERO) interrupt occurs, 256 frame errors have been received since the last FERO interrupt. All counters are cleared and held low by programming the counter clear bit (master control page 01H, address 1A, bit 4) high. Counter overflows set bits in the counter overflow latch (page 04H, address 1FH); this latch is cleared when read. The overflow reporting latch (page 04H, address 1FH) contains a register whose bits are set when individual counters overflow. These bits stay high until the register is read T1 Counters Framing Bit Error Counter (FC7-0) This eight bit counter counts errors in the framing pattern. In ESF mode, any error in the framing pattern increments the counter. In SLC-96 mode any error in the Ft bit position is counted. In D4 mode Ft errors are always counted, Fs bits (except for the Sbit in frame 12) may optionally be counted (if control bit FSI is set high - page 1H, address 10H, bit 2). The counter is located on page 4H, address 13H. There are two maskable interrupts associated with the Framing bit error measurement. A single error may generate an interrupt (enable by setting FERI high - bit 7 of the Interrupt Mask Word One, page 1H, address 1CH). A counter overflow interrupt may be enabled by setting control bit FEOM high - bit 2 of Interrupt Mask Word Two (page 1H, address 1DH) Out Of Frame/Change Of Frame Alignment Counter (OOF3-0/COFA3-0) This register space is shared by two nibbles. One is the count of out of frame events. The other independent counter is incremented when, after a resynchronization, the frame alignment has moved. This count is reported in page 4, address 13H. 55

56 There are two interrupts associated with the Change of Frame Alignment counter. A single error may generate an interrupt (enable by setting COFAI high - bit 4 of the Interrupt Mask Word One, page 1H, address 1CH). A counter overflow interrupt may be enabled by setting control bit COFAO high - bit 4 of Interrupt Mask Word Two (page 1H, address 1DH). There is one interrupt associated with the Out of Frame counter. A counter overflow interrupt may be enabled by setting control bit OOFO high - bit 5 of Interrupt Mask Word Two (page 1H, address 1DH) Multiframes out of Sync Counter (MFOOF7-MFOOF0) This eight bit counter MFOOF7 - MFOOF0 is located on page 4 address 15H, and is incremented once per multiframe (1.5 ms for D4 and 3 ms for ESF) during the time that the framer is out of terminal frame synchronization. There is a maskable interrupt associated with the measurement. A counter overflow interrupt may be enabled by setting control bit MFOOFO high - bit 1 of Interrupt Mask Word Two (page 1H, address 1DH) CRC-6 Error Counter (CC15-0) CRC-6 errors are recorded by this counter for ESF links. This 16 bit counter is located on page 4, addresses 18H and 19H. There are two maskable interrupts associated with the CRC error measurement. A single error may generate an interrupt (enable by setting CRCI high - bit 6 of the Interrupt Mask Word One, page 1H, address 1CH). A counter overflow interrupt may be enabled by setting control bit CRCO high - bit 6 of Interrupt Mask Word Two (page 1H, address 1DH) Line Code Violation Error Counter (LCV15-LCV0) If the control bit EXZ (page 1 address 12H bit 5) is set low, the line code violation error counter will count bipolar violations that are not part of B8ZS encoding. If the control bit EXZ (page 1 address 12H bit 5) is set high, the line code violation error counter will count both bipolar violations that are not part of B8ZS encoding and each occurrence of excess zeros (more than 7 successive zeros in a received B8ZS encoded data stream and more than 15 successive zeros in a non-b8zs encoded stream). This counter LCV15-LCV0 is 16 bits long (page 4H, addresses 16H and 17H) and is incremented once for every line code violation received. It should be noted that when presetting or clearing the LCV error counter, the least significant LCV counter address should be written to before the most significant location. This counter will suspend operation when terminal frame synchronization is lost if the control bit OOFP is set (bit 2, address 1AH - Reset Control Word). There are two maskable interrupts associated with the line code violation error measurement. A single error may generate an interrupt (enable by setting LCVI high - bit 3 of the Interrupt Mask Word One, page 1H, address 1CH). A counter overflow interrupt may be enabled by setting control bit LCVO high - bit 3 of Interrupt Mask Word Two (page 1H, address 1DH) PRBS Error Counter (PS7-0) There are two 8 bit counters associated with PRBS comparison; one for errors and one for time. Any errors that are detected in the receive PRBS will increment the PRBS Error Rate Counter of page 04H, address 10H. Writes to this counter will clear an 8 bit counter, PSM7-0 (page 01H, address 11H) which counts receive CRC multiframes. A maskable PRBS counter overflow (PRBSO) interrupt (page 1, address 1DH) is associated with this counter CRC Multiframe Counter for PRBS (PSM7-0) This eight bit counter counts receive CRC multiframes. It can be directly loaded via the microport. The counter will also be automatically cleared in the event that the PRBS error counter is written to by the microport. This counter is located on page 04H, address 11H. 56

57 13.3 E1 Counters 13.4 Errored FAS Counter (EFAS7-EFAS0) An eight bit Frame Alignment Signal Error counter EFAS7 - EFAS0 is located on page 04H address 13H, and is incremented once for every receive frame alignment signal that contains one or more errors. There are two maskable interrupts associated with the frame alignment signal error measurement. FERI (page 01H, address 1CH) is initiated when the least significant bit of the errored frame alignment signal counter toggles, and FERRO (page 01H, address 1DH) is initiated when the counter changes from FFH to 00H E-bit Counter (EC15-0) E-bit errors are counted by the MT9076 in order to support compliance with ITU-T requirements. This sixteen bit counter is located on page 04H, addresses 14H and 15H respectively. It is incremented by single error events, with a maximum rate of twice per CRC-4 multiframe. There are two maskable interrupts associated with the E-bit error measurement. EBI (page 1, address 1CH) is initiated when the least significant bit of the counter toggles, and FEBEO (page 01H, address 1DH) is initiated when the counter overflows Line Code Violation Error Counter (LCV15-LCV0) If the control bit EXZ (page 1 address 12H bit 5) is set low, the line code violation error counter will count bipolar violations that are not part of HDB3 encoding. If the control bit EXZ (page 1 address 12H bit 5) is set high, the line code violation error counter will count both bipolar violations that are not part of HDB3 encoding and each occurrence of excess zeros (more than 3 successive zeros in a received HDB3 encoded data stream and more than 15 successive zeros in a non-hdb3 encoded stream). This counter LCV15-LCV0 is 16 bits long (page 4H, addresses 16H and 17H) and is incremented once for every line code violation received. It should be noted that when presetting or clearing the LCV error counter, the least significant LCV counter address should be written to before the most significant location. This counter will suspend operation when terminal frame synchronization is lost if the control bit OOFP is set (bit 2, address 1AH - Reset Control Word). In E1 mode, there are two maskable interrupts associated with the line code violation error measurement. LCVI (page 01H, address 1CH) is initiated when the l significant bit of the LCV error counter toggles. LCVO (page 01H, address 1DH) is initiated when the counter changes from FFFFH to 0000H CRC-4 Error Counter (CC15-0) CRC-4 errors are counted by the MT9076 in order to support compliance with ITU-T requirements. This sixteen bit counter is located on page 04H, addresses 18H and 19H in E1 mode. It is incremented by single error events, which is a maximum rate of twice per CRC-4 multiframe. There is a maskable interrupt associated with the CRC error measurement. CRCIM (page 01H, address 1CH) is initiated when the least significant bit of the counter toggles, and CRCOM (page 01H, address 1DH) is initiated when the counter overflows PRBS Error Counter (PS7-0) There are two 8 bit counters associated with PRBS comparison; one for errors and one for time. Any errors that are detected in the receive PRBS will increment the PRBS Error Rate Counter of page 04H, address 10H. Writes to this counter will clear an 8 bit counter, PSM7-0 (page 01H, address 11H) which counts receive CRC multiframes. A maskable PRBS counter overflow (PRBSO) interrupt (page 1, address 1DH) is associated with this counter. 57

58 13.9 CRC Multiframe Counter for PRBS (PSM7-0) This eight bit counter counts receive CRC-4 multiframes. It can be directly loaded via the microport. The counter will also be automatically cleared in the event that the PRBS error counter is written to by the microport. This counter is located on page 04H, address 11H Error Insertion In T1 mode, six types of error conditions can be inserted into the transmit DS1 data stream through control bits, which are located on page 1, address 19H - Error Insertion Word. These error events include the bipolar violation errors (BPVE), CRC-6 errors (CRCE), Ft errors (FTE), Fs errors (FSE), payload (PERR) and a loss of signal condition (LOSE). The LOSE function overrides the B8ZS encoding function. In E1 mode, six types of error conditions can be inserted into the transmit PCM 30 data stream through control bits, which are located on page 01H, address 19H. These error events include the bipolar violation errors (BPVE), CRC-4 errors (CRCE), FAS errors (FASE), NFAS errors (NFSE), payload (PERR) and a loss of signal error (LOSE). The LOSE function overrides the HDB3 encoding function Per Time Slot Control Words There are two per time slot control pages (addresses AH and BH) (T1/E1) occupying a total of 24 unique addresses in T1 mode or a total of 32 unique addresses in E1 mode. Each address controls a matching timeslot on the 24 DS1 channels (T1) or 32 PCM-30 channels (E1) and the equivalent channel data on the receive (DSTo) data. For example address 0 of the first per time slot control page contains program control for transmit timeslot 0 and DSTo channel 0. Per Time Slot Control Word Bit 7 Bit 0 T1 Mode TXMSG PCI RTSL LTSL TTST RRST RPSIG CC E1 Mode TXMSG ADI RTSL LTSL TTST RRST RPSIG Clear Channel Capability In T1 mode, when bit zero (CC) in the per time slot control word is set no bit robbing for the purpose of signaling will occur in this channel. This bit is not used in E1 mode Microport Signaling When bit one (RPSIG) is set, the transmit signaling for the addressed channel can only be programmed by writing to the transmit signaling page (pages 5H and 6H) via the microport. If zero, the transmit signaling information is constantly updated with the information from the equivalent channel on CSTi. 58

59 15.3 Per Time Slot Looping Any channel or combination of channels may be looped from transmit (sourced from DSTi) to receive (output on DSTo) STBUS channels. When bit four (LTSL) in the Per Time Slot Control Word is set the data from the equivalent transmit timeslot is looped back onto the equivalent receive channel. Any channel or combination of channels may be looped from receive (sourced from the line data) to transmit (output onto the line) channels. When bit five (RTSL) in the Per Time Slot Control Word is set the data from the equivalent receive timeslot is looped back onto the equivalent transmit channel. Remote Timeslot Loopback and Local Timeslot should not be simultaneously activated in the same timeslot PRBS Testing If the control bit ADSEQ is zero (from master control page 1 - access control word), any channel or combination of transmit channels may be programmed to contain a generated pseudo random bit sequence (2 15-1). The channels are selected by setting bit three (TTST), in the per time slot control word. If the control bit ADSEQ is zero, any combination of receive channels may be connected to the PRBS decoder (2 15-1). Each error in the incoming sequence causes the PRBS error counter to increment. The receive channels are selected by setting bit 2 (RRST) in the per time slot control word. If PRBS is performed during a metallic or external looparound, per time slot control words with TTST set should have RRST set as well Digital Milliwatt If the control bit ADSEQ is one, a digital milliwatt sequence (Table 18) in T1 mode or (Table 19) in E1 mode may be transmitted on any combination of selected channels. The channels are selected by setting bit three (TTST), in the Per Time Slot Control Word. Under the same control condition (ADSEQ equal to one), the same digital milliwatt sequence is available to replace received data on any combination of DSTo channels. This is accomplished by setting bit two (RRST) in the Per Time Slot Control Word for the corresponding channel. Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit Table 18 - Digital Milliwatt Pattern (T1) 59

60 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit Per Channel Inversion Table 19 - A-Law Digital Milliwatt Pattern (E1) When bit six (PCI) in the Per Time Slot Control Word is set both transmit and receive data for the selected channel is inverted before going onto the line / DSTo respectively Transmit Message When bit seven (TXMSG) in the Per Time Slot Control Word is set the data transmit in the selected channel is sourced from the transmit message word in Master Control page Alarms The following alarms are detected by the receiver in T1 mode. Each may generate a maskable interrupt: D4 Yellow Alarm - in D4 mode there are two possible yellow alarm signals. If control bit D4SECY is set low, (page 1H, address 11H, bit 1) the criteria for a yellow alarm is an excess of 0 s (more than 285) in bit position 2 of incoming DS0 channels during an integration period of 1.5 milliseconds. It is cleared after more than 3 1 s are detected in bit position 2 of normal data in a 1.5 millisecond integration period. If D4SECY is set high the secondary yellow alarm is selected. The detection criteria becomes 2 consecutive 1 s in the Sbit position of the 12th frame. ESF Yellow Alarm - In ESF mode, there are two possible yellow alarm signals. If control bit JYEL (page 1H, address 14H, bit 0) is set low the criteria for a yellow alarm is a pattern in seven or more code words out of ten, If JYEL is set high, the criteria for a yellow alarm is a pattern in seven or more code words out of ten. All Ones - This bit (page 3H, address 11H, bit 3) is set if less than six zeros are received on the incoming line data during a 3 ms interval Loss of Signal - a loss of signal condition occurs when the receive signal level is lower than 20 db or 40 db below the nominal signal level for at least a millisecond or when 32 or 192 (control bit L32Z (page 01H, address 19H, bit 1) consecutive zeros have been received. A loss of signal condition will terminate when an average ones density of at least 12.5% has been received over a period of 193 contiguous pulse positions starting with a pulse. The loss of signal is reported in the Receive Signal Status Word - (page 3, address 16H bit 4). The following alarms are detected by the receiver in E1 mode. Each may generate a maskable interrupt: Remote Alarm Indication (RAI) - bit 3 (A) of the receive NFAS; Alarm Indication Signal (AIS) - unframed all ones signal for at least a double frame (512 bits) or two double frames (1024 bits); Channel 16 Alarm Indication Signal - all ones signal in channel 16; 60

61 Auxiliary pattern pattern for at least 512 bits; Loss of Signal - a loss of signal condition occurs when the receive signal level is lower than 20 db or 40 db (by setting the bit ELOS on page 02H, address 10H, bit 3) below the nominal signal level for more than a millisecond or when more than 32 or 192 (control bit L32Z (page 01H, address 19H 9 bit 1) zeros have been received in a row. A loss of signal condition will terminate when an average ones density of at least 12.5% has been received over a period of 192 contiguous pulse positions starting with a pulse. Remote signaling Multiframe Alarm - (Y-bit) of the multiframe alignment signal. The alarm reporting latch (page 04H, address 12H) contains a register whose bits are set high for selected alarms. These bits stay high until the register is read. This allows the controller to record intermittent or sporadic alarm occurrences Automatic Alarms In E1 mode, the transmission of RAI and signaling multiframe alarms can be made to function automatically from control bits ARAI and AUTY (page 01H, address 10H). When ARAI = 0 and basic frame synchronization is lost (SYNC = 1), the MT9076 will automatically transmit the RAI alarm signal to the far end of the link. The transmission of this alarm signal will cease when basic frame alignment is acquired. When AUTY = 0 and signaling multiframe alignment is not acquired (MFSYNC = 1), the MT9076 will automatically transmit the multiframe alarm (Y-bit) signal to the far end of the link. This transmission will cease when signaling multiframe alignment is acquired Detected Events 17.1 T1 Mode Severely Errored Frame Event In T1 mode, bit 5 page 3H address 10H toggles whenever a sliding window detects 2 framing errors events (Ft or ESF) in a sliding window of Loop Code Detect T1.403 defines SF mode line loopback activate and deactivate codes. These codes are either a framed or un-framed repeating bit sequence of for activation or 001 for deactivation. The standard goes on to say that these codes will persist for five seconds or more before the loopback action is taken. In T1 mode MT9076 will detect both framed and unframed line activate and de-activate codes even in the presence of a BER of 3 x Line Loopback Disable Detect - LLDD - in the Alarm Status Word (bit 0 address 11H of page 3H) will be asserted when a repeating 001 pattern (either framed or unframed) has persisted for 48 milliseconds. Line Loopback Enable Detect LLED in the Alarm Status Word will be asserted when a repeating pattern (either framed or unframed) has persisted for 48 milliseconds Pulse Density Violation Detect In T1 mode, bit 2 of address 11H on page 3H (PDV) toggles if the receive data fails to meet ones density requirements. It will toggle upon detection of 16 consecutive zeros on the line data, or if there are less than N ones in a window of 8(N+1) bits - where N = 1 to Timer Outputs In T1 mode, MT9076 has a one second timer derived from the 20 MHz oscillator pins. The timer may be used to trigger interrupts for T1.403/408 performance messaging. 61

62 17.2 E1 mode Consecutive Frame Alignment Patterns (CONFAP) Two consecutive frame alignment signals in error Receive Frame Alignment Signals These bits are received on the PCM 30 and link in bit positions two to eight of time slot 0 - frame alignment signal. These signals form the frame alignment signal and should be Receive Non Frame Alignment Signal This signal is received on the PCM 30 and link in bit position two of time slot 0 - non frame alignment signal Receive Multiframe Alignment Signals These signal are received on the PCM 30 and link in bit position one to four of time slot 16 of frame zero of every signaling multiframe Interrupts The MT9076 has an extensive suite of maskable interrupts, which are divided into four categories based on the type of event that caused the interrupt. Each interrupt has an associated mask and interrupt bit. When an unmasked interrupt event occurs, IRQ will go low and one or more bits of the appropriate interrupt register will go high(t1/e1). After each interrupt register is read it is automatically cleared. When all interrupt registers are cleared IRQ will return to a high impedance state. This function can also be accomplished by toggling the INTA bit (page 01H, address 1AH, bit 5). All the interrupts of the MT9076 in T1 and E1 mode are maskable. This is accomplished through interrupt mask words zero to three, which are located on page 1, addresses 1BH to 1EH and the (optional) HDLC interrupt mask located at address 16 of page B. After a MT9076 reset (RESET pin or RST control bit), all interrupts are masked. All interrupts may be suspended, without changing the interrupt mask words, by making the SPND control bit of page 1, address 1AH high. All interrupts are cleared by forcing the pin TxAO low 18.1 Interrupts on T1 Mode Interrupt Word Zero (Page 4, Address 1BH) Bit 7 Bit 0 TFSYNI MFSYNI TSAI AISI LOSI SEI TxSLPI RxSLPI Interrupt Mask Word Zero (Page 1, Address 11BH) Bit 7 Bit 0 TFSYNIM MFSYNIM BIOMTIM AISIM LOSIM SEFIM TxSLPIM RxSLPIM Interrupt Word One (Page 4, Address 1CH) Bit 7 Bit 0 FEI CRCI YELI COFAI LCVI PRBSI PDVI

63 Interrupt Mask Word One (Page 1, Address 1CH) Bit 7 Bit 0 FEIM CRCIM YELIM COFAIM LCVIM PRBSIM PDVIM --- Interrupt Word Two (Page 4, Address 1DH) Bit 7 Bit 0 FEO CRCO OOFO COFAO LCVO PRBSO MFOOFO Interrupt Mask Word Two (Page 1, Address 1DH) Bit 7 Bit 0 FEOM CRCOM OOFOM COFAOM LCVOM PRBSOM PRBSMFOM MFOOFOM Interrupt Word Three (Page 4, Address 1EH) Bit 7 Bit 0 HDLC0I HDLC1I HDLC2I LCDI 1SECI 5SECI BIOMI SIGI Interrupt Mask Word Three (Page 1, Address 1EH) Bit 7 Bit 0 HDLC0IM HDLC1IM HDLC2IM LCDIM LSECIM 5SECIM BIOMIM SIGIM HDLC Interrupt Status Register (Page B,C, & D, Address 17H) Bit 7 Bit 0 GA RxEOP TxEOP RxFE TxFL FATxUNDER RxFF RxOVF HDLC Interrupt Mask Register (Page B, C, and D Address 16H) Bit 7 Bit 0 GAIM RxEOPIM TxEOPIM RxFEIM TxFLIM FA:TxUNDERIM RxFFIM RxOVFIM 18.2 Interrupts on E1 Mode Interrupt Word Zero (Page 4, Address 1BH) Interrupt Mask Word Zero (Page 1, Address 1BH) Bit 7 Bit 0 Bit 7 Bit 0 TFSYNI MFSYNI CRCSYNI AISI LOSI CEFI Y1 RxSLPI SYNIM MFSYM CSYNIM AISIM LOSIM CEFIM YIM SLPIM Interrupt Word One (Page 4, Address 1CH) Interrupt Mask Word One (Page 1, Address 1CH) Bit 7 Bit 0 Bit 7 Bit 0 FERRI CRCERRI EBITI AIS16I LCVI PRBSERRI AUXPI RAII FERIM CRCIM EMIM AISI6IM LCVIM PRBSIM AUXPIM RAIIM Interrupt Word Two (Page 4, Address 1DH) Interrupt Mask Word Two (Page 1, Address 1DH) Bit 7 Bit 0 Bit 7 Bit 0 FERRO CRCO --- FEBFO LCVO PRBSO PRBSMFO SaI FEOM CRCOIM --- EBOIM LCVCOM PRBSOM PRBSMFOM SaIM 63

64 Interrupt Word Three (Page 4, Address 1EH) Interrupt Mask Word Three (Page 1, Address 1EH) Bit 7 Bit 0 Bit 7 Bit 0 HDLC0I HDLC1I HDLC2I JAI 1SECI 5SECI RCRI SIGI HDLC0IM HDLC1IM HDLC2IM LCDIM LSECIM 5SECIM BIOMIM SIGIM HDLC Interrupt Status Register (Page B, C & D, Address 17H) HDLC Interrupt Mask Register (Page B, C, & D, Address 16H) Bit 7 Bit 0 Bit 7 Bit 0 GA RxEOP TxEOP RxFE TxFL FA:TxUNDER RxFF Rx6VF GAIM RxEOPIM TxEOPIM RxFEIM TxFLIM FA:TxUNDERIM RXFFIM RxOVFIM 19.0 Digital Framer Mode 19.1 T1 Mode Setting bit 4 in the Configuration Control Word (address 10H of Master Control Page 2) disables the LIU and converts the MT9076 into a digital T1 transceiver. The digital Mb/s ST-BUS backplane maps into transmit and receive digital Mb/s streams. The Mb/s transmit streams may be formatted for single phase NRZ (by setting bit 7 of the LIU Control Word - Master Page 1 high) or two phase NRZ. The data rate conversion (between Mb/s and Mb/s) is done within the MT9076. The transmit MHz clock is internally generated from a PLL that locks onto the input C4b clock. This clock is then output on pin E1.5o/Exclk (PLCC pin 44 - LQFP pin 22). The digital Mb/s transmit data is output on pins TXA and TXB (PLCC pins 37,38 - LQFP pins 12, 13) with the rising edge of pin Exclk. If the control bit Tx8KEN is set high (page 2H address 10H bit 2) the pin RxMF/TxFP will generate an 8 KHz positive frame pulse synchronous with the Sbit clocked out on TXA/TXB. Receive digital data is clocked in on pins RRING and RTIP. This data is clocked in with the rising edge of the input MHz clock S/FR/Exclki (PLCC pin 66, LQFP pin 48) E1 mode Setting bit 4 in the Configuration Control Word (address 10H of Master Control Page 2) disables the LIU and converts the MT9076 into a digital E1 transceiver. The digital Mb/s ST-BUS backplane maps into transmit and receive digital Mb/s streams. The Mb/s transmit data streams may be formatted for single phase NRZ (by setting bit 7 of the LIU Control Word - Master Page 1 high) or two phase NRZ. The transmit MHz clock is derived from the input C4b clock. This clock is then output on pin Exclk (PLCC pin 44 - LQFP pin 22). The digital Mb/s transmit data is output on pins TXA and TXB (PLCC pins 37,38 - LQFP pins 12, 13) with the rising edge of Exclk. If the control bit Tx8KEN is set high (page 2H address 10H bit 2) the pin RxMF/TxFP will generate an 8 KHz positive frame pulse synchronous with the Sbit clocked out on TXA/TXB. Receive digital data is clocked in on pins RRING and RTIP. This data is clocked in with the rising edge of the input MHz clock S/FR/Exclki (PLCC pin 66, LQFP pin 48). 64

65 20.0 Control and Status Registers 20.1 T1 Mode Master Control 1 (Page 01H) (T1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Function 10H (Table 21) Framing Mode Select ESF, SCL96, CXC, RS1-0, FSI, ReFR, MFReFR 11H (Table 22) Transmit Alarm Control Word ESFYEL, TXSECY, D4YEL, TxAO, LUA, LDA, D4SECY, SO 12H (Table 23) Data Link Control Word EDL, BIOMEn, EXZ, TxPDVS, TxSYNC, TRSP, JTS, H1R64 13H (Table 24) Transmit Bit Oriented Message BIOMTx7-0 14H (Table 25) Signaling Control Word DSToEn, CSToEn, RBEn, DBEn, MSN, SM1-0, JYEL 15H (Table 26) Coding and Loopback Control Word RxB8ZS, MLBK,TxB8ZS,FBS, DLBK, RLBK, SLBK, PLBK 16H Reserved Set all bits to zero for normal operation 17H (Table 27) Transmit Elastic buffer Set Delay Word TxTSD7-0 18H (Table 28) Transmit Message Word TXM7-0 19H (Table 29) Error Insertion Word BPVE, CRCE, FTE, FSE, LOSE, PERR, L32Z, LOS/LOF 1AH (Table 30) Reset Control Word RST, SPND, INTA, CNTCLR, SAMPLE, OOFP, D20 1BH (Table 31) Interrupt Mask Word Zero TFSYNIM, MFSYNIM, BIOMTIM, AISIM, LOSIM, SEFIM, TxSLPIM, RxSLPIM 1CH (Table 32) Interrupt Mask Word One FEIM, CRCIM, YELIM, LCVIM, COFAIM, PRBSIM, PDVIM 1DH (Table 33) Interrupt Mask Word Two FEOM, CRCOM, OOFOM, COFAOM, LCVOM, PRBSOM, PRBSMFOM,MFOOFOM 1EH (Table 34) Interrupt Mask Word Three HDLC0IM,HDLC1IM,HDLC2IM,LCDIM, 1SECIM, 5SECIM, BIOIM, SIGIM 1FH (Table 35) LIU Receiver Word NRZ, Res, RxA1-0, RxEQ2-0 Table 20 - Master Control 1 (Page 1) (T1) 65

66 7 ESF Extended Super Frame. Setting this bit enables transmission and reception of the 24 frame superframe DS1 protocol. 6 SLC96 SLC96 Mode Select. Setting this bit enables input and output of the Fs bit pattern on the TxDL and RxDL pins. Frame synchronization is the same as in the case of D4 operation. The transmitter will insert A and B bits every 6 frames after synchronizing to the Fs pattern clocked into Txdl. Receive Fs bits are not monitored for the Framing Bit Error Counter. 5 CXC Cross Check. Setting this bit in ESF mode enables a cross check of the CRC-6 remainder before the frame synchronizer pulls into sync. This process adds at least 6 milliseconds to the frame synchronization time. Setting this bit in D4 (not ESF) mode enables a check of the Fs bits in addition to the Ft bits during frame synchronization 4-3 RS1-0 Reframe Select 1-0. These bits set the criteria for an automatic reframe in the event of framing bits errors. The combinations available are: RS1-0, RS0-0 = sliding window of 2 errors out of 4. RS1-0, RS0-1 = sliding window of 2 errors out of 5. RS1-1, RS0-0 = sliding window of 2 errors out of 6. RS1-1, RS0-1 = no reframes due to framing bit errors. 2 FSI Fs Bit Include. Only applicable in D4 mode (not ESF or SLC96). Setting this bit causes errored Fs bits to be included as framing bit errors. A bad Fs bit will increment the Framing Error Bit Counter, and will potentially cause a reframe (if it is the second bad framing bit out of 5). The Fs bit of the receive frame 12 will only be included if D4SECY is set. 1 ReFR Reframe. A low - to - high transition on this bit causes an automatic reframe. 0 MFReFR MultiFrame Reframe. Only applicable in D4 or SLC96 mode. A low - to - high transition on this bit causes an automatic multiframe reframe. The signaling bits are frozen until multiframe synchronization is achieved. Terminal frame synchronization is not affected. Table 21 - Framing Mode Select (T1) (Page 1, Address 10H) 66

67 7 ESFYEL ESF Yellow Alarm. Setting this bit while in ESF mode causes a repeating pattern of eight 1 s followed by eight 0 s to be inserted onto the transmit FDL (Japan Telecom bit set low - see Signalling Control Word) or sixteen 1 s (Japan Telecom bit set high). 6 TXSECY Transmit Secondary D4 Yellow Alarm. Setting this bit (in D4 mode) causes the S bit of transmit frame 12 to be set. 5 D4YEL D4 Yellow Alarm. When set bit 2 of all DS0 channels are forced low. 4 TxAO Transmit All Ones. When low, this control bit forces a framed or unframed (depending on the state of Transmit Alarm Control bit 0) all ones to be transmit at TTIP and TRING. 3 LUA Loop Up Activate. Setting this bit forces transmission of a framed or unframed (depending on the state of Transmit Alarm Control bit 0) repeating pattern of LDA Loop Down Activate. Setting this bit forces transmission of a framed or unframed (depending on the state of Transmit Alarm Control bit 0) repeating pattern of D4SECY D4 Secondary Alarm. Set this bit for trunks employing the secondary Yellow Alarm. The Fs bit in the 12th frame will not be used for counting errored framing bits. If a one is received in the Fs bit position of the 12th frame a Secondary Yellow Alarm Detect bit will be set. 0 SO Overhead bits Override. If set, this bit forces the overhead bits to be inserted as an overlay on any of the following alarm conditions: i) transmit all ones, ii) loop up code insertion, iii) loop down code insertion. Table 22 - Transmit Alarm Control Word (T1) (Page 1, Address 11H) 67

68 7 EDL Enable Data Link. Setting this bit multiplexes the serial stream clocked in on pin TxDL into the FDL bit position (ESF mode) or the Fs position (D4 mode). 6 BIOMEn Bit Oriented Messaging Enable. Setting this bit enables transmission of bit - oriented messages on the ESF facility data link. The actual message transmit at any one time is contained in the BIOMTx register (page 1, address 13H). The receive bit - oriented message register is always active, although the interrupt associated with it may be masked. 5 EXZ Excess Zeros. Setting this bit causes each occurrence of received excess zeros to increment the Line Code Violation Counter. Excess zeros are defined as 8 or more successive zeros for B8ZS encoded data, or 16 or more successive zeros for non-b8zs encoded data. 4 TxPDVS Transmit Pulse Density Violation Screen. Setting this bit causes ones to be injected into the transmit data in the event that a violation of the ones density requirement is detected in the outgoing data. 3 TxSYNC Transmit Synchronization. Setting this bit causes the transmit multiframe boundary to be internally synchronized to the incoming Sbits on DSTi channel 31 bit 0. 2 TRSP Transparent Mode. Setting this bit causes unframed data to be transmit from DSTi channels 0 to 23 and channel 31 bit 0 to be transmit transparently onto the DS1 line. Unframed data received from the DS1 line is piped out on DSTo channels 0 to 23 and channel 31 bit 0. 1 JTS Japan Telecom Synchronization. Setting this bit forces the inclusion of Sbits in the CRC-6 calculation. 0 H1R64 HDLC Rate Select. Setting this pin high while an HDLC is activated on a timeslot enables 64 Kb/s operation. Setting this pin low while an HDLC is activated enables 56 Kb/s operation (this prevents data corruption due to forced bit stuffing). Table 23 - Data Link Control Word (T1) (Page 1, Address 12H) 7-0 BIOMTx7-0 Transmit Bit Oriented Message. The contents of this register are concatenated with a sequence of eight 1 s and continuously transmit in the FDL bit position of ESF trunks. Normally the leading bit (bit 7) and last bit (bit 0) of this register are set to zero. Table 24 - Transmit Bit Oriented Message (T1) (Page 1, Address 13H) 68

69 7 DSToEn DSTo Enable. If zero pin DSTo is tristate. If set the pin DSTo is enabled. 6 CSToEn CSTo Enable. If zero pin CSTo is tristate. If set the pin CSTo is enabled. 5 RBEn Robbed Bit signaling Enable. Setting this bit multiplexes the AB or ABCD signaling bits into bit position 8 of all DS0 channels every 6th frame. 4 DBEn Debounce Enable. Setting this bit causes incoming signaling bits to be debounced for a period of 6 to 9 milliseconds before reporting on CSTo or in the Receive signaling Bits Page. 3 MSN Most Significant Nibble. If set to one the most significant nibble of CSTi and CSTo are activated. The reporting stream CSTo contains the signaling information for the equivalent channel in the most significant nibble, and least significant nibble is tristate. If set to zero the least significant nibble is active for CSTi and CSTo and the most significant nibble of CSTo is tristate. 2-1 SM1-0 signaling Message. These two bits are used to fill the vacant bit positions available on CSTo when the 3VJET is operating on a D4 trunk. The first two bits of each reporting nibble of CSTo contain the AB signaling bits. The last two will contain SM1 and SM0 (in that order). When the 3VJET is connected to ESF trunks four signaling bits (ABCD) are reported and the bits SM1-0 become unused. 0 JYEL Japan Yellow Alarm Set this bit high to selects a pattern of 16 ones ( ) as the ESF yellow alarm, both for the case when an ESF yellow alarm is to be transmitted, or in recognizing a received yellow alarm. Table 25 - Signaling Control Word (T1) (Page 1, Address 14H) 69

70 7 RxB8ZS Receive B8ZS Enable. If one, receive B8ZS decoding is enabled. 6 MLBK Metallic Loopback. If one, then RRTIP/RRING are connected directly to TTIP and TRING respectively. If zero, then this feature is disabled. 5 TxB8ZS Transmit B8ZS Enable. If one, all zero octets are substituted with B8ZS codes. 4 FBS Forced Bit Stuffing. If set any transmit DS0 channel containing all zeros has bit 7 forced high. 3 DLBK Digital Loopback. If one, then the digital stream to the transmit LIU is looped back in place of the digital output of the receive LIU. Data coming out of DSTo will be a delayed version of DSTi. If zero, this feature is disabled. 2 RLBK Remote Loopback. If one, then all time slots received on RRTIP/RRING are connected to TTIP/TRING on the DS1 side of the 3VJET. If zero, then this feature is disabled. 1 SLBK ST-BUS Loopback. If one, then all time slots of DSTi are connected to DSTo on the ST-BUS side of the 3VJET. If zero, then this feature is disabled. See Loopbacks section. 0 PLBK Payload Loopback. If one, then all time slots received on RTIP/RRING are connected to TTIP/TRING on the ST-BUS side of the 3VJET. If zero, then this feature is disabled. Table 26 - Coding and Loopback Control Word (T1) (Page 1, Address 15H) 7-0 TxSD7-0 Transmit Set Delay Bits 7-0. Writing to this register forces a one time setting of the delay through the transmit slip buffer. The delay is defined as the time interval between the write of the transmit STBUS channel containing DS1 timeslot 1 and its subsequent read. The delay is modified by moving the position of the internally generated DS1 frame boundary. The delay (when set) will always be less than 1 frame (125 us). This register must be programmed with a non - zero value. Table 27 - Transmit Elastic Buffer Set Delay Word (T1) (Page 1, Address 17H) 7-0 TxM7-0 Transmit Message Bits 7-0. The contents of this register are transmit into those outgoing DS1 channels selected by the Per Time Slot Control registers. Table 28 - Transmit Message Word (T1) (Page 1, Address 18H) 70

71 7 BPVE Bipolar Violation Error Insertion. A zero-to-one transition of this bit inserts a single bipolar violation error into the transmit DS1 data. A one, zero or one-to-zero transition has no function. 6 CRCE CRC-6 Error Insertion. A zero-to-one transition of this bit inserts a single CRC-6 error into the transmit ESF DS1 data. A one, zero or one-to-zero transition has no function. 5 FTE Terminal Framing Bit Error Insertion. A zero-to-one transition of this bit inserts a single error into the transmit D4 Ft pattern or the transmit ESF framing bit pattern (in ESF mode). A one, zero or one-to-zero transition has no function. 4 FSE Signal Framing Bit Error Insertion. A zero-to-one transition of this bit inserts a single error into the transmit Fs bits (in D4 mode only). A one, zero or one-to-zero transition has no function. 3 LOSE Loss of Signal Error Insertion. If one, the 3VJET transmits an all zeros signal (no pulses). Zero code suppression is overridden. If zero, data is transmitted normally. 2 PERR Payload Error Insertion. A zero - to - one transition of this bit inserts a single bit error in the transmit payload. A one, zero or one-to-zero transition has no function. 1 L32Z Digital Loss of Signal Selection. If one, the threshold for digital loss of signal is 32 successive zeros. If zero, the threshold is set to 192 successive zeros. 0 LOS/LOF Loss of Signal or Loss of Frame Selection. If one, pin LOS will go high when a loss of signal state exits (criteria as per LLOS status bit). If low, pin LOS will go high when either a loss of signal or a loss of frame alignment state exits. Table 29 - Error Insertion Word (T1) (Page 1, Address 19H) 71

72 7 RST Software reset. Setting this bit is equivalent to performing a hardware reset. All counters are cleared and the control registers are set to their default values. This control bit is internally cleared after the reset operation is complete. 6 SPND Suspend Interrupts. If one, the IRQ output will be in a high-impedance state and all interrupts will be ignored. If zero, the IRQ output will function normally. 5 INTA Interrupt Acknowledge. Setting this pin clears all interrupts and forces the IRQ pin into high impedance. The control bit itself is then internally cleared. 4 CNTCLR Counter Clear. If one, all status error counters are cleared and held low. 3 SAMPLE One Second Sample. Setting this bit causes the error counters (change of frame alignment, loss of frame alignment, LCV errors, CRC errors, severely errored frame events and multiframes out of sync) to be updated on one second intervals coincident with the one second timer (status page 3 address 12H bit 7). 2 OOFP Out of Frame Pause. If set high, this bit will suspend operation of the Line Code VIolation Counter during an out - of - frame condition; upon achieving terminal frame synchronization the counter will resume normal operation. If set low, the Line Code Violation counter will continue to count errors even if terminal frame synchronization is lost Reserved. Set to zero for normal operation. 0 D20 Double20. Set to zero for normal operation. Set high to double clock speed in the HDLC, speeding up microport accesses from 160 ns between consecutive reads/writes to 80 ns between consecutive reads/writes. Table 30 - Reset Control Word (T1) (Page 1, Address 1AH) 72

73 7 TFSYNIM Terminal Frame Synchronization Interrupt Mask. When unmasked an interrupt is initiated whenever a change of state of loss of terminal frame synchronization condition exists. If 1 -unmasked, 0 - masked. 6 MFSYNIM Multiframe Synchronization Interrupt Mask. When unmasked an interrupt is initiated whenever a change of state of loss of multiframe synchronization condition exist. If 1 - unmasked, 0 - masked 5 BIOMTIM Bit Oriented Message Transition Interrupt Mask. When unmasked an interrupt is initiated whenever a new BIOM arrives or if the current BIOM stops transmission. If 1 - unmasked, 0 -masked. 4 AISIM Alarm Indication Signal Interrupt Mask. When unmasked a change of state of received all ones condition will initiate an interrupt. If 1 - unmasked, 0 - masked. 3 LOSIM Loss of Signal Interrupt Mask. When unmasked an interrupt is initiated whenever a change of state of a loss of signal condition exists. If 1 - unmasked, 0 - masked. 2 SEFIM Severely Errored Frame Interrupt Mask. When unmasked an interrupt is initiated when a sequence of 2 framing errors out of 6 occurs. If 1 - unmasked, 0 - masked. 1 TxSLPIM Transmit SLIP Interrupt Mask. When unmasked an interrupt is initiated whenever a controlled frame slip occurs in the transmit elastic buffer. If 1 - unmasked, 0 - masked. 0 RxSLPIM Receive SLIP Interrupt Mask. When unmasked an interrupt is initiated whenever a controlled frame slip occurs in the receive elastic buffer. If 1 - unmasked, 0 - masked. Table 31 - Interrupt Mask Word Zero (T1) (Page 1, Address 1BH) 73

74 7 FEIM Framing Bit Error Interrupt Mask. When unmasked an interrupt is initiated whenever an erroneous framing bit is detected (provided the circuit is in terminal frame sync). If 1 - unmasked, 0 - masked. 6 CRCIM CRC-6 Error Interrupt Mask. When unmasked an interrupt is initiated whenever a local CRC-6 error occurs. If 1 - unmasked, 0 - masked. 5 YELIM Yellow Alarm Interrupt Mask. When unmasked detection of a yellow alarm triggers an interrupt. If 1 - unmasked, 0 - masked. 4 COFAIM Change of Frame Alignment Interrupt Mask. When unmasked an interrupt is initiated whenever a change of frame alignment occurs after a reframe. If 1 - unmasked, 0 - masked. 3 LCVIM Line Code Violation Interrupt Mask. When unmasked an interrupt is initiated whenever a line code violation (excluding B8ZS bipolar violations encoding) is encountered. If 1- unmasked, 0 - masked. 2 PRBSIM Pseudo Random Bit Sequence Error Interrupt Mask. When unmasked an interrupt will be generated upon detection of an error with a channel selected for PRBS testing. If 1 - unmasked, 0 - masked. 1 PDVIM Pulse Density Violation Interrupt Mask. When unmasked an interrupt is triggered whenever a sequence excess consecutive zeros is received on the line. If 1 - unmasked, 0 - masked Unused. Table 32 - Interrupt Mask Word One (T1) (Page 1, Address 1CH) 74

75 7 FEOM Framing Bit Error Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated whenever the framing bit error counter changes from FFH to 00H. If 1 - unmasked, 0 - masked. 6 CRCOM CRC-6 Error Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated whenever the CRC-6 error counter changes from FFH to 00H. If 1 - unmasked, 0 - masked. 5 OOFOM Out Of Frame Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated whenever the out of frame counter changes state from changes from FFH to 00H. If 1 - unmasked, 0 - masked. 4 COFAOM Change of Frame Alignment Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated whenever the change of frame alignment counter changes from FFH to 00H. If 1 - unmasked, 0 - masked. 3 LCVOM Line Code Violation Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated whenever the line code violation counter changes from FFH to 00H. If 1- unmasked, 0 - masked. 2 PRBSOM Pseudo Random Bit Sequence Error Counter Overflow Interrupt Mask. When unmasked an interrupt will be generated whenever the PRBS error counter changes from FFH to 00H. If 1 - unmasked, 0 - masked. 1 PRBSMFOM Pseudo Random Bit Sequence Multiframe Counter Overflow Interrupt Mask. When unmasked an interrupt will be generated whenever the multiframe counter attached to the PRBS error counter overflows. FFH to 00H. If 1 - unmasked, 0 - masked. 0 MFOOFOM Multiframes Out Of Sync Overflow Interrupt Mask. When unmasked an interrupt will be generated when the multiframes out of frame counter changes from FFH to 00H. If 1 - unmasked, 0 - masked. Table 33 - Interrupt Mask Word Two (T1) (Page 1, Address 1DH) 75

76 7 HDLC0IM HDLC0 Interrupt Mask. When unmasked an interrupt is triggered by an unmasked event in HDLC0. If 1 - unmasked, 0 - masked. 6 HDLC1IM HDLC1 Interrupt Mask. When unmasked an interrupt is triggered by an unmasked event in HDLC1. If 1 - unmasked, 0 - masked. 5 HDLC2IM HDLC2 Interrupt Mask. When unmasked an interrupt is triggered by an unmasked event in HDLC2. If 1 - unmasked, 0 - masked. 4 LCDIM Loop Code Detected Interrupt Mask. When unmasked an interrupt is triggered when either the loop up (00001) or loop down (001) code has been detected on the line for a period of 48 milliseconds. If 1 - unmasked, 0 - masked. 3 1SECIM One Second Status Interrupt Mask. When unmasked an interrupt is initiated when the 1SEC status bit (page 3 address 12H bit 7) goes from low to high. If 1 - unmasked, 0 - masked. 2 5SECIM Five Second Status Interrupt Mask. When unmasked an interrupt is initiated when the 5 SEC status bit goes from low to high. If 1 - unmasked, 0 - masked. 1 BIOMIM Bit Oriented Message Interrupt Mask. When unmasked an interrupt is initiated when a pattern xxxxxx0 has been received on the FDL that is different from the last message. The new message must persist for 8 out the last 10 message positions to be accepted as a valid new message. If 1- unmasked, 0 - masked. 0 SIGIM signaling Interrupt Mask. When unmasked an interrupt will be initiated when a change of state (optionally debounced - see DBEn in the Data Link, signaling Control Word page 1 address 12H) is detected in the signaling bits (AB or ABCD) pattern. If 1 - unmasked, 0 - masked. Table 34 - Interrupt Mask Word Three (T1) (Page 1, Address 1EH) 76

77 7 NRZ NRZ Format Selection. Only used in the digital framer only mode (LIU is disabled). A one sets the MT9076 to accept a unipolar NRZ format input stream on RxA as the line input, and to transmit a unipolar NRZ format stream on TxB. A zero causes the MT9076 to accept a complementary pair of dual rail inputs on RxA/RxB and to transmit a complementary pair of dual rail outputs on TxA/TxB Reserved. Set this low for normal operation. 5 Res Resistor. Set this bit high to connect a 104 ohm internal resistor between RTIP and RRING. This is activated where an external 20.8 ohm terminating resistor is in use on a T1 line. 4-3 RxA1-0 Automatic Receive Equalizer Control. These bits should be programmed according to the table below: 00 Equalization will be activated using the control bits RxEQ The receive equalizer is turned on and will compensate for loop length automatically. The control bits RxEQ2-0 will be ignored. 01, 10 Reserved for factory purposes. 2-0 RxEQ2-0 Receive Equalization Select. Setting these pins forces a level of equalization of the incoming line data. RES2 RES1 RES0 Receive Equalization none db db db db db db reserved These settings have no effect if either of RxA1 and RxA0 are set to one. Table 35 - LIU Receiver Word (T1) (Page 1, Address 1FH) 77

78 Master Control 2 (Page 02H) (T1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Names 10H (Table 37) Configuration Control Word T1/E1, TxEN, LIUEn, ELOS, Tx8KEN, ADSEQ 11H (Table 38) LIU Tx Word CPL, TxLB2-0 12H Reserved Set all bits to zero for normal operation. 13H (Table 39) Jitter Attenuator Control Word JFC, JFD2-JFD0, JACL 14H Reserved Set all bits to zero for normal operation. 15H Reserved Set all bits to zero for normal operation. 16H (Table 40) Equalizer High Threshold EHT7-0 17H (Table 41) Equalizer Low Threshold ELT7-0 18H (Table 42) Serial Config. Word IMA, T1DM, G.802, 8Men, 8MTS1-0 19H (Table 43) HDLC0 Select En, FDLSEL, CH4-0 1AH (Table 44) HDLC1 Select En, CH4-0 1BH (Table 45) HDLC2 Select En, CH4-0 1CH (Table 46) Custom Pulse Word 1 CP6-0 1DH (Table 47) Custom Pulse Word 2 CP6-0 1EH (Table 48) Custom Pulse Word 3 CP6-0 1FH (Table 49) Custom Pulse Word 4 CP6-0 Table 36 - Master Control 2 (Page 02H) (T1) 78

79 7 T1/E1 T1/E1 mode selection. when this bit is zero, the device is in T1 mode. When set high, the device is in E1 mode Reserved. Must be kept at 0 for normal operation. 5 TxEN Transmit Enable. Setting this bit low turns off the TTIP and TRING output line drivers. Setting this bit high enables them. 4 LIUEn LIU Enable. Setting this bit low enables the internal LIU front-end. Setting this pin high disables the LIU. Digital inputs RXA and RXB are sampled by the rising edge of E1.5i (Exclk) to strobe in the received line data. Digital transmit data is clocked out of pins TXA and TXB with the rising edge of Exclk 3 ELOS ELOS Enable. Set this bit low to set the analog loss of signal threshold to 40 db below nominal. Set this bit high to set the analog loss of signal threshold to 20 db below nominal. 2 Tx8KEN Transmit 8 KHz Enable. If one, the pin RxMF/TxFP transmits a positive 8 KHz frame pulse synchronous with the serial data stream transmit on TXA/TXB. If zero, the pin RxMF/TxFP transmits a negative frame pulse synchronous with the multiframe boundary of data coming out of DSTo. 1 ADSEQ Digital Milliwatt or Digital Test Sequence. If one, the A law digital milliwatt analog test sequence will be selected for those channels with per time slot control bits TTST, RRST set. If zero, a PRBS generator / detector will be connected to channels with TTST, RRST respectively Reserved. Must be kept at 0 for normal operation. Table 37 - Configuration Control Word (Page 2, Address 10H) (T1) 79

80 Reserved. Must be kept at 0 for normal operation Reserved. Set low for normal operation. 3 CPL Custom Pulse Level. Setting this bit low enables the internal ROM values in generating the transmit pulses. The ROM is coded for different line terminations or build out, as specified in the LIU Control word. Setting this pin high disables the pre-programmed pulse templates. Each of the 4 phases that generate a mark derive their D/A coefficients from the values programmed in the CPW registers. 2-0 TXLB2-0 Transmit Line Build Out 2-0. Setting these bits shapes the transmit pulse as detailed in the table below: TX22 TXL1 TXL0 Line Build Out to 133 feet/ 0 db to 266 feet to 399 feet to 533 feet to 655 feet db db db After reset these bits are zero. Table 38 - LIU Tx Word (Page 2, Address 11H) (T1) 80

81 Unused. 6 JFC Jitter Attenuator FIFO Centre. When this bit is toggled the read pointer on the jitter attenuator shall be centered. During this centering the jitter on the JA outputs is increased by U.I. This feature is only available when IMA Mode is activated. 5-3 JFD2-JFD0 Jitter Attenuator FIFO Depth Control Bits. These bits determine the depths of the jitter attenuator FIFO as shown below: JFD2 JFD1 JFD0 Depth This feature is only available when IMA Mode is activated. 2 JACL Jitter Attenuator FIFO Clear Bit. If one, the Jitter Attenuator, its FIFO and status are reset. The status registers will identify the FIFO as being empty. However, the actual bit values of the data in the JA FIFO will not be reset. This feature is only available when IMA Mode is activated Unused. Table 39 - Jitter Attenuation Control Word (Page 2, Address 13H) (T1) 7-0 EHT7-0 Equalizer High Threshold. These bits set the highest possible binary count tolerable coming out of the equalized signal peak detector before a lower level of equalization is selected. This register is only used when A/D based automatic equalization is selected using the Rx LIU Control Word. Recommended value to program is Table 40 - Equalizer High Threshold (Page 2, Address 16H) (T1) 7-0 ELT7-0 Equalizer Low Threshold. These bits set the lowest possible binary count tolerable coming out of the equalized signal peak detector before a higher level of equalization is selected. This register is only used when A/D based automatic equalization is selected using the Rx LIU Control Word. Recommended value to program is Table 41 - Equalizer Low Threshold (Page 2, Address 17H) (T1) 81

82 Reserved. Must be kept at 0 for normal operation. 5 IMA Inverse Mux Mode. Setting this bit high the I/O ports to allow for easy connection to the Zarlink MT DSTi becomes a serial data stream. C4b becomes a MHz clock that clocks DSTi in on the falling edge. RXFP becomes a positive framing pulse that is high for the first bit (the framing bit) of the serial T1 stream coming from the pin DSto. This stream is clocked out on the rising edge of Exclk. Set this pin low for all other applications Reserved. Must be set to 0 for normal operation. 3 G.802 G.802. Must be kept at 0 for normal operation. Set high for ST-BUS to DSI channel mapping as per G Men 8 Mb/s Bit Rate Select. Setting this bit low enables a serial bit rate on DSTi, CSTi and DSTo, CSTo of Mb/s. Setting this bit high enables a gapped serial bit rate of Mb/s on DSTi, CSTi, DSTo and CSTo MTS1-0 8 Mb/s Time Slot Select. These two bits select the active timeslots on the serial Mb/s channels. During the active timeslots incoming serial data on DSTi and CSTi is clocked into the device, and data is clocked out onto DSTo and CSTo. During inactive timeslots DSTo and CSTo are tristate. For all selections every fourth 8 Mb/s timeslot is active for the first 96 timeslots (24 x 8). The timeslot selection (T1 mode) is as follows: 8MTS1 8MST0 Active timeslots 0 0 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88, ,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89, ,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90, ,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95 Table 42 - Serial Config. Word (Page 2, Address 18H) (T1) 7 En Enable. Set high to attach the HDLC0 controller to the channel specified below. Set low to disconnect the HDLC0. 6 FDLSEL Facility Data Link Select. Set this bit to 0 to attach HDLC0 to the 4 kb/s facility data link. Set this bit to 1 to attach HDLC0 to a payload timeslot Reserved. Must be kept at 0 for normal operation. 4-0 CH4-0 Channel 4-0. This 5 bit number specifies the channel time HDLC0 will be attached to if enabled. Channel 0 is the first channel in the frame. Channel 23 is the last channel available in a T1 frame. If enabled in a channel, HDLC data will be substituted for data from DSTi on the transmit side. Receive data is extracted from the incoming line data before the elastic buffer. Table 43 - HDLC0 Select (Page 2, Address 19H) (T1) 82

83 7 En Enable. Set high to attach the HDLC1 controller to the channel specified below. Set low to disconnect the HDLC Reserved. Must be kept at 0 for normal operation. 4-0 CH4-0 Channel 4-0. This 5 bit number specifies the channel time HDLC1 will be attached to if enabled. Channel 0 is the first channel in the frame. Channel 23 is the last channel available in a T1 frame. If enabled in a channel, HDLC data will be substituted for data from DSTi on the transmit side. Receive data is extracted from the incoming line data before the elastic buffer. Table 44 - HDLC1 Select (Page 2, Address 1AH) (T1) 7 En Enable. Set high to attach the HDLC2 controller to the channel specified below. Set low to disconnect the HDLC Reserved. Must be kept at 0 for normal operation. 4-0 CH4-0 Channel 4-0. This 5 bit number specifies the channel time HDLC2 will be attached to if enabled. Channel 0 is the first channel in the frame. Channel 23 is the last channel available in a T1 frame. If enabled in a channel, HDLC data will be substituted for data from DSTi on the transmit side. Receive data is extracted from the incoming line data before the elastic buffer. Table 45 - HDLC2 Select (Page 2, Address 1BH) (T1) Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the first phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high. Table 46 - Custom Pulse Word 1 (Page 2, Address 1CH) (T1) 83

84 7 - Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the second phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high. Table 47 - Custom Pulse Word 2 (Page 2, Address 1DH) (T1) Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the third phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high. Table 48 - Custom Pulse Word 3 (Page 2, Address 1EH) (T1) Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the fourth phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high. CP6-0 Breakdown CP[6] CP[5:0] Sign bit (0=neg, 1=pos) (only necessary for T1) Magnitude in binary (pulse amplitude = 0.1 * CP[5:0]V) Table 49 - Custom Pulse Word 4 (Page 2, Address 1FH) (T1) 84

85 Master Status 1 (Page03H) (T1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Function 10H (Table 51) Synchronization Status Word TFSYNC, MFSYNC, SE, LOS 11H (Table 52) Alarm Status Word D4YALM, D4Y48, SECYEL, ESFYEL, BLUE, PDV, LLED, LLDD 12H (Table 53) Timer Status Word 1SEC, 2SEC, 5SEC 13H (Table 54) Most Significant Phase Status Word RSLIP, RSLPD, RxFRM, RxFT, RxSBD2-0 14H (Table 55) Least Significant Phase Status Word RxTS4-0, RxBC2-0 15H (Table 56) Receive Bit Oriented Message RxBOM7-0 16H (Table 57) Receive Signal Status Word LLOS 17H (Table 58) MSB Transmit Slip Buffer TSLIP, TSLPD, TxSBMSB 18H (Table 59) Transmit Slip Buffer Delay TxTS4-0, TxBC2-0 19H Unused. 1AH Unused. 1BH Unused. 1CH Reserved. 1DH (Table 60) Analog Peak Detect AP7-0 1EH Reserved 1FH (Table 61) Identification Word Internally set to Table 50 - Master Status 1 (Page 3) (T1) 85

86 7 TFSYNC Terminal Frame Synchronization. Indicates the Terminal Frame Synchronization status (1 - loss; 0 - acquired). For ESF links terminal frame synchronization and multiframe synchronization are synonymous. 6 MFSYNC Multiframe Synchronization. Indicates the Multiframe Synchronization status (1 - loss; 0 -acquired). For ESF links multiframe synchronization and terminal frame synchronization are synonymous. 5 SE Severely Errored Frame. This bit toggles when 2 of the last 6 received framing bits are in error. The framing bits monitored are the ESF framing bits for ESF links, the Ft bits for SLC-96 links and a combination of Ft and Fs bits for D4 links (See Framing Mode Selection Word - page 1 address 10H). 4 LOS Digital Loss Of Signal. This bit goes high after the detection of a string of consecutive zeros. It returns low when the incoming pulse density exceeds 12.5% over a 250 ms period. The threshold for this condition is set by the control bit L32Z. If L32Z is set high the threshold is 32 successive zeros. If L32Z is set low the threshold is 192 successive zeros Unused. Table 51 - Synchronization Status Word (Page 3, Address 10H) (T1) 86

87 7 D4YALM D4 Yellow Alarm. This bit is set if bit position 2 of virtually every DS0 channel is a zero for a period of 600 milliseconds. The alarm is tolerant of errors by permitting up to 16 ones in a 48 millisecond integration period. The alarm clears in 200 milliseconds after being removed from the line. 6 D4Y48 D4 Yellow Alarm - 48 millisecond sample. This bit is set if bit position 2 of virtually every DS0 channel is a zero for a period of 48 milliseconds. The alarm is tolerant of errors by permitting up to 16 ones in the integration period. This bit is updated every 48 milliseconds. 5 SECYEL Secondary D4 Yellow Alarm. This bit is set if 2 consecutive 1 s are received in the Sbit position of the 12th frame of the D4 superframe. 4 ESFYEL ESF Yellow Alarm. This bit is set if the ESF yellow alarm is receive in seven or more codewords out of ten. 3 BLUE Blue Alarm. This bit is set if less than 6 zeros are received in a 3 millisecond window. 2 PDV Pulse Density Violation. This bit toggles if the receive data fails to meet ones density requirements. If RXB8ZS is set high it will toggle upon detection of 8 zeros. I RxB8ZS is set low it will toggle upon detection of 16 consecutive zeros on the line data, or if there are less than N ones in a window of 8(N+1) bits - where N = 1 to LLED Line Loopback Enable Detect. This bit will be set when a framed or unframed repeating pattern of has been detected during a 48 millisecond interval. Up to fifteen errors are permitted per integration period. 0 LLDD Line Loopback Disable Detect. This bit will be set when a framed or unframed repeating pattern of 001 has been detected during a 48 millisecond interval. Up to fifteen errors are permitted per integration period. Table 52 - Alarm Status Word (Page 3, Address 11H) (T1) 7 1SEC One Second Timer Status. This bit changes state once every 0.5 seconds. 6 2SEC Two Second Timer Status. This bit changes state once every second and is synchronous with the 1SEC timer. 5 5SEC Five Second Timer Status. This bit changes state once every 2.5 seconds and is synchronous with the 1SEC timer Unused. Table 53 - Timer Status Word (Page 3, Address 12H) (T1) 87

88 7 RSLIP Receive Slip. A change of state (i.e., 1-to-0 or 0-to-1) indicates that a receive controlled frame slip has occurred. 6 RSLPD Receive Slip Direction. If one, indicates that the last received frame slip resulted in a repeated frame, i.e., the system clock (C4b) is faster than network clock (E2o). If zero, indicates that the last received frame slip resulted in a lost frame, i.e., system clock slower than network clock. Updated on an RSLIP occurrence basis. 5 RxFRM Receive Frame Delay. The most significant bit of the Receive Slip Buffer Phase Status Word. If one, the delay through the receive elastic buffer is greater than one frame in length; if zero, the delay through the receive elastic buffer is less than one frame in length Unused. 3 RxFT Receive Frame Toggle. This bit toggles on the falling edge of RxTS4. It is a Wink pulse. 2-0 RxSBD2-0 Receive Sub Bit Delay. The three least significant bits of the Receive Slip Buffer Phase Status Word. They indicate the clock, half clock and one eighth clock cycle depth of the phase status word sample point (bits 2, 1,0 respectively). Table 54 - Most Significant Phase Status Word (Page 3, Address 13H) (T1) 7-3 RxTS4-0 Receive Time Slot. A five bit counter that indicates the number of time slots between the receive elastic buffer internal write frame boundary and the ST-BUS read frame boundary. The count is updated every 250 us. 2-0 RxBC2-0 Receive Bit Count. A three bit counter that indicates the number of STBUS bit times there are between the receive elastic buffer internal write frame boundary and the ST-BUS read frame boundary. The count is updated every 250 us. Table 55 - Least Significant Phase Status Word (Page 3, Address 14H) (T1) 7-0 RxBOM7-0 Received Bit Oriented Message. This register contains the eight least significant bits of the ESF bit oriented message codeword. The contents of this register is updated when a new bit - oriented message codeword has been detected in 8 out of the last ten codeword positions. Table 56 - Receive Bit Oriented Message (Page 3, Address 15H) (T1) 88

89 7 LLOS LIU Loss of Signal indication. This bit will be high when the received signal is less than 40 db below the nominal value for a period of at least 1 msec. This bit will be low for normal operation Unused. Table 57 - Receive Signal Status Word (Page 3, Address 16H) (T1) 7 TSLIP Transmit Slip. A change of state (i.e., 1-to-0 or 0-to-1) indicates that a transmit controlled frame slip has occurred. 6 TSLPD Transmit Slip Direction. If one, indicates that the last transmit frame slip resulted in a repeated frame, i.e., the internally generated MHz. transmit clock is faster than the system clock (C4b). If zero, indicates that the last transmit frame slip resulted in a lost frame, i.e., the internally generated MHz. transmit clock is slower than network clock. Updated on an TSLIP occurrence basis. 5 TxSBMSB Transmit Slip Buffer MSB. The most significant bit of the phase status word. If one, the delay through the transmit elastic buffer is greater than one frame in length; if zero, the delay through the receive elastic buffer is less than one frame in length. This bit is reset whenever page 1 address 17H - Transmit Slip Buffer Delay - is written to Unused. Table 58 - MSB Transmit Slip Buffer (Page 3, Address 17H) (T1) 7-3 TxTS4-0 Transmit Time Slot. A five bit counter that indicates the number of STBUS time slots between the transmit elastic buffer STBUS write frame boundary and the internal transmit read frame boundary. The count is updated every 250 us. 2-0 TxBC2-0 Transmit Bit Count. A three bit counter that indicates the number of STBUS bit times there are between the transmit elastic buffer STBUS write frame boundary and the internal read frame boundary. The count is updated every 250 us. Table 59 - Transmit Slip Buffer Delay (Page 3, Address 18H) (T1) 7-0 AP7-0 Analog Peak. This status register gives the output value of an 8 bit A/D converter connected to a peak detector on RTIP/RRING. Table 60 - Analog Peak Detect (Page 3, Address 1DH) (T1) 89

90 7-0 ID7-0 ID Number. Contains device code Table 61 - Identification Word (Page 3, Address 1FH) (T1) Master Status 2 (Page 04H) (T1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Function 10H (Table 63) PRBS Error Counter PS7-0 11H (Table 64) CRC Multiframe counter for PRBS PSM7-0 12H (Table 65) Alarm Reporting Latch D4YALML, D4Y48L, SECYELL, ESFYELL, BLUEL, PDVL, LLEDL, LLDDL 13H (Table 66) Framing Bit Counter FC7-0 14H (Table 67) Out of Frame / Change of Frame Alignment Counters OOF3-0/COFA3-0 15H (Table 68) Multiframes Out of Sync Counter MFOOF7-0 16H (Table 69) 17H (Table 70) Most Significant Line Code Violation Error Counter Least Significant Line Code Violation Error Counter LCV15 - LCV8 LCV7 - LCV0 18H (Table 71) CRC- 6 Error Counter (Address 18H) CC15-CC8 19H (Table 72) CRC- 6 Error Counter (Address 19H) CC7 - CC0 1AH Unused. 1BH (Table 73) Interrupt Word Zero TFSYNI, MFSYNI, BIOMTI, AISI, LOSI, SEI, TxSLPI, RxSLPI 1CH (Table 74) Interrupt Word One FEI, CRCI, YELI, COFAI, LCVI, PRBSI, PDVI 1DH (Table 75) Interrupt Word Two FEO, CRCO, OOFO, COFAO, LCVO, PRBSO, PRBSMFO,MFOOFO 1EH (Table 76) Interrupt Word Three HDLC0I, HDLC1I, HDLC2I, LCDI, 1SECI, 5SECI, BIOMI, SIGI 1FH (Table 77) Overflow Reporting Latch FEOL, CRCOL, OOFOL, COFAOL, LCVOL, PRBSOL, PRBSMFOL, MFOOFOL Table 62 - Master Status 2 (Page 4) (T1) 90

91 7-0 PS7-0 This counter is incremented for each PRBS error detected on any of the receive channels connected to the PRBS error detector. Table 63 - PRBS Error Counter (Page 4, Address 10H) (T1) 7-0 PSM7-0 This counter is incremented for each received CRC multiframe. It is cleared when the PRBS Error Counter is written to. Table 64 - CRC Multiframe Counter for PRBS (Page 4, Address 11H) (T1) 7 D4YALML D4 Yellow Alarm Latch. This bit is set if a D4 yellow alarm is detected within a 600 millisecond integration period. It is cleared after a read. 6 D4Y48L D4 Yellow Alarm (48 milliseconds) Latch. This bit is set if a D4 yellow alarm is detected within a 48 millisecond integration period. It is cleared after a read. 5 SECYELL Secondary D4 Yellow Alarm Latch. This bit is set if an alternate D4 (S bit in 12 the frame) is detected. It is cleared after a read. 4 ESFYELL ESF Yellow Alarm Latch. This bit is set upon receipt of a ESF yellow alarm. It is cleared after a read. 3 BLUEL Blue Alarm Latch. This bit is set upon receipt of a blue alarm. It is cleared after a read. 2 PDVL Pulse Density Violation Latch. This bit is set upon receipt of a pulse density violation. It is cleared after a read. 1 LLEDL Line Loopback Enable Detect Latch. This bit is set upon receipt of a line loopback enable code. It is cleared after a read. 0 LLDDL Line Loopback Disable Detect Latch. This bit is set upon receipt of a line loopback disable code. It is cleared after a read. Table 65 - Alarm Reporting Latch (Page 4, Address 12H) (T1) 7-0 FC7-0 Framing Bit Counter. This eight bit counter will be incremented for each error in the received framing pattern. In ESF mode the ESF framing bits are monitored. In D4 mode Fs bits may be monitored as well as Ft bits. See - Section 15.5 Framing Bit Counter. The count is only active if the 3VJET is in synchronization. Table 66 - Framing Bit Counter (Page 4, Address 13H) (T1) 91

92 7-4 OOF3-0 Out Of Frame Counter. This four bit counter is incremented with every loss of receive frame synchronization. 3-0 COFA3-0 Change of Frame Alignment Counter. This four bit counter is incremented if a resynchronization is done which results in a shift in the frame alignment position. Table 67 - Out Of Frame / Change of Frame Alignment Counter (Page 4, Address 14H) (T1) 7-0 MFOOF7-0 Multiframes Out of Synchronization Counter. This eight bit counter will be incremented once for every multiframe (1.5 milliseconds in D4 mode, 3 milliseconds in ESF mode) in which basic frame synchronization is lost. Table 68 - Multiframes Out of Sync Counter (Page 4, Address 15H) (T1) 7-0 LCV15-8 Most Significant Bits of the LCV Counter. The most significant eight bits of a 16 bit counter that is incremented once for every line code violation error received. A line code violation is defined as a bipolar violation that is not a part of B8ZS encoding when the control bit EXZ is set low. A line code violation includes both bipolar violations and excess zeros when EXZ is set high. Table 69 - Most Significant Bits of the LCV Counter (Page 4, Address 16H) (T1) 7-0 LCV7-0 Least Significant Bits of the LCV Counter. The least significant eight bits of a 16 bit counter that is incremented once for every line code violation error received. A line code violation is defined as a bipolar violation that is not a part of B8ZS encoding when the control bit EXZ is set low. A line code violation includes both bipolar violations and excess zeros when EXZ is set high. Table 70 - Least Significant Bits of the LCV Counter (Page 4, Address 17H) (T1) 7-0 CC15-8 CRC-6 Error Counter Bits Fifteen to Eight. These are the most significant eight bits of the CRC-6 error counter. Table 71 - CRC-6 Error Counter (Page 4, Address 18H) (T1) 92

93 7-0 CC7-0 CRC-6 Error Counter Bits Seven to Zero. These are the least significant eight bits of the CRC-6 error counter. Table 72 - CRC-6 Error Counter (Page 4, Address 19H) (T1) 7 TFSYNI Terminal Frame Synchronization Interrupt. When unmasked this interrupt bit goes high whenever a change of state of terminal frame synchronization condition exists. Reading this register clears this bit. 6 MFSYNI Multiframe Synchronization Interrupt. When unmasked this interrupt bit goes high whenever a change of state of multiframe synchronization condition exists. Reading this register clears this bit. 5 BIOMTI Bit Oriented Message Transition Interrupt. When unmasked, this interrupt goes high whenever a new BIOM arrives or if the current BIOM stops transmission. 4 AISI Alarm Indication Signal Interrupt. When unmasked this interrupt bit goes high whenever a change of state of received all ones condition exists. Reading this register clears this bit. 3 LOSI Loss of Signal Interrupt. When unmasked this interrupt bit goes high whenever a change of state of loss of signal (either analog - signal 40 db below nominal or digital - excess consecutive 0 s received) condition exists. Reading this register clears this bit. 2 SEI Severely Errored Frame Interrupt. When unmasked this interrupt bit goes high whenever a sequence of 2 framing errors out of 6 occurs. Reading this register clears this bit. 1 TxSLPI Transmit SLIP Interrupt. When unmasked this interrupt goes high whenever a controlled frame slip occurs in the transmit elastic buffer. Reading this register clears this bit. 0 RxSLPI Receive SLIP Interrupt. When unmasked this interrupt bit goes high whenever a controlled frame slip occurs in the receive elastic buffer. Reading this register clears this bit. Table 73 - Interrupt Word Zero (Page 4, Address 1BH) (T1) 93

94 7 FEI Framing Bit Error Interrupt. When unmasked this interrupt bit goes high whenever an erroneous framing bit is detected (provided the circuit is in terminal frame sync). Reading this register clears this bit. 6 CRCI CRC-6 Error Interrupt. When unmasked this interrupt bit goes high whenever a local CRC-6 error occurs. Reading this register clears this bit. 5 YELI Yellow Alarm Interrupt. When unmasked this interrupt bit goes high upon detection of a yellow alarm. Reading this register clears this bit. 4 COFAI Change of Frame Alignment Interrupt. When unmasked this interrupt bit goes high whenever a change of frame alignment occurs after a reframe. Reading this register clears this bit. 3 LCVI Line Code Violation Interrupt. When unmasked this interrupt bit goes high whenever a line code violation (excluding B8ZS encoding) is encountered. Reading this register clears this bit. 2 PRBSI Psuedo Random Bit Sequence Error Interrupt. When unmasked this interrupt bit goes high upon detection of an error with a channel selected for PRBS testing. Reading this register clears this bit. 1 PDVI Pulse Density Violation Interrupt. When unmasked this interrupt bit goes high whenever, in the absence of B8ZS encoding, a sequence of 16 consecutive zeros is received on the line, or the incoming pulse density is less than N ones in a time frame of 8(N+1) where N = 1 to 23. In the case of B8ZS coding, the interrupt is set upon detection of 8 consecutive zeros. Reading this register clears this bit Unused. Table 74 - Interrupt Word One (Page 4, Address 1CH) (T1) 94

95 7 FEO Framing Bit Error Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the framing bit error counter changes from FFH to 00H. Reading this register clears this bit. 6 CRCO CRC-6 Error Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the CRC-6 error counter changes from FFH to 00H. Reading this register clears this bit. 5 OOFO Out Of Frame Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the out of frame counter changes state from changes from FFH to 00H. Reading this register clears this bit. 4 COFAO Change of Frame Alignment Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the change of frame alignment counter changes from FFH to 00H. Reading this register clears this bit. 3 LCVO Line Code Violation Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the line code violation counter changes from FFH to 00H. Reading this register clears this bit. 2 PRBSO Psuedo Random Bit Sequence Error Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the PRBS error counter changes from FFH to 00H. Reading this register clears this bit. 1 PRBSMFO Psuedo Random Bit Sequence Multiframe Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the multiframe counter attached to the PRBS error counter overflows. FFH to 00H. 1 - unmasked, 0 - masked. 0 MFOOFO Multiframes Out Of Sync Overflow Interrupt. When unmasked this interrupt bit goes high whenever the multiframes out of frame counter changes from FFH to 00H. Reading this register clears this bit. Table 75 - Interrupt Word Two (Page 4, Address 1DH) (T1) 95

96 7 HDLC0I HDLC0 Interrupt. Whenever an unmasked HDLC0 interrupt occurs this bit goes high. Reading this register clears this bit. 6 HDLC1I HDLC1 Interrupt. Whenever an unmasked HDLC1 interrupt occurs this bit goes high. Reading this register clears this bit. 5 HDLC2I HDLC2 Interrupt. Whenever an unmasked HDLC2 interrupt occurs this bit goes high. Reading this register clears this bit. 4 LCDI Loop Code Detected Interrupt. When unmasked this interrupt bit goes high whenever either the loop up (00001) or loop down (001) code has been detected on the line for a period of 48 milliseconds. Reading this register clears this bit. 3 1SECI One Second Status Interrupt. When unmasked this interrupt bit goes high whenever the 1SEC status bit (page 3 address 12H bit 7) goes from low to high. Reading this register clears this bit. 2 5SECI Five Second Status Interrupt. When unmasked this interrupt bit goes high whenever the 5 SEC status bit goes from low to high. Reading this register clears this bit. 1 BIOMI Bit Oriented Message Interrupt. When unmasked this interrupt bit goes high whenever a pattern xxxxxx0 has been received on the FDL that is different from the last message. The new message must persist for 8 out the last 10 message positions to be accepted as a valid new message. Reading this register clears this bit. 0 SIGI signaling Interrupt. When unmasked this interrupt bit goes high whenever a change of state (optionally debounced - see DBEn in the Data Link, signaling Control Word page 1 address 12H) is detected in the signaling bits (AB or ABCD) pattern. Reading this register clears this bit. Table 76 - Interrupt Word Three (Page 4, Address 1EH) (T1) 96

97 7 FEOL Framing Bit Error Counter Overflow Latch. This bit is set when the framing bit counter overflows. It is cleared after being read. 6 CRCOL CRC-6 Error Counter Overflow Latch. This bit is set when the crc error counter overflows. It is cleared after being read. 5 OOFOL Out Of Frame Counter Overflow Latch. This bit is set when the out of frame counter overflows. It is cleared after being read. 4 COFAOL Change of Frame Alignment Counter Overflow Latch. This bit is set when the change of frame alignment counter overflows. It is cleared after being read. 3 LCVOL Line Code Violation Counter Overflow Latch. This bit is set when the line code violation counter overflows. It is cleared after being read. 2 PRBSOL Psuedo Random Bit Sequence Error Counter Overflow Latch. This bit is set when the PRBS error counter overflows. It is cleared after being read. 1 PRBSMFOL Psuedo Random Bit Sequence Multiframe Counter Overflow Latch. This bit is set when the multiframe counter attached to the PRBS error counter overflows. It is cleared after being read. 0 MFOOFOL Multiframes Out Of Sync Overflow Latch. This bit is set when the multiframes out of sync counter overflows. It is cleared after being read. Table 77 - Overflow Reporting Latch (Page 4, Address 1FH) (T1) Per Channel Transmit Signalling (Pages 5 and 6) (T1) Page 05H, addresses to 11111, and page 06H addresses to contain the Transmit signaling Control Words for DS1 channels 1 to 16 and 17 to 24 respectively. Table 78 illustrates the mapping between the addresses of these pages and the DS1 channel numbers. Control of these bits for any one channel is through the processor or controller port when the Per Time Slot Control bit RPSIG bit is high. Table 79 describes bit allocation within each of these registers. Page 5 Address: Equivalent DS1 channel Page 6 Address: Equivalent DS1 channel x x x x x x x x Table 78 - Pages 5 and 6 Address Mapping to DS1 Channels (T1) 97

98 Unused. 3 A(n) Transmit signaling Bits A for Channel n. Where signaling is enabled, these bits are transmitted in bit position 8 of the 6th DS1 frame (within the 12 frame superframe structure for D4 superframes and the 24 frame structure for ESF superframes). 2 B(n) Transmit signaling Bits B for Channel n. Where signaling is enabled, these bits are transmitted in bit position 8 of the 12th DS1 frame (within the 12 frame superframe structure for D4 superframes and the 24 frame structure for ESF superframes). 1 C(n) Transmit signaling Bits C for Channel n. Where signaling is enabled, these bits are transmitted in bit position 8 of the 18th DS1 frame within the 24 frame structure for ESF superframes. In D4 mode these bits are unused. 0 D(n) Transmit signaling Bits D for Channel n. Where signaling is enabled, these bits are transmitted in bit position 8 of the 24th DS1 frame within the 24 frame structure for ESF superframes. In D4 mode these bits are unused. Table 79 - Transmit Channel Associated Signaling (T1) (Pages 5 and 6) Serial per channel transmit signaling control through CSTi is selected when the Per Time Slot Control bit RPSIG bit is low. Table 80 describes the bit allocation within each of the 24 active ST-BUS time slots of CSTi. 7-4 A(n), B(n) C(n), D(n) 3-0 A(n), B(n), C(n), D(n) Transmit signaling Bits for Channel n. When control bit MSN = 1 and RPSIG = 1 this nibble is used. For ESF links these 4 bits are transmitted on the associated DS1 channel (see Table 8) in frames 6, 12, 18 and 24. For D4 links bits A are transmit on the associated Ds1 channel of frame 6 and bits B are transmit on the associated DS1 channel of frame 12. For D4 links bits C and D are unused. Transmit signaling Bits for Channel n. When control bit MSN = 0 and RPSIG = 1 this nibble is used. For ESF links these 4 bits are transmitted on the associated DS1 channel (see Table 8) in frames 6, 12, 18 and 24. For D4 links bits A are transmit on the associated Ds1 channel of frame 6 and bits B are transmit on the associated DS1 channel of frame 12. For D4 links bits C and D are unused. Table 80 - T1 / Transmit Channels Usage - CSTi NOTE: This table illustrates bit mapping on the serial input stream - it does not refer to an internal register Per Time Slot Control Words (Pages 7 and 8) (T1) The control functions described by Table 78 are repeated for each DS1 time slot. Page 7 addresses to correspond to DS1 time slot 1 to 16, while page 8 addresses to correspond to time slots 17 to 24. Table 81 illustrates the mapping between the addresses of these pages and the DS1 channel numbers. Page 7 Address: Equivalent DS1 channel Table 81 - Pages 7 and 8 Address Mapping to DS1 Channels 98

99 Page 8 Address: Equivalent DS1 channel x x x x x x x x Table 81 - Pages 7 and 8 Address Mapping to DS1 Channels 7 TXMSG Transmit Message Mode. If high, the data contained in the Transmit Message Register (address 18H, page 1) is transmitted in the corresponding DS1 time slot. If zero, the data on DSTi is transmitted on the corresponding DS1 time slot. 6 PCI Per Channel Inversion. When set high the data for this channel sourced from DSTi is inverted before being transmit onto the equivalent DS1 channel; the data received from the incoming DS1 channel is inverted before it emerges from DSTo. 5 RTSL Remote Time Slot Loopback. If one, the corresponding DS1 receive time slot is looped to the corresponding DS1 transmit time slot. This received time slot will also be present on DSTo. If zero, the loopback is disabled. 4 LTSL Local Time Slot Loopback. If one, the corresponding transmit time slot is looped to the corresponding receive time slot. This transmit time slot will also be present on the transmit DS1 stream. If zero, this loopback is disabled. 3 TTST Transmit Test. If one, a test signal, either digital milliwatt (when control bit ADSEQ is one) or PRBS (2 15-1) (ADSEQ is zero), will be transmitted in the corresponding DS1 time slot. More than one time slot may be activated at once. If zero, the test signal will not be connected to the corresponding time slot. 2 RTST Receive Test. If one, the corresponding DSTo timeslot will be used for testing. If control bit ADEQ is one, a digital milliwatt will be transmitted in the corresponding DSTo channel. If control bit ADSEQ is zero, the receive channel will be connected to the PRBS detector (2 15-1). 1 RPSIG Serial Signaling Enable. If set low, the transmit signaling buffer for the equivalent DS1 channel will be sourced from the ST-BUS channel on CSTi associated with it. If set high the transmit signaling RAM must be programmed via the microport. 0 CC Clear Channel. When set high no robbed bit signaling is inserted in the equivalent transmit DS1 channel. When set low robbed bit signaling is included in every 6th channel. Table 82 - Per Time Slot Control Words (Pages 7 and 8) (T1) 99

100 Per Channel Receive Signaling (T1 and E1 mode) (Pages 9 and 0AH) Page 09H, addresses to 11111, and page 1AH addresses to contain the Receive signaling Control Words for DS1 channels 1 to 16 and 17 to 24 respectively. Table 83 illustrates the mapping between the addresses of these pages and the DS1 channel numbers. Table 84 describes bit allocation within each of these registers. Page 9 Address: Equivalent DS1 channel Page A Address: Equivalent DS1 channel x x x x x x x x Table 83 - Pages 9 and A Address Mapping to DS1 Channels (T1) Unused. 3 A(n) Receive signaling Bits A for Channel n. These bits are extracted from bit position 8 of every channel in received frame 6 (within the 12 frame superframe structure for D4 superframes and the 24 frame structure for ESF superframes). The bits may be debounced for 6 to 9 milliseconds where control bit DBNCE is set high. 2 B(n) Receive signaling Bits B for Channel n. These bits are extracted from bit position 8 of every channel in received frame 12 (within the 12 frame superframe structure for D4 superframes and the 24 frame structure for ESF superframes). The bits may be debounced for 6 to 9 milliseconds where control bit DBNCE is set high. 1 C(n) Receive signaling Bits C for Channel n. These bits are extracted from bit position 8 of every channel in received frame 18 within the 24 frame structure for ESF superframes. The bits reported may be debounced for 6 to 9 milliseconds where control bit DBNCE is set high. In D4 mode these bits are unused. 0 D(n) Receive signaling Bits D for Channel n. These bits are extracted from bit position 8 of every channel in received frame 24 within the 24 frame structure for ESF superframes. The bits reported may be debounced for 6 to 9 milliseconds where control bit DBNCE is set high. In D4 mode these bits are unused. Table 84 - Receive Channel Associated Signaling (Pages 9 and A) (T1) 100

101 20.3 E1 Mode Master Control 1 (Page 01H) (E1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Function 10H (Table 86) Mode Selection Control Word ASEL, CRCM, AUTC, ARAI, AUTY, CSYN, REFRM, MFRF 11H (Table 87) Transmit Alarm Control Word TE, TAIS16, TxAO, Einv 12H (Table 88) TS0 Control Word EXZ, SaBorNi, RxTRSP, TxTRSP, TIU1,TIU0 13H (Table 89) Transmit Multiframe Alignment Signal TMA1-4,X1,Y, X2, X3 14H (Table 90) Interrupt and signaling Control Word DSToEn, CSToEn, TxCCS, DBNCE, MSN 15H (Table 91) Coding and Loopback Control Word RxHDB3, MLBK, TxHDB3, DLBK, RLBK, SLBK, PLBK 16H (Table 92) Non Frame Alignment Control Word TALM, TNU4-8 17H (Table 93) Multiframe and Data Link Selection MFSEL, NBTB, Sa4-Sa8 18H (Table 94) Transmit Message Word TXM7-0 19H (Table 95) Error Insertion Word BPVE, CRCE, FASE, NFSE, LOSE, PERR, L32Z, LOS/LOF 1AH (Table 96) Signaling Control Word RST, SPND, INTA, CNTCLR, SAMPLE, OOFP 1BH (Table 97) Interrupt Mask Word Zero SYNIM, MFSYIM, CSYNIM, AISIM, LOSIM, CEFIM, YMI, SLPIM 1CH (Table 98) Interrupt Mask Word One FERIM, CRCIM, EBIM, AIS16IM, LCVIM, PRBSIM, AUXPIM & RAIM 1DH (Table 99) Interrupt Mask Word Two FEOM, CRCOM, EOM, LCVOM, PRBSOM, PRBSMFOM, SaIM 1EH (Table 100) Interrupt Mask Word Three HDLC0IM, HDLC1IM, HDLC2IM, JAIM, 1SECIM, 5SECIM, RCRIM, SIGIM 1FH (Table 101) LIU Receiver Word NRZ, RxA1-0, RxEQ2-0 Table 85 - Master Control 1 (Page 1) (E1) 101

102 7 ASEL AIS Select. This bit selects the criteria on which the detection of a valid Alarm Indication Signal (AIS) is based. If zero, the criteria is less than three zeros in a two frame period (512 bits). If one, the criteria is less than three zeros in each of two consecutive double-frame periods (512 bits per double frame). 6 CRCM CRC-4 Modification. If one activates the CRC-4 remainder modification function when the device is in transparent mode. The received CRC-4 remainder is modified to reflect only the changes in the transmit DL. If zero, time slot zero data from DSTi will not be modified in transparent mode. 5 AUTC Automatic CRC-interworking. If zero, automatic CRC-interworking is activated. If one it is deactivated. See Framing Algorithm for a detailed description. 4 ARAI Automatic Remote Alarm Indication. if zero, the Remote Alarm Indication bit (the A bit) will function automatically. That is, RAI=1 when basic synchronization has been acquired. And, RAI=0 when basic synchronization has not been acquired. if one, the remote alarm indication bit is controlled through the TALM bit of the transmit Non-Frame Alignment Control Word. 3 AUTY Automatic Y-Bit Operation. If zero, the Y-bit of the transmit multiframe alignment signal will report the multiframe alignment status to the far end i.e., zero - multiframe alignment acquired, one - lost. If one, the Y-bit is under the manual control of the Transmit Multiframe Alignment Control Word. 2 CSYN CRC-4 Synchronization. If zero, basic CRC-4 synchronization processing is activated, and the TIU0 Bit and the TIU1 bit programming will be overwritten. If one, CRC-4 synchronization is disabled, the first bits of channel 0 are used as international use bits and are programmed by the TIU0 and TIU1. 1 REFRM Reframe. If one for at least one frame, and then cleared, the device will initiate a search for a new basic frame position. Reframing function is activated on the one to zero transition of the REFRM bit. 0 MFRF Multiframe Reframe. If one, for at least one frame, and then cleared the 3VJET will initiate a search for a new signaling multiframe position. Reframing function is activated on the one to zero transition of the MFRM bit. Table 86 - Mode Selection Control Word (E1) (Page 1, Address 10H) 102

103 7 - - Reserved. Must be kept at 0 for normal operation. 6 TE Transmit E bits. When zero and CRC-4 synchronization is achieved, the E-bits transmit the received CRC-4 comparison results to the distant end of the link, as per G.703. That is, when zero and CRC-4 synchronization is lost, the transmit E-bits will be zero. If one, and CRC-4 synchronization is lost the transmit E-bits will be one. 5 TAIS16 Transmit AIS Time Slot 16. If one, an all ones signal is transmitted in time slot 16. If zero, time slot functions normally. 4 TxAO Transmit All Ones. When low, this control bit forces a framed or unframed (depending on the state of Transmit Alarm Control bit 0) all ones to be transmit at TTIP and TRING. 3 Einv Ebit Error Inversion. When zero, received Ebits set to zero are counted in the Ebit error counter and interrupt generator. When one, Ebits set to one are counted in the Ebit error counter and interrupt generator Unused. Table 87 - Transmit Alarm Control Word (E1) (Page 1, Address 11H) 103

104 Unused Unused. 5 EXZ Excess Zeros. Setting this bit causes each occurrence of received excess zeros to increment the Line Code Violation Counter. Excess zeros are defined as 4 or more successive zeros for HDB3 encoded data, or 16 or more successive zeros for non-hdb3 encoded data. 4 SaBorNi Sa Bit or Nibble. Set this bit to determine the criteria for interrupts due to transitions of Sa bits. If set to one, a change of state of any Sa bit is the criteria. If set to zero, a change of state of an Sa nibble is the criteria. Note that the selected event can only trigger an interrupt if the interrupt mask bit SaIM is set high in the Interrupt Mask Word Two - page 1 address 1DH bit 0. 3 RxTRSP Receive Transparent Mode. When this bit is set to one, the framing function is disabled on the receive side. Data coming from the receive line passes through the slip buffer and drives DSTo with an arbitrary alignment. When zero, the receive framing function operates normally. 2 TxTRSP Transmit Transparent Mode. If one, the MT9076 is in transmit transparent mode. No framing or signaling is imposed on the data transmit from DSTi onto the line. If zero, it is in termination mode. 1 TIU1 Transmit International Use One. When CRC-4 operation is disabled (CSYN=1), this bit is transmit on the PCM kbit/sec. link in bit position one of time-slot zero of non-frame-alignment frames. It is reserved for international use and should normally be kept at one. If CRC processing is used, i.e., CSYN =0, this bit is ignored. 0 TIU0 Transmit International Use Zero. When CRC-4 operation is disabled (CSYN=1), this bit is transmit on the PCM kbit/sec. link in bit position one of time-slot zero of frame-alignment frames. It is reserved for international use and should normally be kept at one. If CRC processing is used, i.e., CSYN =0, this bit is ignored. Table 88 - TS0 Control Word (E1) (Page 1, Address 12H) 104

105 7-4 TMA1-4 Transmit Multiframe Alignment Bits One to Four. These bits are transmitted on the PCM kbit/sec. link in bit positions one to four of time slot 16 of frame zero of every signaling multiframe. These bits are used by the far end to identify specific frames of a signaling multiframe. TMA1-4 = 0000 for normal operation. 3 X1 This bit is transmitted on the PCM kbit/sec. link in bit position five of time slot 16 of frame zero of every multiframe. X1 is normally set to one. 2 Y This bit is transmitted on the PCM kbit/sec. link in bit position six of time slot 16 of frame zero of every multiframe. It is used to indicate the loss of multiframe alignment to the remote end of the link. If one - loss of multiframe alignment; if zero - multiframe alignment acquired. This bit is ignored when AUTY is zero (page 01H, address 11H). 1, 0 X2, X3 These bits are transmitted on the PCM kbit/sec. link in bit positions seven and eight respectively, of time slot 16 of frame zero of every multiframe. X2 and X3 are normally set to one. Table 89 - Transmit Multiframe Alignment Signal (E1) (Page 1, Address 13H) 7 DSToEn DSTo Enable. If zero pin DSTo is tristate. If set the pin DSTo is enabled. 6 CSToEn CSTo Enable. If zero pin CSTo is tristate. If set the pin CSTo is enabled. 5 TxCCS Transmit Common Channel signaling. If one, the transmit channel 16 of the device is in common channel signaling (CCS) mode. If zero, it is in Channel Associated signaling (CAS) mode, data for channel 16 is sourced from the internal transmission ABCD register. 4 DBNCE Debounce Select. This bit selects the debounce period (1 for 14 msec.; 0 for no debounce). Note: there may be as much as 2 msec. added to this duration because the state change of the signaling equipment is not synchronous with the PCM 30 signaling multiframe. 3 MSN Most Significant signaling Nibble. If one, the CSTo and CSTi channel associated signaling nibbles will be valid in the most significant portion of each ST-BUS time slot. If zero, the CSTo and CSTi channel associated signaling nibbles will be valid in the least significant portion of each ST-BUS time slot. 2,1, Unused. Table 90 - Interrupt and Signaling Control Word (E1) (Page 1, Address 14H) 105

106 7 RxHDB3 High Density Bipolar 3 Encoding. If one, HDB3 encoding is enabled in the receive direction. If zero, AMI signal without HDB3 encoding is received. 6 MLBK Metallic Loopback. If one, then the external RRTIP and RRING signals are isolated from the receiver, and TTIP and TRING are internally connected to the receiver analog input instead. If zero, metallic loopback is disabled. 5 TxHDB3 High Density Bipolar 3 Encoding. If one, HDB3 encoding is enabled in the transmit direction. If zero, AMI signal without HDB3 encoding is transmitted. HDB3 is always decoded in the receive direction Unused. 3 DLBK Digital Loopback. If one, then the digital stream to the transmit LIU is looped back in place of the digital output of the receive LIU. Data coming out of DSTo will be a delayed version of DSTi. If zero, this feature is disabled. 2 RLBK Remote Loopback. If one, then all bipolar data received on RRTIP/RRING are directly routed to TTIP/TRING on the PCM 30 side of the MT9076. If zero, then this feature is disabled. 1 SLBK ST-BUS Loopback. If one, then all time slots of DSTi are connected to DSTo on the ST-BUS side of the MT9076. If zero, then this feature is disabled. See Loopbacks section. 0 PLBK Payload Loopback. If one, then all time slots received on RTIP/RRING are connected to TTIP/TRING on the ST-BUS side of the MT9076 (this excludes time slot zero). If zero, then this feature is disabled. Table 91 - Coding and Loopback Control Word (E1) (Page 1, Address 15H) Unused. 5 TALM Transmit Remote Alarm. This bit is transmitted on the PCM kbit/sec. link in bit position three (A bit) of time slot zero of NFAS frames. It is used to signal an alarm to the remote end of the PCM 30 link (one - alarm, zero - normal). This control bit is ignored when ARAI is zero (page 01H, address 10H). 4-0 TNU4-8 Transmit National Use Four to Eight (Sa4 - Sa8). These bits are transmitted on the PCM kbit/sec. link in bit positions four to eight of time slot zero of the NFA frame, if selected by Sa4 - Sa8 control bits of the DL selection word (page 01H, address 10H). Table 92 - Non Frame Alignment Control Word (E1) (Page 1, Address 16H) 106

107 Unused. 6 MFSEL Multiframe Select. This bit determines which receive multiframe signal (CRC-4 or signaling) the RxMF (pin 42 in PLCC, 23 in MQFP) signal is aligned with. If zero, RxMF is aligned with the receive signaling multiframe. If one, RxMF is aligned with the receive CRC-4 multiframe. 5 NBTB National Bit Transmit Buffer. If one, the transmit NFAS signal originates from the transmit national bit buffer page 0EH; if zero, the transmit NFAS signal originates from the TNU4-8 bits of page 1 address 16H. 4-0 Sa4-Sa8 National Bit Data Link Select A one selects the corresponding Sa bits of the NFA signal for 4, 8, 12, 16 or 20 kbits/sec. data link channel. Data link (DL) selection will function in termination mode only; in transmit transparent mode Sa4 is automatically selected - see TxTRSP control bit of page 01H, address 11H. If zero, the corresponding bits of transmit non-frame alignment signal are programmed by the Non-Frame Alignment Control Word (page 01H, address 12H). Table 93 - Multiframe and Data Link Selection (E1) (Page 1, Address 17H) 7-0 TxM7-0 Transmit Message Bits 7-0. The contents of this register are transmit into those outgoing DS1 channels selected by the Per Time Slot Control registers. Table 94 - Transmit Message Word (E1) (Page 1, Address 18H) 107

108 7 BPVE Bipolar Violation Error Insertion. A zero to one transition of this bit inserts a single bipolar violation error into the transmit PCM 30 data. A one, zero or one to zero transition has no function. 6 CRCE CRC-4 Error Insertion. A zero to one transition of this bit inserts a single CRC-4 error into the transmit PCM 30 data. A one, zero, or one to zero transition has no function. 5 FASE Frame Alignment Signal Error Insertion. A zero to one transition of this bit inserts a single error into the time slot zero frame alignment signal of the transmit PCM 30 data. A one, zero, or one to zero transition has no function. 4 NFSE Non-frame Alignment Signal Error Insertion. A zero to one transition of this bit inserts a single error into bit two of the time slot zero non-frame alignment signal of the transmit PCM 30 data. A one, zero, or one to zero transition has no function. 3 LOSE Loss of Signal Error Insertion. If one, the MT9076 transmits an all zeros signal (no pulses) in every PCM 30 time slot. When HDB3 encoding is activated no violations are transmitted. If zero, data is transmitted normally. 2 PERR Payload Error Insertion. A zero to one transition of this bit inserts a single error in the transmit payload. A one, zero, or one to zero transition has no function. 1 L32Z Digital Loss of Signal Selection. If one, the threshold for digital loss of signal is 32 successive zeros. If zero, the threshold is set to 192 successive zeros. 0 LOS/LOF Loss of Signal or Loss of Frame Selection. If one, pin LOS (pin 61 in PLCC, 57 in MQFP) will go high when a loss of signal state exits. A loss of signal is defined as either receipt of a signal attenuated below the analog loss of signal threshold (selectable as 20 db or 40 db below nominal) or receipt of 256 consecutive 0 s. If low, pin LOS will go high when either a loss of signal or a loss of basic frame alignment state exits (bit SYNC on page 03H address 10H is zero). Table 95 - Error Insertion Word (E1) (Page 1, Address 19H) 108

109 7 RST Reset. When this bit is changed from zero to one the device will reset to its default mode. See the Reset Operation section for the default settings. 6 SPND Suspend Interrupts. If one, the IRQ output (pin 12 in PLCC, 85 in MQFP) will be in a high-impedance state and all interrupts will be ignored. If zero, the IRQ output will function normally. 5 INTA Interrupt Acknowledge. A zero-to-one or one-to-zero transition will clear any pending interrupt and make IRQ high. 4 CNTCLR Counter Clear. If one, all status counters are cleared and held low. Zero for normal operation. 3 SAMPLE One Second Sample. Setting this bit causes the error counters (change of frame alignment, loss of frame alignment, lcv errors, crc errors, severely errored frame events and multiframes out of sync) to be updated on one second intervals coincident with the one second timer (status page 3 address 12H bit 7). 2 OOFP Out of Frame Pause. If set high, this bit will suspend operation of the Line Code VIolation Counter during an out - of - frame condition; upon achieving terminal frame synchronization the counter will resume normal operation. If set low, the Line Code Violation counter will continue to count errors even if terminal frame synchronization is lost Reserved. Set low for normal operation. 0 D20 Double 20. Set low for normal operation. Set high to double clock speed in the HDLC to speed up memory accesses from 160 ns between consecutive reads/writes to 80 ns between consecutive reads/writes. Table 96 - Signaling Control Word (E1) (Page 1, Address 1AH) 109

110 7 SYNIM Synchronization Interrupt Mask. When unmasked (SYNI = 1) an interrupt is initiated whenever a change of state of loss of basic frame synchronization condition exists. If 1- unmasked, 0 - masked. 6 MFSYIM Multiframe Synchronization Interrupt Mask. When unmasked (MFSYI = 1), an interrupt is initiated whenever a change of state of multiframe synchronization exists. If 1- unmasked, 0 - masked. 5 CSYNIM CRC-4 Multiframe Synchronization Interrupt Mask. When unmasked (CSYNI = 1), an interrupt is initiated whenever a change of state of CRC-4 multiframe synchronization exists. If 1- unmasked, 0 - masked. 4 AISIM Alarm Indication Signal Interrupt Mask. When unmasked (AISI = 1) a change of state of received AIS will initiate an interrupt. If 1- unmasked, 0 - masked. 3 LOSIM Loss of Signal Interrupt Mask. When unmasked this interrupt bit goes high whenever a change of state of loss of signal (either analog - received signal 20 or 40 db below nominal or digital consecutive 0 s received) condition exists. If 1- unmasked, 0 - masked. 2 CEFIM Consecutively Errored FASs Interrupt Mask. When unmasked an interrupt is initiated when two consecutive errored frame alignment signals are received. If 1 - unmasked, 0 - masked. 1 YIM Remote signaling Multiframe Alarm Interrupt Mask. When unmasked (YI = 1), an interrupt is initiated whenever a change of state of when a remote signaling multiframe alarm signal is received. If 1- unmasked, 0 - masked. 0 SLPIM SLIP Interrupt Mask. When unmasked (SLPI = 1), an interrupt is initiated when a controlled frame slip occurs. If 1- unmasked, 0 - masked. Table 97 - Interrupt Mask Word Zero (E1) (Page 1, Address 1BH) 110

111 7 FERIM Frame Error Interrupt Mask. When unmasked (FERI = 1), an interrupt is initiated when an error in the frame alignment signal occurs. If 1- unmasked, 0 - masked. 6 CRCIM CRC-4 Error Interrupt Mask. When unmasked an interrupt is initiated when a local CRC-4 error occurs. If 1 - unmasked, 0 - masked. 5 EBIM Receive E-bit Interrupt Mask. When unmasked an interrupt is initiated when a receive E-bit indicates a remote CRC-4 error. If 1 - unmasked, 0 - masked. 4 AIS16IM Channel 16 Alarm Indication Signal Interrupt Mask. When unmasked (AIS16I = 1), a received AIS16 will initiate an interrupt. If 1- unmasked, 0 - masked. 3 LCVIM Line Code Violation Interrupt Mask. When unmasked an interrupt is initiated when a line code violation error occurs. If 1 - unmasked, 0 - masked. 2 PRBSIM PRBS Interrupt Mask. When unmasked (PRBSI = 1), an interrupt is initiated on a single PRBS detection error. If 1- unmasked, 0 - masked. 1 AUXPIM Auxiliary Pattern Interrupt Mask. When unmasked (AUXPI = 1), an interrupt is initiated when the AUXP status bit of page 03H, address 15H goes high. If 1- unmasked, 0 - masked. 0 RAIIM Remote Alarm Indication Interrupt Mask. When unmasked (RAII = 1) a received RAI will initiate an interrupt. If 1- unmasked, 0 - masked. Table 98 - Interrupt Mask Word One (E1) (Page 1, Address 1CH) 111

112 7 FEOM Frame Alignment Signal Error Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated when the frame alignment signal error counter overflows. If 1 - unmasked, 0 - masked. 6 CRCOIM CRC-4 Error Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated when the CRC-4 error counter overflows. If 1 - unmasked, 0 - masked Unused. 4 EBOIM Receive E-bit Counter Overflow Interrupt Mask. When unmasked an interrupt is initiated when the E-bit error counter overflows. If 1 - unmasked, 0 - masked. 3 LCVCOM Line Code Violation Counter Overflow Interrupt Mask. When unmasked (LCVO = 1), an interrupt is initiated when the line code violation error counter changes form FFFFH to 0H. If 1- unmasked 0 - masked. 2 PRBSOM PRBS Counter Overflow Interrupt Mask. When unmasked (PRBSO = 1), an interrupt is initiated on overflow of PRBS counter (page 04H, address 10H) from FFH to 0H. If 1- unmasked 0 - masked. 1 PRBSMFOM PRBS MultiFrame Counter Overflow Interrupt Mask. When unmasked an interrupt will be generated whenever the multiframe counter attached to the PRBS error counter overflows. If 1- unmasked 0 - masked. 0 SaIM Sa Bits Interrupt Masks. When unmasked an interrupt will be triggered by either a change of state of any of the received Sa bits Sa5, Sa6, Sa7 or Sa8 (SaBorNi = 1) or a change of state of any of the received Sa nibbles (SaBorNi = 0). The control bit SaBorNi is located in page 1 address 12H bit 4. If 1- unmasked 0 - masked. Table 99 - Interrupt Mask Word Two (E1) (Page 1, Address 1DH) 112

113 7 HDLC0IM HDLC0 Interrupt Mask. When unmasked an interrupt is triggered by an unmasked event in HDLC0. If 1 - unmasked, 0 - masked. 6 HDLC1IM HDLC1 Interrupt Mask. When unmasked an interrupt is triggered by an unmasked event in HDLC1. If 1 - unmasked, 0 - masked. 5 HDLC2IM HDLC2 Interrupt Mask. When unmasked an interrupt is triggered by an unmasked event in HDLC2. If 1 - unmasked, 0 - masked. 4 JAIM Jitter Attenuation Interrupt Mask. When unmasked, an interrupt will be initiated when the jitter attenuator FIFO comes within four bytes of an overflow or underflow condition. If 1 - unmasked, 0 - masked. 3 1SECIM One Second Status Interrupt Mask. When unmasked (1SECI = 1), an interrupt is initiated when the 1SEC status bit changes from zero to one. If 1- unmasked, 0 - masked. 2 5SECIM Five Second Status Interrupt Mask. When unmasked (5SECI = 1), an interrupt is initiated when the 5SECI status bit changes from zero to one. If 1- unmasked, 0 - masked. 1 RCRIM RCRI Interrupt Mask. Whenever an unmasked (RCRI=1), an interrupt is initiated when RCR (remote alarm & CRC-4 error) status bit changes from zero to one. If 1- unmasked, 0 - masked. 0 SIGIM signaling (CAS) Interrupt Mask. When unmasked and any of the receive ABCD bits of any channel changes state an interrupt is initiated. If 1 - unmasked, 0 - masked. Table Interrupt Mask Word Three (E1) (Page 1, Address 1EH) 113

114 7 NRZ NRZ Format Selection. Only used in the digital framer only mode (LIU is disabled). A one sets the MT9076 to accept a unipolar NRZ format input stream on RxA as the line input, and to transmit a unipolar NRZ format stream on TxB. A zero causes the MT9076 to accept a complementary pair of dual rail inputs on RxA/RxA and to transmit a complementary pair of dual rail outputs on TxA/TxB Reserved. Set these bits low for normal operation. 4-3 RxA1-0 Automatic Receive Equalizer Control. These bits should be programmed according to the table below: 00 Equalization will be activated using the control bits RxEQ The receive equalizer is turned on and will compensate for loop length automatically. The control bits RxEQ2-0 will be ignored. 01, 10 Reserved for factory purposes. 2-0 RxEQ2-0 Receive Equalization Select. Setting these pins forces a level of equalization of the incoming line data. RES2 RES1 RES0 Receive Equalization none db db db db db db reserved These settings have no effect if either of RxA1 and RxA0 are set to one. Table LIU Receive Word (E1) (Page 1, Address 1FH) 114

115 20.4 Master Control 2 (Page-2) Master Control 2 (Page 02H) (E1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Names 10H (Table 103) Configuration Control Word 11H (Table 104) LIU Tx Word T1/E1, TxEN, LIUEn, ELOS, Tx8KEN, ADSEQ WR, Pk2, Pk1, CPL, TxLB2-0 12H Reserved Set all bits to zero for normal operation. 13H (Table 105) Jitter Attenuator Control Word JFC, JFD2-JFD0, JACL 14H Reserved Set all bits to zero for normal operation. 15H Reserved Set all bits to zero for normal operation. 16H (Table 106) Equalizer High Threshold 17H (Table 107) Equalizer Low Threshold 18H (Table 108) Serial Bit Rate 19H (Table 109) HDCL0 Select 1AH (Table 110) HDCL1 Select 1BH (Table 111) HDLC2 Select 1CH (Table 112) Custom Pulse Word 1 1DH (Table 113) Custom Pulse Word 2 1EH (Table 114) Custom Pulse Word 3 1FH (Table 115) Custom Pulse Word 4 EHT7-0 ELT7-0 IMA,8Men,8MTS1-0 En, SaSEL, CH4-0 En, CH4-0 En, CH4-0 CP6-0 CP6-0 CP6-0 CP6-0 Table Master Control 2 (Page 02H) (E1) 115

116 7 T1/E1 E1 mode selection. when this bit is one, the device is in E1 mode Reserved. Must be kept at 0 for normal operation. 5 TxEN Transmit Enable. Setting this bit low turns off the TTIP and TRING output line drivers. Setting this bit high enables them. 4 LIUEn LIU Enable.Setting this bit low enables the internal LIU front-end. Setting this pin high disables the LIU. Digital inputs RXA and RXB are sampled by the rising edge of E2.0i (Exclk) to strobe in the received line data. Digital transmit data is clocked out of pins TXA and TXB with the rising edge of C2.0o 3 ELOS ELOS Enable. Set this bit low to set the analog loss of signal threshold to 40 db below nominal. Set this bit high to set the analog loss of signal threshold to 20 db below nominal. 2 Tx8KEN Transmit 8 KHz Enable. If one, the pin RxMF/TxFP transmits a positive 8 KHz frame pulse synchronous with the serial data stream transmit on TXA/TXB. If zero, the pin RxMF/TxFP transmits a negative frame pulse synchronous with the multiframe boundary of data coming out of DSTo. 1 ADSEQ Digital Milliwatt or Digital Test Sequence. If one, the A-law digital milliwatt analog test sequence will be selected by the Per Time Slot Control bits TTST and RTST.If zero, a PRBS generator / detector will be connected to channels with TTST, RRST respectively Reserved. Set this bit low for normal operation. Table Configuration Control Word (Page 2, Address 10H) (E1) 116

117 7 WR Winding Ratio. Set this pin low if a 1:2.4 transformer is used on the transmit side. Set this pin high if a 1:2 transformer is used Reserved. Must be kept at 0 for normal operation. 3 CPL Custom Pulse Level. Setting this bit low enables the internal ROM values in generating the transmit pulses. The ROM is coded for different line terminations or build out, as specified in the LIU Control word. Setting this pin high disables the pre-programmed pulse templates. Each of the 4 phases that generate a mark derive their D/A coefficients from the values programmed in the CPW registers. 2-0 TX2-0 Transmit pulse amplitude. Select the TX2 TX0 bits according to the line type, value of termination resistors (RT), and transformer turns ratio used. TX2 TX1 TX Line Impedance (ohms) RT(ohms) Transformer Ratio 1:2.4 1:2 1:2.4 1:2.4-1:2 1:2 1:2.4 WR (bit 7) After reset, these bits are zero. Table LIU Tx Word (Page 2, Address 11H) (E1) 117

118 Unused. 6 JFC Jitter Attenuator FIFO Centre. When this bit is toggled the read pointer on the jitter attenuator shall be centered. During this centering the jitter on the JA outputs is increased by U.I. 5-3 JFD2-JFD0 Jitter Attenuator FIFO Depth Control Bits. These bits determine the depths of the jitter attenuator FIFO as shown below: JFD2 JFD1 JFD0 Depth JACL Jitter Attenuator FIFO Clear Bit. If one, the Jitter Attenuator, its FIFO and status are reset. The status registers will identify the FIFO as being empty. However, the actual bit values of the data in the JA FIFO will not be reset Unused. Table Jitter Attenuation Control Word (Page 2, Address 13H) (E1) 7-0 EHT7-0 Equalizer High Threshold. These bits set the highest possible binary count tolerable coming out of the equalized signal peak detector before a lower level of equalization is selected. This register is only used when A/D based automatic equalization is selected using the Rx LIU Control Word. The recommended value to program is Table Equalizer High Threshold (Page 2, Address 16H) (E1) 7-0 ELT7-0 Equalizer Low Threshold. These bits set the lowest possible binary count tolerable coming out of the equalized signal peak detector before a higher level of equalization is selected. This register is only used when A/D based automatic equalization is selected using the Rx LIU Control Word. The recommended value to program is Table Equalizer Low Threshold (Page 2, Address 17H) (E1) 118

119 Reserved. Must be kept at 0 for normal operation. 5 IMA Inverse Mux Mode. Setting this bit high the I/O ports to allow for easy connection to the Zarlink MT DSTi becomes a serial data stream. C4b becomes a MHz clock that clocks DSTi in on the falling edge. RXFP becomes a positive framing pulse that is high for the first bit of the serial E1 stream coming from the pin DSTo. The data from DSTo is clocked out on the rising edge of Exclk. Set this pin low for all other applications Reserved. Must be kept at 0 for normal operation. 2 8Men 8 Mb/s Bit Rate Select. Setting this bit low enables a serial bit rate on DSTi, CSTi and DSTo,CSTo of Mb/s. Setting this bit high enables a gapped serial bit rate of Mb/s on DSTi, CSTi, DSTo and CSTo MTS1-0 8 Mb/s Time Slot Select. These two bits select the active timeslots on the serial Mb/s channels. During the active timeslots incoming serial data on DSTi and CSTi is clocked into the device, and data is clocked out onto DSTo and CSTo. During inactive timeslots DSTo and CSTo are tristate. For all selections every fourth 8 Mb/s timeslot is active. The timeslot selection is as follows: 8MTS1 8MST0 Active timeslots 0 0 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92 96,100,104,108,112,116,120, ,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93 97,101,105,109,113,117,121, ,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86, 90, 94, 98,102,106,110,114,118,122, ,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83, 87,91,95,99,103,107,111,115,119,123,127 Table Serial Bit Rate (Page 2, Address 18H) (E1) 7 En Enable. Set high to attach the HDLC0 controller to the channel specified below. Set low to disconnect the HDLC0. 6 SaSEL Sa Bits Select. Set this bit to 0 to attach HDLC0 to the Sa bits. Set this bit to 1 to attach HDLC0 to a payload timeslot Reserved. Must be kept at 0 for normal operation. 4-0 CH4-0 Channel 4-0. This 5 bit number specifies the channel time HDLC0 will be attached to if enabled. Channel 0 is the first channel in the frame. Channel 31 is the last channel in an E1 frame. If enabled in a channel, HDLC data will be substituted for data from DSTi on the transmit side. Receive data is extracted from the incoming line data before the elastic buffer. Table HDLC0 Select (Page 2, Address 19H) (E1) 119

120 7 En Enable. Set high to attach the HDLC1 controller to the channel specified below. Set low to disconnect the HDLC Reserved. Must be kept at 0 for normal operation. 4-0 CH4-0 Channel 4-0. This 5 bit number specifies the channel time HDLC1 will be attached to if enabled. Channel 0 is the first channel in the frame. Channel 31 is the last channel in an E1 frame. If enabled in a channel, HDLC data will be substituted for data from DSTi on the transmit side. Receive data is extracted from the incoming line data before the elastic buffer. Channel 0 selection is unavailable to this controller. Table HDLC1 Select (Page 2, Address 1AH) (E1) 7 En Enable. Set high to attach the HDLC2 controller to the channel specified below. Set low to disconnect the HDLC Reserved. Must be kept at 0 for normal operation. 4-0 CH4-0 Channel 4-0. This 5 bit number specifies the channel time HDLC2 will be attached to if enabled. Channel 0 is the first channel in the frame. Channel 31 is the last channel in an E1 frame. If enabled in a channel, HDLC data will be substituted for data from DSTi on the transmit side. Receive data is extracted from the incoming line data before the elastic buffer. Channel 0 selection is unavailable to this controller. Table HDLC2 Select (Page 2, Address 1BH) (E1) Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the first phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high Table Custom Pulse Word 1 (Page 2, Address 1CH) (E1) 120

121 7 - - Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the second phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high Table Custom Pulse Word 2 (Page 2, Address 1DH) (E1) Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the third phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high Table Custom Pulse Word 3 (Page 2, Address 1EH) (E1) Reserved. Must be kept at 0 for normal operation. 6-0 CP6-0 Custom Pulse. These bits provide the capability for programming the magnitude setting for the TTIP/TRING line driver A/D converter during the fourth phase of a mark. The greater the binary number loaded into the register, the greater the amplitude driven out. This feature is enabled when the control bit 3 - CPL of the Custom Tx Pulse Enable Register - address 11H of Page 2 is set high Table Custom Pulse Word 4 (Page 2, Address 1FH) (E1) 121

122 20.5 Master Status 1 (Page 03H) (E1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Function 10H (Table 117) Synchronization Status Word SYNC MFSYNC CRCSYN REB1 REB2 CRCRF RED CRCIWK 11H (Table 118) Alarm Status Word 1 CRCS1 CRCS2 RFAIL LOSS AIS16S AISS RAIS RCRS 12H (Table 119) Timer Status Word 1SEC, 2SEC, 400T, 8T, CALN, KLVE, T1,T2 13H (Table 120) Most Significant Phase Status Word RSLIP, RSLPD, RxFRM, AUXP, RxFT, RxSBD2-0 14H (Table 121) Least Significant Phase Status Word RxTS4-0, RxBC2-0 15H (Table 122) Receive Frame Alignment Signal RIU0 &RFA2-8 16H (Table 123) Receive Signal Status Word LLOS 17H (Table 124) Jitter Attenuator Status Word JACS, JACF, JAE, JAF4, JAFC, JAE4, JAF 18H (Table 125) Receive Non-frame Alignment Signal RIU1, RNFAB, RALM, &RNU4-8 19H (Table 126) Receive Multiframe Alignment Signal RMAI1-4, X1, Y, X2, & X3 1AH (Table 127) Sa Bits Report Word Sa5, Sa6nibble, C8Sa6, CSa6, RxSa3-0 1BH (Table 128) Alarm Status Word 2 RAIS, AISS, AIS16S, LOSS, AUXPS, MFALMS, SLIPS 1CH --- Reserved. 1DH (Table 129) Analog Peak Detector AP7-0 1EH --- Reserved. 1FH (Table 130) Identification Word Set to Table Master Status 1 (Page 3) (E1) 122

123 7 SYNC Receive Basic Frame Alignment. SYNC indicates the basic frame alignment status (1 - loss; 0 - acquired). 6 MFSYNC Receive Multiframe Alignment. MFSYNC indicates the multiframe alignment status (1 - loss; 0 -acquired). 5 CRCSYN Receive CRC-4 Synchronization. CRCSYN indicates the CRC-4 multiframe alignment status (1 - loss; 0 - acquired). 4 REB1 Receive E-Bit One Status. REB1 indicates the status of the received E1 bit of the last multiframe. 3 REB2 Receive E-Bit Two Status. REB2 indicates the status of the received E2 bit of the last multiframe. 2 CRCRF CRC-4 Reframe. A one indicates that the receive CRC-4 multiframe synchronization could not be found within the time out period of 8 msec. after detecting basic frame synchronization. This will force a reframe when the maintenance option is selected and automatic CRC-4 interworking is de-selected. 1 RED RED Alarm. RED goes high when basic frame alignment has been lost for at least 100 msec. This bit will be low when basic frame alignment is acquired (I.431). 0 CRCIWK CRC-4 Interworking. CRCIWK indicates the CRC-4 interworking status (1 - CRC-to-CRC; 0 - CRC-to-non-CRC). Table Synchronization Status Word (Page 3, Address 10H) (E1) 123

124 7 CRCS1 Receive CRC Error Status One. If one, the evaluation of the last received submultiframe 1 resulted in an error. If zero, the last submultiframe 1 was error free. Updated on a submultiframe 1 basis. 6 CRCS2 Receive CRC Error Status Two. If one, the evaluation of the last received submultiframe 2 resulted in an error. If zero, the last submultiframe 2 was error free. Updated on a submultiframe 2 basis. 5 RFAIL Remote CRC-4 Multiframe Generator/Detector Failure. If one, then each of the previous five seconds have an E-bit error count of greater than 989, and for this same period the receive RAI bit was zero (no remote alarm), and for the same period the SYNC bit was equal to zero (basic frame alignment has been maintained). If zero, indicates normal operation. 4 LOSS Loss of Signal Status. If one, indicates the presence of a loss of signal condition. If zero, indicates normal operation. A loss of signal condition occurs when excess consecutive bit periods are zero. The threshold for this condition is set by the control bit L32Z. If L32Z is set high the threshold is 32 successive zeros. If L32Z is set low the threshold is 192 successive zeros. A loss of signal condition terminates when an average ones density of at least 12.5% has been received over a period of 192 contiguous pulse positions starting with a pulse. 3 AIS16S Alarm Indication Signal 16 Status. If one, indicates an all ones alarm is being received in channel 16. If zero, normal operation. Updated on a frame basis. 2 AISS Alarm Indication Status Signal. If one, indicates that a valid AIS or all ones signal is being received. If zero, indicates that a valid AIS signal is not being received. The criteria for AIS detection is determined by the control bit ASEL. 1 RAIS Remote Alarm Indication Status. If one, there is currently a remote alarm condition (i.e., received A bit is one). If zero, normal operation. Updated on a non-frame alignment frame basis. 0 RCRS RAI and Continuous CRC Error Status. If one, there is currently an RAI and continuous CRC error condition. If zero, normal operation. Updated on a multiframe basis. Table Alarm Status Word 1 (Page 3, Address 11H) (continued) (E1) 124

125 7 1SEC One Second Timer Status. This bit changes state once every 0.5 second and is synchronous with the 2SEC timer. This feature is not available when the device is operated in freerun mode. 6 2SEC Two Second Timer Status. This bit changes state once every second and is synchronous with the 1SEC timer.this feature is not available when the device is operated in freerun mode T 400 msec. Timer Status. This bit changes state when the 400 msec. CRC-4 multiframe alignment timer expires. 4 8T 8 msec. Timer Status. This bit changes state when the 8 msec. CRC-4 multiframe alignment timer expires. 3 CALN CRC-4 Alignment. This bit changes state every millisecond. When CRC-4 multiframe alignment has been achieved state changes of this bit are synchronous with the receive CRC-4 synchronization signal. 2 KLVE Keep Alive. This bit is high when the AIS status bit has been high for at least 100 msec. This bit will be low when AIS goes low (I.431). 1 T1 Timer One. This bit will be high upon loss of terminal frame synchronization persisting for 100 msec. This bit shall be low when T2 becomes high. Refer to I.431 Section T2 Timer Two. This bit will be high when the MT9076 acquires terminal frame synchronization persisting for 10 msec. This bit shall be low when non-normal operational frames are received. I.431 Section Table Timer Status Word (Page 3, Address 12H) (E1) 125

126 7 RSLIP Receive Slip. A change of state (i.e., 1-to-0 or 0-to-1) indicates that a receive controlled frame slip has occurred. 6 RSLPD Receive Slip Direction. If one, indicates that the last received frame slip resulted in a repeated frame, i.e., system clock is faster than network clock. If zero, indicates that the last received frame slip resulted in a lost frame, i.e., system clock is slower than network clock. Updated on an RSLIP occurrence basis. 5 RXFRM Receive Frame Delay. The most significant bit of the Receive Slip Buffer Phase Status Word. If one, the delay through the receive elastic buffer is greater than one frame in length; if zero, the delay through the receive elastic buffer is less than one frame in length. 4 AUXP Auxiliary Pattern. This bit will go high when a continuous bit stream (Auxiliary Pattern) is received on the PCM 30 link for a period of at least 512 bits. If zero, auxiliary pattern is not being received. This pattern will be decoded in the presence of a bit error rate of as much as RxFT Receiver Frame Toggle. This bit toggles on the falling edge of RxTS RxSBD2-0 Receive Sub Bit Delay. The three least significant bits of the Receive Slip Buffer Phase Status Word. They indicate the clock, half clock and one eight clock cycle depth of the phase status word sample point (bits 2, 1, o respectively). Table Most Significant Phase Status Word (Page 3, Address 13H) (E1) 7-3 RxTS4-0 Receive Time Slot. A five bit counter that indicates the number of time slots between the receive elastic buffer internal write frame boundary and the ST-BUS read frame boundary. The count is updated every 250 us. 2-0 RxBC2-0 Receive Bit Count. A three bit counter that indicates the number of STBUS bit times there are between the receive elastic buffer internal write frame boundary and the ST-BUS read frame boundary. The count is updated every 250 us. Table Least Significant Phase Status Word (Page 3, Address 14H) (E1) 7 RIU0 Receive International Use Zero. This is the bit which is received on the PCM kbit/sec. link in bit position one of the frame alignment signal. It is used for the CRC-4 remainder or for international use. 6-0 RFA2-8 Receive Frame Alignment Signal Bits 2 to 8. These bit are received on the PCM kbit/sec. link in bit positions two to eight of frame alignment signal. These bits form the frame alignment signal and should be Table Receive Frame Alignment Signal (Page 3, Address 15H) (E1) 126

127 7 LLOSS LIU Loss of Signal indication. This bit will be high if the received signal is below the threshold selected by ELOS (page 2, address 10H) for a period of at least 1 msec. This bit will be low for normal operation Unused. Table Receive Signal Status Word (Page 3, Address 16H) (E1) 7 JACS Jitter Attenuated Clock Slow. If one it indicates that the dejittered clock period is increased by 1/16 UI. If zero the clock is at normal speed. 6 JACF Jitter Attenuated Clock Fast. If one it indicates that the dejittered clock period is decreased by 1/16 UI. If zero the clock is at normal speed. 5 JAE Jitter Attenuator FIFO Empty. If one it indicates that the JA FIFO is empty. 4 JAF4 Jitter Attenuator FIFO with 4 Full Locations. If one it indicates that the JA FIFO has at least 4 full locations. 3 JAFC Jitter Attenuator Center Full. If one it indicates that the JA FIFO is at least half full. 2 JAE4 Jitter Attenuator FIFO with 4 Empty Locations. If one it indicates that the JA FIFO has at most 4 empty locations. 1 JAF Jitter Attenuator FIFO Full. If one it indicates that the JA FIFO is full Unused. Table Jitter Attenuator Status Word (Page 3, Address 17H) (E1) 127

128 7 RIU1 Receive International Use 1. This bit is received on the PCM kbit/sec. link in bit position one of the non-frame alignment signal. It is used for CRC-4 multiframe alignment or international use. 6 RNFAB Receive Non-frame Alignment Bit. This bit is received on the PCM kbit/sec. link in bit position two of the non-frame alignment signal. This bit should be one in order to differentiate between frame alignment frames and non-frame alignment frames. 5 RALM Receive Alarm. This bit is received on the PCM kbit/sec. link in bit position three (the A bit) of the non-frame alignment signal. It is used as a remote alarm indication (RAI) from the far end of the PCM 30 link (1 - alarm, 0 - normal). 4-0 RNU4-8 Receive National Use Four to Eight. These bits are received on the PCM kbit/sec. link in bit positions four to eight (the Sa bits) of the non-frame alignment signal. Table Receive Non-Frame Alignment Signal (Page 3, Address 18H) (E1) 7-4 RMAI1-4 Receive Multiframe Alignment Bits One to Four. These bits are received on the PCM kbit/sec. link in bit positions one to four of time slot 16 of frame zero of every signaling multiframe. These bit should be 0000 for proper signaling multiframe alignment. 3 X1 Receive Spare Bit X1. This bit is received on the PCM kbit/sec. link in bit position five of time slot 16 of frame zero of every signaling multiframe. 2 Y Receive Y-bit. This bit is received on the PCM kbit/sec. link in bit position six of time slot 16 of frame zero of every signaling multiframe. The Y bit may indicate loss of multiframe alignment at the remote end (1 -loss of multiframe alignment; 0 - multiframe alignment acquired). 1-0 X2, X3 Receive Spare Bits X2 and X3. These bits are received on the PCM kbit/sec. link in bit positions seven and eight respectively, of time slot 16 of frame zero of every signaling multiframe. Table Receive Multiframe Alignment Signal (Page 3, Address 19H) (E1) 128

129 7 Sa5 Sa 5 Bit. The Sa5 bit is latched and reported here upon receipt of the eighth of consecutive instance of a new Sa6 nibble. 6 CSa6nibble Changed Sa6 Nibble. This bit changes state upon detection of a change of state of incoming Sa6 nibbles. 5 C8Sa6 Changed Eight Sa6 Bit. This bit toggles upon receipt of the eighth of consecutive instance of a new Sa6 nibble. 4 CSa6 Changed Sa6 Bit. This bit toggles in the event of a change of state in the received Sa6 bit. 3-0 RxSa 3-0 Receive Sa Nibble Three to Zero. This register contains the contents of the last Sa6 nibble received. It is updated upon receipt of the eighth of consecutive instance of a new Sa6 nibble. Table Sa Bits Report Word (Page 3, Address 1AH) (E1) 7 RAIS Remote Alarm Indication Status. If one, there is currently a remote alarm condition (i.e., received A bit is one). If zero, normal operation. Updated on a non-frame alignment frame basis. 6 AISS Alarm Indication Status Signal. If one, indicates that a valid AIS or all ones signal is being received. If zero, indicates that a valid AIS signal is not being received. The criteria for AIS detection is determined by the control bit ASEL. 5 AIS16S Alarm Indication Signal 16 Status. If one, indicates an all ones alarm is being received in channel 16. If zero, normal operation. Updated on a frame basis. 4 LOSS Loss of Signal Status. If one, indicates the presence of a loss of signal condition. If zero, indicates normal operation. A loss of signal condition occurs when an excess consecutive bit periods are zero. The threshold for this condition is set by the control bit L32Z. If L32Z is set high the threshold is 32 successive zeros. If L32Z is set low the threshold is 192 successive zeros. A loss of signal condition terminates when an average ones density of at least 12.5% has been received over a period of 192 contiguous pulse positions starting with a pulse. 3 AUXPS Auxiliary Pattern Status. This bit goes on high when a continuous bit stream (Auxiliary Pattern) is received on the PCM 30 link for a period of at least 512 bits. If zero, auxiliary pattern is not being received. This pattern will be decoded in the presence of a bit error rate of as much as MFALMS Multiframe Alarm Status. This bit goes high in the event of receipt of a multiframe alarm. It goes low when the received multiframe alarm bit goes low. 1 RSLIPS Receive Slip Status. A change of state (i.e., 1-to-0 or 0-to-1) indicates that a receive controlled frame slip has occurred Unused. Table Alarm Status Word 2 (Page 3, Address 1BH) (E1) 129

130 7-0 AP7-0 Analog Peak Detector. This status register gives the output value of a 8 bit A/D converter connected to a peak detector on RTIP/RRING. Table Analog Peak Detector (Page 3, Address 1DH) (E1) 7-0 ID7-0 ID Number. Contains device code Table Identification Word (Page 3, Address 1FH) (E1) 130

131 21.0 Master Status 2 (Page-4) 21.1 Master Status 2 (Page 04H) (E1) Address (A 4 A 3 A 2 A 1 A 0 ) Register Function 10H (Table 132) PRBS Error Counter PS7-0 11H (Table 133) CRC Multiframe counter for PRBS PSM7-0 12H (Table 134) Alarm Reporting Latch RAI, AIS, AIS16, LOS, AUXP, MFALM, RSLIP 13H (Table 135) Errored Frame Alignment Signal Counter EFAS7-0 14H (Table 136) E-bit Error Counter Ebt EC15-EC8 15H (Table 137) E-bit Error Counter Ebt EC7-EC0 16H (Table 138) 17H (Table 139) Most Significant Line Code Violation Error Counter Least Significant Line Code Violation Error Counter LCV15 - LCV8 LCV7 - LCV0 18H (Table 140) CRC- 4 Error Counter CEt CC15-CC8 19H (Table 141) CRC- 6 Error Counter CEt CC7 - CC0 1AH Unused. 1BH (Table 142) Interrupt Word Zero TFSYNI, MFSYNI, CRCSYNI,AISI, LOSI, CEFI,YI, RxSLPI 1CH (Table 143) Interrupt Word One FERRI, CRCERRI, EBITI, AIS16I, LCVI, PRBSERRI, AUXPI, RAII, 1DH (Table 144) Interrupt Word Two FERRO,CRCO,FEBEO,LCVO,PRBSO,PRBS MFO, SaI 1EH (Table 145) Interrupt Word Three HDLC0I,HDLC1I,HDLC2,JAI,1SECI,5SECI,RC RI,SIGI 1FH (Table 146) Overflow Reporting Latch FERROL,CRCOL,FEBEOL,LCVOL, PRBSOL, PRBSMFOL Table Master Status 2 (Page 4) (E1) 7-0 PS7-0 This counter is incremented for each PRBS error detected on any of the receive channels connected to the PRBS error detector. Table PRBS Error Counter (Page 4, Address 10H) (E1) 131

132 7-0 PSM7-0 This counter is incremented for each received CRC multiframe. It is cleared when the PRBS Error Counter is written to. Table CRC Multiframe Counter for PRBS (Page 4, Address 11H) (E1) 7 RAI Remote Alarm Indication. This bit is set to one in the event of receipt of a remote alarm, i.e., A(RAI) = 1. It is cleared when the register is read. 6 AIS Alarm Indication Signal. This bit is set to one in the event of receipt of an all ones alarm. It is cleared when the register is read. 5 AIS16 AIS Time Slot 16 Alarm. This bit is set to one in the event of receipt of an all ones alarm in the time slot 16. It is cleared when the register is read. 4 LOS Loss of Signal. This bit is set to one in the event of loss of received signal. It is cleared when the register is read. 3 AUXP Auxiliary Alarm. This bit is set to one in the event of receipt of the auxiliary alarm pattern. It is cleared when the register is read. 2 MFALM Multiframe Alarm. This bit is set to one in the event of receipt of a multiframe alarm. It is cleared when the register is read. 1 RSLIP Received Slip. This bit is set to one in the event of receive elastic buffer slip. It is cleared when the register is read Unused. Table Alarm Reporting Latch (Page 4, Address 12H) (E1) 7-0 EFAS7-0 Errored FAS Counter. An 8 bit counter that is incremented once for every receive frame alignment signal that contains one or more errors. Table Errored Frame Alignment Signal Counter (Page 4, Address 13H) (E1) 1-0 EC15-8 E bit Error Counter. The most significant bits of the E bit error counter. Table E-bit Error Counter (Page 4, Address 14H) (E1) 132

133 7-0 EC7-0 E bit Error Counter. The least significant 8 bits of the E-bit error counter. Table E-bit Error Counter (Page 4, Address 15H) (E1) 7-0 LCV15-8 Most Significant Bits of the LCV Counter. The most significant eight bits of a 16 bit counter that is incremented once for every line code violation received. A line code is defined as a bipolar violation that is not a part of HDB3 encoding where the control bit EXZ is set low. Where EXZ is set high a violation is defined as either a non-hdb3 bipolar violation or an occurrence of excess zeros. Table Most Significant Bits of the LCV Counter (Page 4, Address 16H) (E1) 7-0 LCV7-0 Least Significant Bits of the LCV Counter. The least significant eight bits of a 16 bit counter that is incremented once for every line code violation received. A line code is defined as a bipolar violation that is not a part of HDB3 encoding where the control bit EXZ is set low. Where EXZ is set high a violation is defined as either a non-hdb3 bipolar violation or an occurrence of excess zeros. Table Least Significant Bits of the LCV Counter (Page 4, Address 17H) (E1) 7-0 CC15-8 CRC-4 Error Counter These are the most significant eight bits of the CRC-6 error counter. Table CRC-4 Error Counter CEt (Page 4, Address 18H) (E1) 7-0 CC7-0 CRC-6 Error Counter. These are the least significant eight bits of the CRC-4 error counter. Table CRC-6 Error Counter CEt (Page 4, Address 19H) (E1) 133

134 7 TFSYNI Terminal Frame Synchronization Interrupt. When unmasked this interrupt bit goes high whenever a change of state of terminal frame synchronization condition exists. Reading this register clears this bit. 6 MFSYNI Multiframe Synchronization Interrupt. When unmasked this interrupt bit goes high whenever a change of state of multiframe synchronization condition exists. Reading this register clears this bit. 5 CRCSYNI CRC-4 Synchronization Interrupt. When unmasked this interrupt bit goes high whenever change of state of CRC-4 synchronization condition exists. Reading this register clears this bit. 4 AISI Alarm Indication Signal Interrupt. When unmasked this interrupt bit goes high whenever a change of state of received all ones condition exists. Reading this register clears this bit. 3 LOSI Loss of Signal Interrupt. When unmasked this interrupt bit goes high whenever a loss of signal (either analog - received signal 20 or 40 db below nominal or digital - excess consecutive 0 s received) condition exists. 2 CEFI Consecutively Errored Frame Alignment Interrupt. When unmasked this interrupt bit goes high whenever the last two frame alignment signals have errors. Reading this register clears this bit. 1 YI Receive Y-bit Interrupt. When unmasked this interrupt goes high whenever loss of multiframe alignment occurs. Reading this register clears this bit. 0 RxSLPI Receive SLIP Interrupt. When unmasked this interrupt bit goes high whenever a controlled frame slip occurs in the receive elastic buffer. Reading this register clears this bit. Table Interrupt Word Zero (Page 4, Address 1BH) (E1) 134

135 7 FERRI Errored Framing Alignment Signal Interrupt. When unmasked this interrupt bit goes high whenever an erroneous bit in frame alignment signal is detected (provided the circuit is in terminal frame sync). Reading this register clears this bit. 6 CRCERRI CRC-4 Error Interrupt. When unmasked this interrupt bit goes high whenever a local CRC-4 error occurs. Reading this register clears this bit. 5 EBITI Receive E-bit Error Interrupt. When unmasked this interrupt bit goes high upon detection of a wrong E-bit in multiframe. Reading this register clears this bit. 4 AIS16I Alarm Indication Signal Interrupt. When unmasked this interrupt bit goes high whenever all ones in time slot 16 occur.reading this register clears this bit. 3 LCVI Bipolar Violation Interrupt. When unmasked this interrupt bit goes high whenever a line code violation (excluding HDB3 encoding) is encountered. Reading this register clears this bit. 2 PRBSERRI Pseudo Random Bit Sequence Error Interrupt. When unmasked this interrupt bit goes high upon detection of an error with a channel selected for PRBS testing. Reading this register clears this bit. 1 AUXPI Auxiliary Pattern Alarm Interrupt. When unmasked this interrupt bit goes high whenever a sequence of 512 bit consecutive occur. Reading this register clears this bit. 0 RAII Remote alarm Indication Interrupt. When unmasked this interrupt bit goes high whenever the bit 3 of non-frame alignment signal is high. Reading this register clears this bit. Table Interrupt Word One (Page 4, Address 1CH) (E1) 135

136 7 FERRO Errored Framing Alignment Signal Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the errored frame alignment signal counter changes from FFH to 00H. Reading this register clears this bit. 6 CRCO CRC Error Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the CRC error counter changes from FFH to 00H. Reading this register clears this bit Unused. 4 FEBEO E-bit Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the E-bit counter changes from FFH to 00H. Reading this register clears this bit. 3 LCVO Line Code Violation Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the line code violation counter changes from FFH to 00H. Reading this register clears this bit. 2 PRBSO Pseudo Random Bit Sequence Error Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the PRBS error counter changes from FFH to 00H. Reading this register clears this bit. 1 PRBSMFO Pseudo Random Bit Sequence Multiframe Counter Overflow Interrupt. When unmasked this interrupt bit goes high whenever the multiframe counter attached to the PRBS error counter overflows. FFH to 00H. 1 - unmasked, 0 - masked. 0 SaI Sa Bit Interrupt. When unmasked this interrupt goes high whenever either a change of state of any of the received Sa bits Sa5, Sa6, Sa7 or Sa8 (SaBorNi = 1) or a change of state of any of the received Sa nibbles (SaBorNi = 0). The control bit SaBorNi is located in page 1 address 12H bit 4. Table Interrupt Word Two (Page 4, Address 1DH) (E1) 136

137 7 HDLC0I HDLC0 Interrupt. Whenever an unmasked HDLC0 interrupt occurs, this bit goes high. Reading this register clears this bit. 6 HDLC1I HDLC1 Interrupt. Whenever an unmasked HDLC1 interrupt occurs, this bit goes high. Reading this register clears this bit. 5 HDLC2I HDLC2 Interrupt. Whenever an unmasked HDLC2 interrupt occurs, this bit goes high. Reading this register clears this bit. 4 JAI Jitter Attenuator Error Interrupt. Whenever an unmasked JAI interrupt occurs. If jitter attenuator FIFO comes within four bytes of an overflow or underflow, this bit goes high. Reading this register clears this bit. 3 1SECI One Second Status Interrupt. When unmasked this interrupt bit goes high whenever the 1SEC status bit (page 3 address 12H bit 7) goes from low to high. Reading this register clears this bit. 2 5SECI Five Second Status Interrupt. When unmasked this interrupt bit goes high whenever the 5 SEC status bit goes from low to high. Reading this register clears this bit. 1 RCRI RCRI Interrupt. Whenever an unmasked RCRI interrupt occurs. If remote alarm and CRC error occur this bit goes high. Reading this register clears this bit. 0 SIGI Signaling Interrupt. When unmasked this interrupt bit goes high whenever a change of state (optionally debounced - see DBEn in the Data Link, signaling Control Word) is detected in the signaling bits (AB or ABCD) pattern. Reading this register clears this bit. Table Interrupt Word Three (Page 4, Address 1EH) (E1) 137

138 7 FERROL Errored Frame Alignment Signal Counter Overflow Latch. This bit is set when the errored frame alignment signal counter overflows. It is cleared after being read. 6 CRCOL CRC Error Counter Overflow Latch. This bit is set when the crc error counter overflows. It is cleared after being read. 5 FEBEOL E bit Counter Overflow Latch. This bit is set when E bit counter overflows. It is cleared after being read LCVOL Line Code Violation Counter Overflow Latch. This bit is set when the line code violation counter overflows. It is cleared after being read. 2 PRBSOL Pseudo Random Bit Sequence Error Counter Overflow Latch. This bit is set when the PRBS error counter overflows. It is cleared after being read. 1 PRBSMFOL Pseudo Random Bit Sequence Multiframe Counter Overflow Latch. This bit is set when the multiframe counter attached to the PRBS error counter overflows. It is cleared after being read Unused. Table Overflow Reporting Latch (Page 4, Address 1FH) (E1) 21.2 Per Channel Transmit signaling (Pages 5 and 6) (E1) Page 05H, addresses to 11111, and page 06H addresses to contain the Transmit signaling Control Words for Channel Associated signaling (CAS) channels 2 to 16 and 18 to 32 respectively. Table 147 illustrates the mapping between the addresses of these pages and the CAS channel numbers. Control of these bits for any one channel is through the processor or controller port when the Per Time Slot Control bit RPSIG bit is high. Table 148 describes bit allocation within each of these registers. Page 5-6 Address: Equivalent CAS channel Page 6 Address: Equivalent CAS channel Table Page 5, 6 Address Mapping to CAS signaling Channels (E1) 138

139 Unused. 3-0 A(n) B(n) C(n) D(n) Transmit signaling Bits for Channel n. These bits are transmitted on the PCM kbit/sec. Link in bit positions one to four of time slot 16 in frame n (when n = 1 to 15), and are the A, B, C, D signaling bits associated with channel n. Table Transmit Channel Associated Signalling (E1) (Pages 5 and 6) Serial per channel transmit signaling control through CSTI is selected when RPSIG bit is zero. Table 149 describes the function of CSTI time slots 1 to 30. if MSN bit is high, CSTI time slots 17 to 31 are selected. if MSN bit is low, CSTI time slots 1 to 15 are selected. 7-4 A(n), B(n), C(n), D(n) 3-0 A(n), B(n), C(n), D(n) Transmit signaling Bits for Channel n. These bits are transmitted on the PCM kbit/sec. Link in bit positions one to four of time slot 16 in frame n (where n = 1 to 15), and are the A, B, C, D signaling bits associated with channel n. Transmit signaling Bits for Channel n. These bits are transmitted on the PCM kbit/sec. Link in bit positions one to four of time slot 16 in frame n (where n = 1 to 15), and are the A, B, C, D signaling bits associated with channel n. Table E1 / Transmit Channels Usage - CSTi NOTE: This table illustrates bit mapping on the serial input stream - it does not refer to an internal register Per Time Slot Control Words (Pages 7 and 8) (E1) The control functions described by Table 151 are repeated for each PCM-30 channel. Page 07H addresses 10H to 1FH correspond to time slots 0 to 15, while page 08H addresses 10H to 1FH correspond to time slots 16 to 31. Table 150 illustrates the mapping between the addresses of these pages and the CEPT channel numbers. Page 8H Address: Equivalent PCM Timeslots Page 9H Address: Equivalent PCM Timeslots Table Mapping between the addresses of these pages and the CEPT channel numbers 139

140 7 TXMSG Transmit Message Mode. if high, the data from the corresponding address location of Tx message mode buffer is transmitted in the corresponding PCM 30 time slot. If zero, the data on DSTI is transmitted on the corresponding PCM 30 time slot. 6 ADI Alternate Digit Inversion. If one, the corresponding transmit time slot data on DSTI has every second bit inverted. If zero, this bit has no effect on channel data. 5 RTSL Remote Time Slot Loopback. If one, the corresponding PCM 30 receive time slot is looped to the corresponding PCM 30 transmit timeslot. This received time slot will also be present on DSTO. If zero, the loopback is disabled. 4 LTSL Local Time Slot Loopback. If one, the corresponding transmit time slot is looped to the corresponding receive time slot. This transmit time slot will also be present on the transmit PCM 30 stream. If zero, this loopback is disabled. 3 TTST Transmit Test. If one, a test signal, either digital milliwatt (when control bit ADSEQ is one) or PRBS (2 15-1) (ADSEQ is zero), will be transmitted in the corresponding PCM 30 time slot. More than one time slot may be activated at once. If zero, the test signal will not be connected to the corresponding time slot. 2 RTST Receive Test. If one, the corresponding DSTo time slot will be used for testing. If control bit ADSEQ is one, a digital milliwatt signal will be transmit onto the DSTo channel. If ADSEQ is zero the receive channel will be connected to the PRBS detector (2 15-1). 1 RPSIG Serial Signaling Enable. If one, the transmit CAS signaling will be controlled by programming Page 05H. If zero, the transmit CAS signaling will be controlled through the CSTI stream Unused. Table Per Time Slot Control Words (Pages 7 and 8) (E1) 21.4 Per Channel Receive signaling (Pages 9 and 0AH) (E1) Page 09H, addresses to 11111, and page 0AH addresses to contain the Receive signaling Control Words for CAS channels 2 to 16 and 18 to 32. Table 153 illustrates the mapping between the addresses of these pages and the CAS channel numbers. Table 154 describes bit allocation within each of these registers. Page 9 Address: Equivalent PCM 30 Timeslots Page A Address: Equivalent PCM 30 Timeslots Table Page 9 and A Address Mapping to CAS Channels (E1) 140

141 Unused 3-0 A(n) B(n) C(n) D(n) Receive signaling Bits for Channel n. These bits are received on the PCM kbit/sec. Link in bit positions one to four of time slot 16 in frame n (where n = 1 to 30) and are the A, B, C, D signaling bits associated with channel n. Table Receive Channel Associated signaling (Pages 9 and A) (E1) Serial per channel receive signaling status bits appear on ST-BUS stream CSTo. Table 157 describes the bit allocation within each of the 30 active ST-BUS time slot of CSTo. 7-4 A(n), B(n), C(n), D(n) 3-0 A(n), B(n), C(n), D(n) Transmit signaling Bits for Channel n. These bits are transmitted on the PCM kbit/sec. Link in bit positions one to four of time slot 16 in frame n (where n = 1 to 15), and are the A, B, C, D signaling bits associated with channel n. Transmit signaling Bits for Channel n. These bits are transmitted on the PCM kbit/sec. Link in bit positions one to four of time slot 16 in frame n (where n = 1 to 15), and are the A, B, C, D signaling bits associated with channel n. Table Receive CAS Channels (CSTo) (E1) 141

142 22.0 HDLC Control and Status (Page B for HDLC0, Page C for HDLC1 and Page D for HDLC2) Address Control (Write/Verify) Register Status (Read) Function 10H (Table 156) Address Recognition ADR16-10,A1EN 11H (Table 157) Address Recognition ADR26-20, A2EN 12H (Table 158/Table 159) TX FIFO RX FIFO BIT7-0 13H (Table 160) HDLC Control ADREC, RxEN, TxEN, EOP, FA, Mark-idle, TR, FRUN 14H (Table 161) - -- HDLC Status INTGEN, Idle-Chan, RQ9, RQ8, TxSTAT2, TxSTAT1, RxSTAT2, RxSTAT1 15H (Table 162) HDLC Control INTSEL, CYCLE, TxCRCI, SEVEN, RxFRST, TxFRST 16H (Table 163) Interrupt Mask - -- GaIM, RxEOPIM, TxEOPIM, RxFEIM, TxFLIM, FA:TxUNDERIM, RxFFIM, RxOVFIM 17H (Table 164) - -- Interrupt Status (*) Ga, RxEOP, TxEOP, RxFE, TxFL, FA:TxUNDER, RxFF, RxOVF 18H (Table 165) - -- Rx CRC MSB CRC15-CRC8 19H (Table 166) - -- Rx CRC LSB CRC7-CRC0 1AH (Table 167) Low TX byte count - -- TxCNT7-0 1BH (Table 168) Test Control - -- HRST, RTLOOP, CRCTST, FTST, ARTST, HLOOP 1CH (Table 169) - -- Test Status RxCLK, TxCLK, VCRC, VADDR 1DH (Table 170) HDLC Control RSV, RFD2-0,RSV, TFD2-0 1EH (Table 171) HDLC Control RSV, RFFS2-0, RSV, TFLS2-0 1FH (Table 172) Extended TX byte count - -- TxCNT15-8 Table HDLC0, HDLC1, HDLC2 Control and Status (Pages B, C, and D) 142

143 7-2 ADR16-11 Address A six bit address used for comparison with the first byte of the received address. ADR16 is MSB. 1 ADR10 Address 10. This bit is used in address comparison if a seven bit address is being checked for (control bit four of control register 2 is set). 0 A1EN First Address Comparison Enable. When this bit is high, the above six (or seven) bit address is used in the comparison of the first address byte. If address recognition is enabled, any packet failing the address comparison will not be stored in the RX FIFO. A1EN must be high for All-call ( ) address recognition for single byte address. When this bit is low, this bit mask is ignored in address comparison Table HDLC Address Recognition Register 1 (Pages B, C, and D, Address 10H) 7-1 ADR26-20 Address A seven bit address used for comparison with the second byte of the received address. ADR26 is MSB. This mask is ignored (as well as first byte mask) if all call address ( ) is received. 0 A2EN Second Address Comparison Enable. When this bit is set high, the above seven bit address is used in the comparison of the second address byte. If address recognition is enabled, any packet failing the address comparison will not be stored in the RX FIFO. A2EN must be high for All-call address recognition. When this bit is low, this bit mask is ignored in address comparison. Table HDLC Address Recognition Register 2 (Pages B,C, and D, Address 11H) 7-0 BIT7-0 This eight bit word is tagged with the two status bits from the control register 1 (EOP and FA), and the resulting 10 bit word is written to the TX FIFO. The FIFO status is not changed immediately after a write or read occurs. It is updated after the data has settled and the transfer to the last available position has finished. Table TX FIFO Write Register (Pages B, C, and D, Address 12H) 7-0 BIT7-0 This is the received data byte read from the RX FIFO. The status bits of this byte can be read from the status register. The FIFO status is not changed immediately when a write or read occurs. It is updated after the data has settled and the transfer to the last available position has finished. Table RX FIFO Read Register (Pages B, C, and D, Address 12H) 143

144 7 ADREC Address Recognition. When high this bit will enable address recognition. This forces the receiver to recognize only those packets having the unique address as programmed in the Receive Address Recognition Registers or if the address is an All call address. 6 RxEN Receive Enable. When low this bit will disable the HDLC receiver. The receiver will disable after the rest of the packet presently being received is finished. The receiver internal clock is disabled. When high the receiver will be immediately enabled and will begin searching for flags, Go-aheads etc. 5 TxEN Transmit Enable. When low this bit will disable the HDLC transmitter. The transmitter will disable after the completion of the packet presently being transmitted. The transmitter internal clock is disabled. When high the transmitter will be immediately enabled and will begin transmitting data, if any, or go to a mark idle or interframe time fill state. 4 EOP End of Packet. Forms a tag on the next byte written the TX FIFO, and when set will indicate an end of packet byte to the transmitter, which will transmit an FCS following this byte. This facilitates loading of multiple packets into TX FIFO. Reset automatically after a write to the TX FIFO occurs. 3 FA Frame Abort. Forms a tag on the next byte written to the TX FIFO, and when set will indicate to the transmitter that it should abort the packet in which that byte is being transmitted. Reset automatically after a write to the TX FIFO. 2 Mark-Idle Mark - Idle. When low, the transmitter will be in an idle state. When high it is in an interframe time fill state. These two states will only occur when the TX FIFO is empty. 1 TR Transparent Mode. When high this bit will enable transparent mode. This will perform the parallel to serial conversion without inserting or deleting zeros. No CRC bytes are sent or monitored nor are flags or aborts. A falling edge of TxEN for transmit and a falling edge of RxEN for receive is necessary to initialize transparent mode. This will also synchronize the data to the transmit and receive channel structure. Also, the transmitter must be enabled through control register 1 before transparent mode is entered. 0 FRUN Freerun. When high the HDLC TX and RX are continuously enabled providing the RxEN and TxEN bits are set. Table HDLC Control Register 1 (Pages B, C, and D, Address 13H) 144

145 7 INTGEN Interrupt Generated. Set to 1 when an interrupt (in conjunction with the Interrupt Mask Register) has been generated by the HDLC. This is an asynchronous event. It is reset when the interrupt Register is read. 6 Idle Chan Idle Channel. Set to a 1 when an idle Channel state (15 or more ones) has been detected at the receiver. This is an asynchronous event. On power reset, this may be 1 if the clock (RXC) was not operating. Status becomes valid after the first 15 bits or the first zero is received. 5-4 RQ9, RQ8 Byte Status bits from RX FIFO. These bits determine the status of the byte to be read from RX FIFO as follows: RQ9 RQ8 Byte Status 0 0 Packet Byte 0 1 First Byte 1 0 Last byte of a good packet. 1 1 Last byte of a bad packet. 3-2 TxSTAT2-1 These bits determine the status of the TX FIFO as follows: TxSTAT2 TxSTAT1 TX FIFO Status 0 0 TX FIFO full up to the selected status level or more. 0 1 The number of bytes in the TX FIFO has reached or exceeded the selected interrupt threshold level. 1 0 TX FIFO empty. 1 1 The number of bytes in the TX FIFO is less than the selected interrupt threshold level. 1-0 RxSTAT2-1 These bits determine the status of the RX FIFO as follows: RxSTAT2 RxSTAT1 RX FIFO Status 0 0 RX FIFO empty 0 1 The number of bytes in the RX FIFO is less than the interrupt threshold level. 1 0 RX FIFO full. 1 1 The number of bytes in the RX FIFO has reached or exceeded the interrupt threshold level. Table HDLC Status Register (Pages B, C, and D Address 14H) 145

146 7 INTSEL Interrupt Selection. When high, this bit will cause bit 2 of the Interrupt Register to reflect a TX FIFO underrun (TXunder). When low, this interrupt will reflect a frame abort (FA). 6 CYCLE Cycle. When high, this bit will cause the transmit byte count to reload one minus the value initially loaded into the Transmit Byte Count Register. 5 TxCRCI Transmit CRC Inhibited. When high, this bit will inhibit transmission of the CRC. That is, the transmitter will not insert the computed CRC onto the bit stream after seeing the EOP tag byte. This is used in V.120 terminal adaptation for synchronous protocol sensitive UI frames. 4 SEVEN Seven Bit Address Recognition. When high, this bit will enable seven bits of address recognition in the first address byte. The received address byte must have bit 0 equal to 1 which indicates a single address byte is being received Reserved, must be zero for normal operation Reserved, must be zero for normal operation. 1 RxFRST RX FIFO Reset. When high, the RX FIFO will be reset. This causes the receiver to be disabled until the next reception of a flag. The status register will identify the FIFO as being empty. However, the actual bit values in the RX FIFO will not be reset. 0 TxFRST TX FIFO Reset. When high, the TX FIFO will be reset. The Status Register will identify the FIFO as being empty. This bit will be reset when data is written to the TX FIFO. However, the actual bit values of data in the TX FIFO will not be reset. It is cleared by the next write to the TX FIFO. Table HDLC Control Register 2 (Pages B, C, and D, Address 15H) 7-0 GaIM RxEOPIM TxEOPIM RxFEIM TxFLIM FA:TxUNDERRIM RxFFIM RxOVFIM This register is used with the Interrupt Register to mask out the interrupts that are not required by the microprocessor. Interrupts that are masked out will not drive the pin IRQ low; however, they will set the appropriate bit in the Interrupt Register. An interrupt is disabled when the microprocessor writes a 0 to a bit in this register. This register is cleared on power reset. Table HDLC Interrupt Mask Register (Pages B, C, and D, Address 16H) 146

147 7 GA Go Ahead. Indicates a go-ahead pattern was detected by the HDLC receiver. This bit is reset after a read. 6 RxEOP End Of Packet Detected. This bit is set when an end of packet (EOP) byte was written into the RX FIFO by the HDLC receiver. This can be in the form of a flag, an abort sequence or as an invalid packet. This bit is reset after a read. 5 TxEOP Transmit End Of Packet. This bit is set when the transmitter has finished sending the closing flag of a packet or after a packet has been aborted. This bit is reset after read. 4 RxFE End Of Packet Read. This bit is set when the byte about to be read from the RX FIFO is the last byte of the packet. It is also set if the Rx FIFO is read and there is no data in it. This bit is reset after a read. 3 TXFL TX FIFO Low. This bit is set when the Tx FIFO is emptied below the selected low threshold level. This bit is reset after a read. 2 FA: TxUNDER Frame Abort/TX FIFO Underrun. When Intsel bit of Control Register 2 is low, this bit (FA) is set when a frame abort is received during packet reception. It must be received after a minimum number of bits have been received (26) otherwise it is ignored. When INTSEL bit of Control Register 2 is high, this bit is set for a TX FIFO underrun indication. If high it Indicates that a read by the transmitter was attempted on an empty Tx FIFO. This bit is reset after a read. 1 RXFF RX FIFO Full. This bit is set when the Rx FIFO is filled above the selected full threshold level. This bit is reset after a read. 0 RxOVF RX FIFO Overflow. Indicates that the 128 byte RX FIFO overflowed (i.e., an attempt to write to a 128 byte full RX FIFO). The HDLC will always disable the receiver once the receive overflow has been detected. The receiver will be re-enabled upon detection of the next flag, but will overflow again unless the RX FIFO is read. This bit is reset after a read. Table HDLC Interrupt Status Register (Pages B, C, and D, Address 17H) 7-0 CRC15-8 The MSB byte of the CRC received from the transmitter. These bits are as the transmitter sent them; that is, most significant bit first and inverted. This register is updated at the end of each received packet and therefore should be read when end of packet is detected. Table Receive CRC MSB Register (Pages B, C, and D, Address 18H) 147

148 7-0 CRC7-0 The LSB byte of the CRC received from the transmitter. These bits are as the transmitter sent them; that is, most significant bit first and inverted. This register is updated at the end of each received packet and therefore should be read when end of packet is detected. Table Receive CRC LSB Register (Pages B, C, and D, Address 19H) 7-0 TxCNT7-0 Low Transmit Byte Count Register. This register, along with the Extended Transmit Byte Count Register indicates the length of the packet about to be transmitted. For a packet size of 255 or less it is only necessary to write this register. When this register reaches the count of one, the next write to the Tx FIFO will be tagged as an end of packet byte. The counter decrements at the end of the write to the Tx FIFO. If the Cycle bit of Control Register 2 is set high, the counter will cycle through the programmed value continuously. Table Low Transmit Byte Count Register (Pages B, C, and D, Address 1AH) 148

149 7 HRST HDLC Reset. When this bit is set to one, the HDLC will be reset. This is similar to RESET being applied, the only difference being that this bit will not be reset. This bit can only be reset by writing a zero twice to this location or applying RESET. 6 RTLOOP RT Loopback. When this bit is high, receive to transmit HDLC loopback will be activated. Receive data, including end of packet indication, but not including flags or CRC, will be written to the TX FIFO as well as the RX FIFO. When the transmitter is enabled, this data will be transmitted as though written by the microprocessor. Both good and bad packets will be looped back. Receive to transmit loopback may also be accomplished by reading the RX FIFO using the microprocessor and writing these bytes, with appropriate tags, into the TX FIFO Reserved. Must be set to 0 for normal operation Reserved. Must be set to 0 for normal operation. 3 CRCTST CRC Remainder Test. This bit allows direct access to the CRC Comparison Register in the receiver through the serial interface. After testing is enabled, serial data is clocked in until the data aligns with the internal comparison (16 RXC clock cycles) and then the clock is stopped. The expected pattern is F0B8 hex. Each bit of the CRC can be corrupted to allow more efficient testing. 2 FTST FIFO Test. This bit allows the writing to the RX FIFO and reading of the TX FIFO through the microprocessor to allow more efficient testing of the FIFO status/interrupt functionality. This is done by making a TX FIFO write become a RX FIFO write and a RX FIFO read become a TX FIFO read. In addition, EOP/FA and RQ8/RQ9 are re-defined to be accessible (i.e., RX write causes EOP/FA to go to RX fifo input; TX read looks at output of TX fifo through RQ8/RQ9 bits). 1 ARTST Address Recognition Test. This bit allows direct access to the Address Recognition Registers in the receiver through the serial interface to allow more efficient testing. After address testing is enabled, serial data is clocked in until the data aligns with the internal address comparison (16 RXc clock cycles) and then clock is stopped. 0 HLOOP TR Loopback. When high, transmit to receive HDLC loopback will be activated. The packetized transmit data will be looped back to the receive input. RXEN and TXEN bits must also be enabled. Table HDLC Test Control Register (Pages B, C, and D, Address 1BH) 149

150 These bits are reserved. 3 RxCLK Receive Clock. This bit represents the receiver clock generated after the RXEN control bit, but before zero deletion is considered. 2 TxCLK Transmit Clock. This bit represents the transmit clock generated after the TXEN control bit, but before zero insertion is considered. 1 VCRC Valid CRC. This is the CRC recognition status bit for the receiver. Data is clocked into the register and then this bit is monitored to see if comparison was successful (bit will be high). 0 VADDR Valid Address. This is the address recognition status bit for the receiver. Data is clocked into the Address Recognition Register and then this bit is monitored to see if comparison was successful (bit will be high). Table HDLC Test Status Register (Pages B, C, and D, Address 1CH) 150

151 Unused. 6-4 RFD2-0 These bits select the Rx FIFO full status level: RFD2 RFD1 RFD0 Full Status Level Unused. 2-0 TFD2-0 These bits select the Tx HDLC FIFO full status level: TFD2 TFD1 TFD0 Full Status Level Table HDLC Control Register 3 (Pages B, C, and D, Address 1DH) 151

152 Unused. 6-4 RFFS2-0 These bits select the RXFF (Rx FIFO Full) interrupt threshold level: RFFS2 RFFS1 RFFS0 RX FIFO Full Interrupt threshold Level Unused. 2-0 TFLS2-0 These bits select the TXFL (Tx FIFO Low) interrupt threshold level: TFLS2 TFLS1 TFLS0 TX FIFO Low Interrupt threshold Level Table HDLC Control Register 4 (Pages B, C, and D, Address 1EH) 152

153 7-0 TxCNT15-8 Extended Transmit Byte Count Register. This register, along with the Transmit Byte Count Register indicates the length of the packet about to be transmitted. Values programmed into this register are not internally updated until the next write to the Low Transmit Byte Count Register. When the internal counter decrements to one, the next write to the Tx FIFO will be tagged as an end of packet byte. The counter decrements at the end of the write to the Tx FIFO. If the Cycle bit of Control Register 2 is set high, the counter will cycle through the programmed value continuously. Table Extended Transmit Byte Count Register (Pages B,C, and D, Address 1FH) 23.0 Transmit National Bit Buffer (Page 0EH) Page 0EH, address 10H to 14H contain the five bytes of the transmit national bit buffer (TNBB0 - TNBB4 respectively). This feature is functional only when control bit NBTB (page 01H, address 17H) is one. 7-0 TNBBn.F1 - TNBBn.F15 Transmit S an+4 Bits Frames 1 to 15. This byte contains the bits transmitted in bit position n+4 of channel zero of frames 1, 3, 5, 7, 9, 11, 13 and 15 when CRC-4 multiframe alignment is used, or of consecutive odd frames when CRC-4 multiframe alignment is not used. n = 0 to 4 inclusive and corresponds to a byte of the receive national bit buffer. Table Transmit National Bit Buffer Bytes Zero to Four (Page 0EH) 24.0 Receive National Bit Buffer (Page 0FH) Page 0FH, addresses 10H to 14H contain the five bytes of the receive national bit buffer (RNBB0 - RNBB4 respectively). 7-0 RNBBn.F1 - RNBBn.F15 Receive S an+4 Bits Frames 1 to 15. This byte contains the bits received in bit position n+4 of channel zero of frames 1, 3, 5, 7, 9, 11, 13 and 15 when CRC-4 multiframe alignment is used, or of consecutive odd frames when CRC-4 multiframe alignment is not used. n = 0 to 4 inclusive and corresponds to a byte of the receive national bit buffer. Table Receive National Bit Buffer Bytes Zero to Four (Page 0FH) 153

154 25.0 AC/DC Electrical Characteristics Absolute Maximum Ratings* - Voltages are with respect to ground (V SS ) unless otherwise stated. Parameter Symbol Min. Max. Units 1 Supply Voltage V DD V 2 Voltage at Digital Inputs V I -0.3 V DD V 3 Current at Digital Inputs I I 30 ma 4 Voltage at Digital Outputs V O -0.3 V DD V 5 Current at Digital Outputs I O 30 ma 6 Storage Temperature T ST C * Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Recommended Operating Conditions - Voltages are with respect to ground (V SS ) unless otherwise stated. Characteristics Sym. Min. Typ. Max. Units Test Conditions 1 Operating Temperature T OP C 2 Supply Voltage V DD V Typical figures are at 25 C and are for design aid only: not guaranteed and not subject to production testing. DC Electrical Characteristics - Voltages are with respect to ground (V SS ) unless otherwise stated. Characteristics Sym. Min. Typ. Max. Units Test Conditions 1 Supply Current I DD ma Outputs unloaded. Transmitting an all 1 s signal. 2 Input High Voltage (Digital Inputs) V IH 2.0 V DD V 3 Input Low Voltage (Digital Inputs) V IL V 4 Input Leakage (Digital Inputs) I IL 1 12* A V I = 0 to V DD 5 Output High Voltage (Digital Outputs) 6 Output Low Voltage (Digital Outputs) 7 High Impedance Leakage (Digital I/O) V OH 0.8V DD V DD V I OH = 7 ma, V OH = 2.4 V V OL V SS 0.4 V I OL = 2 ma, V Ol = 0.4 V I OZ 1 12 A V O = 0 to V DD Characteristics are for clocked operation over the ranges of recommended operating temperature and supply voltage. Typical figures are at 25 C and are for design aid only: not guaranteed and not subject to production testing. 30 A for inputs of boundary scan test port: Osc1,Tdi, Tms, Tclk and Trst. 154

155 AC Electrical Characteristics - Motorola Microprocessor Timing Characteristics Sym. Min. Typ. Max. Units Test Conditions 1 DS low t DSL 70 ns 2 DS High t DSH 60 ns 3 CS Setup t CSS 0 ns 4 R/W Setup t RWS 1 ns 5 Address Setup t ADS 4 ns 6 CS Hold t CSH 0 ns 7 R/W Hold t RWH 7 ns 8 Address Hold t ADH 4 ns 9 Data Delay Read t DDR 75 ns C L =50 pf 10 Data Hold Read t DHR 75 ns C L =50 pf 11 Data Active to High Z Delay t DAZ 75 ns 12 Data Setup Write t DSW 7 ns 13 Data Hold Write t DHW 9 ns Characteristics are for clocked operation over the ranges of recommended operating temperature and supply voltage. Typical figures are at 25 C and are for design aid only: not guaranteed and not subject to production testing. t CYC DS t DSH t DSL V TT t CSS t CSH CS V TT t RWS t RWH R/W V TT t ADS t ADH A0-A4 V TT D0-D7 READ t DDR VALID DATA t DAZ V TT, V CT t DSW t DHW t DHR D0-D7 WRITE VALID DATA V TT Note: DS and CS may be connected together. Figure 15 - Motorola Microport Timing 155

156 AC Electrical Characteristics - Intel Microprocessor Timing Characteristics Sym. Min. Typ. Max. Units Test Conditions 1 RD low t RDL 70 ns 2 RD High t RDH 60 ns 3 CS Setup t CSS 0 ns 4 CS Hold t CSH 0 ns 5 Address Setup t ADS 4 ns 6 Address Hold t ADH 4 ns 7 Data Delay Read t DDR 75 ns C L =50 pf 8 Data Active to High Z Delay t DAZ 75 ns 9 Data Setup Write t DSW 7 ns 10 Data Hold Write t DHW 9 ns Typical figures are at 25 C and are for design aid only: not guaranteed and not subject to production testing. t CYC RD t RDH t RDL V TT t CSS t CSH CS V TT t CSH WR t ADH V TT t ADS t ADH A0-A4 V TT t DDR t DAZ D0-D7 READ VALID DATA V TT t DSW t DHW D0-D7 WRITE VALID DATA V TT Figure 16 - Intel Microport Timing 156

157 AC Electrical Characteristics - JTAG Port Timing Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 TCK period width t TCLK 100 ns BSDL spec s 12 MHz 2 TCK period width LOW t TCLKL 40 ns 3 TCK period width HIGH t TCLKH 40 ns TDI setup time to TCK rising t DISU 12 TDI hold time after TCK rising t DIH 12 TMS setup time to TCK rising t MSSU 12 TMS hold time after TCK rising t MSH 12 TDO delay from TCK falling t DOD 50 TRST pulse width t TRST 25 t mssu t msh TMS t dih t disu t tclk TDI t tclkh t tclkl TCK t dod TDO t trst TRST Figure 17 - JTAG Port Timing 157

158 AC Electrical Characteristics - Transmit Data Link Timing (T1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 Data Link Clock Pulse Width t DW 324 ns 150 pf 2 Data Link Setup t TDS 35 ns 3 Data Link Hold t TDH 35 ns t DW TxDLCLK tdls t DLH V TT, V CT TxDL V TT Figure 18 - Transmit Data Link Timing Diagram (T1 mode) AC Electrical Characteristics - Transmit Data Link Timing (E1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 Data Link Clock Output Delay t TDC 72 ns 150 pf 2 Data Link Setup t TDS 35 ns 3 Data Link Hold t TDH 35 ns C4b V TT t TDC TxDLCLK tdls t DLH V TT, V CT TxDL V TT Figure 19 - Transmit Data Link Timing Diagram (E1 mode) 158

159 F0b TIME SLOT 0 Bits 4,3,2,1,0 TxDLCLK Example A - 20 kb/s TxDL TxDLCLK Example B - 12 kb/s TxDL Figure 20 - Transmit Data Link Functional Timing (E1 mode) AC Electrical Characteristics - Receive Data Link Timing (T1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 Data Link Clock Output Delay t RDC 160 ns 50 pf 2 Data Link Output Delay t RDD 45 ns 50 pf 3 RxFP Output Delay t RFD 45 ns 50 pf RxFP RxDLCLK RxDL Figure 21 - Receive Data Link Functional Timing (T1 mode) 159

160 RxFP t RFD V TT, V CT t RFD E1.5o V TT t RDC RxDLCLK t RDD V TT, V CT RxDL V TT, V CT Figure 22 - Receive Data Link Diagram (T1 mode) AC Electrical Characteristics - Receive Data Link Timing (E1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 Data Link Clock Output Delay t RDC 160 ns 50 pf 2 Data Link Output Delay t RDD 45 ns 50 pf 3 RxFP Output Delay t RFD 45 ns 50 pf RxFP TIME SLOT 0 Bits 4,3,2,1,0 RxDLCLK Example A - 20 kb/s RxDL RxDLCLK Example B - 12 kb/s RxDL Figure 23 - Receive Data Link Functional Timing (E1 mode) 160

161 E2o V TT t RDC t RDC RxDLCLK t RDD V TT, V CT RxDL V TT, V CT Figure 24 - Receive Data Link Timing Diagram (E1 mode) AC Electrical Characteristics - ST-BUS Timing (E1 or T1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 C4b Clock Width High or Low t 4W ns Mb/s mode 2 C4b Clock Width High or Low t FPS ns Mb/s mode 3 Frame Pulse Hold t FPH 10 ns 4 Frame Pulse Setup t FPS 10 ns Mb/s mode 5 Frame Pulse Low t FPL 75 ns 6 Serial Input Setup t SIS 10 ns 7 Serial Input Hold t SIH 10 ns 8 Serial Output Delay t SOD 75 ns 150 pf 9 Frame Pulse Delay t FDD 75 ns ST-BUS Bit Cells Channel 31 Bit 0 Channel 0 Bit 7 Channel 0 Bit 6 Channel 0 Bit 5 F0b C4b Figure 25 - ST-BUS Functional Timing Diagram Mb/s Mode 161

162 ST-BUS Bit Cells Channel 127 Bit 0 Channel 0 Bit 7 Channel 0 Bit 6 Channel 0 Bit 5 F0b C4b Figure 26 - ST-BUS Functional Timing Diagram Mb/s Mode ST-BUS Bit Stream F0b (Input) C4b (Input) Bit Cell Bit Cell Bit Cell t FPH t FPL t FPS t 4WI t 4WI V TT V TT All Input Streams t SIH V TT All Output Streams t SOD t SIS V TT, V CT Figure 27 - ST-BUS Timing Diagram (Input Clocks) 162

163 ST-BUS Bit Stream Bit Cell Bit Cell Bit Cell F0b (Output) t FPD tfpd t 4WO V TT C4b (Output) V TT All Input Streams t SIH t 4WO V TT t SOD t SIS All Output Streams V TT, V CT Figure 28 - ST-BUS Timing Diagram (Output Clocks) AC Electrical Characteristics - Multiframe Timing (T1 or E1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 Receive Multiframe Output Delay t MOD 50 ns 150 pf 2 Transmit Multiframe Setup t MS 50 ns 3 Transmit Multiframe Hold t MH 50 * ns * 256 C2 periods -100 nsec DSTo BIt Cells Frame 12 or 24 Frame 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 0 Bit 7 F0b C4b (4.096 MHz) RxMF Figure 29 - Receive Multiframe Functional Timing (T1 mode) 163

164 DSTo BIt Cells Frame 15 Frame 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 0 Bit 7 F0b C4b (4.096 MHz) RxMF (Tx8KEN = 0) Figure 30 - Receive Multiframe Functional Timing (E1 mode) Frame N Frame 0 DSTi Bit Cells Bit 7 Bit 6 Bit 5 Bit 4 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 0 Bit 7 F0b C4b (4.096 MHz) TxMF Figure 31 - Transmit Multiframe Functional Timing (T1 mode or E1 mode) F0b V TT t MOD C4b V TT t MOD RxMF (1,2) V TT, V CT t MS t MH t MH2 TxMF (1) V TT Note (1) : These two signals do not have a defined phase relationship Note (2): Control bit Tx8KEN set low. Figure 32 - Multiframe Timing Diagram (T1 mode or E1 mode) 164

165 AC Electrical Characteristics - TXA/TXB (E1 or T1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 Serial Output Delay t SOD 20 ns 150 pf 2 TxFP Output Delay t TFOD 20 ns 150 pf TXA/TXB Channel 23 Bit 0 Sbit Channel 0 Bit 7 Channel 0 Bit 6 RxMF/TxFP (Tx8KEN= 1) E1.5o/Exclk (LIUEN = 1) Figure 33 - TXA/TXB Functional Timing (T1 mode) TXA/TXB Channel 31 Bit 0 Channel 0 Bit 7 Channel 0 Bit 6 Channel 0 Bit 5 RxMF/TxFP (Tx8KEN= 1) E1.5o/Exclk (LIUEN = 1) Figure 34 - TXA/TXB Functional Timing (E1 mode) TxFP (Output) t TFOD t TFOD V TT E1.5o (Output) V TT t SOD t SOD TXA/TXB (Output) V TT Figure 35 - TXA/TXB Timing Diagram (T1 mode or E1 mode) 165

166 AC Electrical Characteristics - IMA Timing (E1 or T1 mode) Characteristic Sym. Min. Typ. Max. Units Test Conditions 1 C4b Clock Width High or Low t 4W ns E1 mode 2 Frame Pulse Setup t FPS 10 ns 3 Frame Pulse Hold t FPS 10 ns 4 Serial Input Setup t SIS 4 ns 5 Serial Input Hold t SIH 4 ns 6 Serial Output Delay t SOD 45 ns 150 pf DSTi Channel 23 Bit 0 Sbit Channel 0 Bit 7 Channel 0 Bit 6 F0b C4b MHz Figure 36 - Tx IMA Functional Timing (T1 mode) DSTo Channel 23 Bit 1 Channel 23 Bit 0 Sbit RXFP Exclk MHz Figure 37 - Rx IMA Functional Timing (T1 mode) 166

167 DSTi Channel 31 Bit 0 Channel 0 Bit 7 Channel 0 Bit 6 Channel 0 Bit 5 F0b C4b MHz Figure 38 - Tx IMA Functional Timing (E1 mode) DSTo Channel 31 Channel 0 Bit 0 Bit 7 Channel 0 Bit 6 RXFP Exclk MHz Figure 39 - Rx IMA Functional Timing (E1 mode) ST-BUS Bit Stream Bit Cell Bit Cell F0b (Input) t FPS t FPH V TT C4b (Input) V TT t SIS DSTi V TT t SIH Figure 40 - Tx IMA Timing Diagram (T1 mode or E1 mode) 167

168 ST-BUS Bit Stream Bit Cell Bit Cell RxFP (Output) V TT Exclk (Output) V TT t SIS DSTo V TT t SOD Figure 41 - Rx IMA Timing Diagram (T1 mode or E1 mode) 1.5 ms FRAME FRAME FRAME FRAME Sbit FRAME Sbit CHANNEL CHANNEL CHANNEL CHANNEL s Most Significant Bit (First) BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BIT s Least Significant Bit (Last) Figure 42 - D4 Format 2.0 ms FRAME FRAME FRAME FRAME FRAME TIME SLOT TIME SLOT TIME SLOT TIME SLOT s Most Significant Bit (First) BIT BIT BIT BIT BIT BIT BIT BIT (8/2.048) s Figure 43 - PCM 30 Format Least Significant Bit (Last) 168

169 CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL s Most Significant Bit (First) BIT BIT BIT BIT BIT BIT BIT BIT s Least Significant Bit (Last) Figure 44 - ST-BUS Stream Format Mb/s 125 s CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL Most Significant Bit (First) BIT BIT BIT BIT BIT BIT BIT BIT s Least Significant Bit (Last) Figure 45 - ST-BUS Stream Format Mb/s 169

170

171

172 For more information about all Zarlink products visit our Web Site at Information relating to products and services furnished herein by or its subsidiaries (collectively Zarlink ) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink s conditions of sale which are available on request. Purchase of Zarlink s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of TECHNICAL DOCUMENTATION - NOT FOR RESALE

MT9074 T1/E1/J1 Single Chip Transceiver

MT9074 T1/E1/J1 Single Chip Transceiver T1/E1/J1 Single Chip Transceiver Features Combined E1 (PCM30) and T1 (D4/ESF) framer, Line Interface Unit (LIU) and link controller with optional digital framer only mode In T1 mode the LIU can recover

More information

MT9072 Octal T1/E1/J1 Framer

MT9072 Octal T1/E1/J1 Framer Octal T1/E1/J1 Framer Features Eight fully independent, T1/E1/J1 framers 3.3 V supply with 5 V tolerant inputs Selectable 2.048 Mbit/s or 8.192 Mbit/s serial buses for both data and signaling Framing Modes:

More information

DS26303 OCTAL 3.3V T1/E1/J1 SHORT HAUL LIU PRODUCT BRIEF

DS26303 OCTAL 3.3V T1/E1/J1 SHORT HAUL LIU PRODUCT BRIEF DS26303 OCTAL 3.3V T1/E1/J1 SHORT HAUL LIU PRODUCT BRIEF www.maxim-ic.com FEATURES Eight complete E1, T1, or J1 short haul LIUs Independent E1 or T1 or J1 selections for each of the LIU s in non-hardware

More information

DS2186. Transmit Line Interface FEATURES PIN ASSIGNMENT

DS2186. Transmit Line Interface FEATURES PIN ASSIGNMENT DS2186 Transmit Line Interface FEATURES Line interface for T1 (1.544 MHz) and CEPT (2.048 MHz) primary rate networks PIN ASSIGNMENT TAIS 1 20 LCLK On chip transmit LBO (line build out) and line drivers

More information

16(+1) Channel High Density T1/E1/J1 Line Interface Unit IDT82P2816

16(+1) Channel High Density T1/E1/J1 Line Interface Unit IDT82P2816 (+1) Channel High Density T1/E1/J1 Line Interface Unit IDT82P28 Version - June 28, 2005 2975 Stender Way, Santa Clara, California 95054 Telephone: (800) 345-70 TWX: 9-338-2070 FAX: (408) 492-8674 Printed

More information

Octal T1/E1/J1 Line Interface Unit

Octal T1/E1/J1 Line Interface Unit Octal T/E/J Line Interface Unit CS6884 Features Industrystandard Footprint Octal E/T/J Shorthaul Line Interface Unit Low Power No external component changes for 00 Ω/20 Ω/75 Ω operation. Pulse shapes can

More information

1. Overview. 2. F-bit Utilization

1. Overview. 2. F-bit Utilization 1. Overview... 1 2. F-bit Utilization... 1 3. T1 Line Signal... 2 4. T1 Alarm Conditions... 3 5. 64 kbps Channel Characteristics... 3 6. Timeslot Handling... 3 7. Unframed Mode... 4 1. Overview The T1

More information

DS2155 T1/E1/J1 Single-Chip Transceiver

DS2155 T1/E1/J1 Single-Chip Transceiver www.maxim-ic.com ERRATA SHEET DS2155 T1/E1/J1 Single-Chip Transceiver REVISION A3 ERRATA The errata listed below describe situations where DS2155 revision A3 components perform differently than expected

More information

DS2187 Receive Line Interface

DS2187 Receive Line Interface Receive Line Interface www.dalsemi.com FEATURES Line interface for T1 (1.544 MHz) and CEPT (2.048 MHz) primary rate networks Extracts clock and data from twisted pair or coax Meets requirements of PUB

More information

Octal T1/E1/J1 Long Haul / Short Haul Transceiver IDT82P2288

Octal T1/E1/J1 Long Haul / Short Haul Transceiver IDT82P2288 Octal T1/E1/J1 Long Haul / Short Haul Transceiver IDT82P2288 Version 6 March 04, 2009 6024 Silver Creek Valley Road, San Jose, California 95138 Telephone: 1-800-345-7015 or 408-284-8200 TWX: 910-338-2070

More information

Chapter 4 T1 Interface Card

Chapter 4 T1 Interface Card Chapter 4 T1 Interface Card GENERAL This chapter describes DTE interface options that may be required if application requirements change. It also describes software configuration for the T1 interface card.

More information

SINGLE CHANNEL T1/E1/J1 SHORT HAUL LINE INTER- FACE UNIT

SINGLE CHANNEL T1/E1/J1 SHORT HAUL LINE INTER- FACE UNIT SINGLE CHANNEL T1/E1/J1 SHORT HAUL LINE INTER- FACE UNIT IDT82V2041E FEATURES Single channel T1/E1/J1 short haul line interfaces Supports HPS (Hitless Protection Switching) for 1+1 protection without external

More information

SINGLE CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT

SINGLE CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT SINGLE CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT IDT82V2081 FEATURES: Single channel T1/E1/J1 long haul/short haul line interfaces Supports HPS (Hitless Protection Switching) for 1+1 protection

More information

ZL30136 GbE and Telecom Rate Network Interface Synchronizer

ZL30136 GbE and Telecom Rate Network Interface Synchronizer be and Telecom Rate Network Interface Synchronizer Features rovides synchronous clocks for network interface cards that support synchronous Ethernet (SyncE) in addition to telecom interfaces (T1/E1, DS3/E3,

More information

Appendix D T1 Overview

Appendix D T1 Overview Appendix D T Overview GENERAL T refers to the primary digital telephone carrier system used in North America. T is one line type of the PCM T-carrier hierarchy listed in Table D-. T describes the cabling,

More information

DUAL CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTER- FACE UNIT

DUAL CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTER- FACE UNIT DUAL CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTER- FACE UNIT IDT82V2082 FEATURES: Dual channel T1/E1/J1 long haul/short haul line interfaces Supports HPS (Hitless Protection Switching) for 1+1 protection

More information

OCTAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT IDT82V2048E

OCTAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT IDT82V2048E OCTAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT IDT82V2048E FEATURES: Eight channel T1/E1/J1 short haul line interfaces Supports HPS (Hitless Protection Switching) for 1+1 protection without external

More information

T1/E1/OC3 WAN PLL WITH DUAL

T1/E1/OC3 WAN PLL WITH DUAL T1/E1/OC3 WAN PLL WITH DUAL REFERENCE INPUTS IDT82V3012 FEATURES Supports AT&T TR62411 and Telcordia GR-1244-CORE Stratum 3, Stratum 4 Enhanced and Stratum 4 timing for DS1 interfaces Supports ITU-T G.813

More information

QUAD CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT IDT82V2084

QUAD CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT IDT82V2084 QUAD CHANNEL T1/E1/J1 LONG HAUL/ SHORT HAUL LINE INTERFACE UNIT IDT82V2084 FEATURES: Four channel T1/E1/J1 long haul/short haul line interfaces Supports HPS (Hitless Protection Switching) for 1+1 protection

More information

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs Application Note Design With the XRT83SL38 T1/E1 SH/LH LIU ICs Revision 1.3 1 REDUNDANCY APPLICATIONS INTRODUCTION Telecommunication system design requires signal integrity and reliability. When a T1/E1

More information

DEVICE DRIVER DESIGN FOR A SINGLE AND QUAD T1/E1 TRANSCEIVER

DEVICE DRIVER DESIGN FOR A SINGLE AND QUAD T1/E1 TRANSCEIVER DEVICE DRIVER DESIGN FOR A SINGLE AND QUAD T1/E1 TRANSCEIVER By Randeep S. Gakhal Software Design Engineer, PMC-Sierra, Inc. A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

DigiPoints Volume 1. Student Workbook. Module 4 Bandwidth Management

DigiPoints Volume 1. Student Workbook. Module 4 Bandwidth Management Bandwidth Management Page 4.1 DigiPoints Volume 1 Module 4 Bandwidth Management Summary This module will cover Time Division Multiplexing (TDM). TDM technology allows many users to access a particular

More information

1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L HITLESS PROTECTION SWITCHING

1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L HITLESS PROTECTION SWITCHING 1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L APPLICATION NOTE AN-357 1.0 INTRODUCTION In today's highly competitive market, high quality of service, QOS, and reliability is

More information

ANT-20, ANT-20E Advanced Network Tester PDH MUX/DEMUX

ANT-20, ANT-20E Advanced Network Tester PDH MUX/DEMUX ANT-20, ANT-20E Advanced Network Tester BN 3035/90.30 to 90.31 Drop & Insert BN 3035/90.20 in combination with 4 Software Version 7.20 Operating Manual BN 3035/98.23 Please direct all enquiries to your

More information

DS26502 T1/E1/J1/64KCC BITS Element

DS26502 T1/E1/J1/64KCC BITS Element DS26502 T1/E1/J1/64KCC BITS Element www.maxim-ic.com GENERAL DESCRIPTION The DS26502 is a building-integrated timingsupply (BITS) clock-recovery element. The receiver portion can recover a clock from T1,

More information

Trinity Feature: T1/E1 Configuration

Trinity Feature: T1/E1 Configuration Trinity Feature: Reference Guide Appendix Sales Office: +1 (301) 975-1000 Technical Support: +1 (301) 975-1007 E-mail: [email protected] WWW: www.patton.com Part Number: 07MTRINT1E1-APD, Rev. C Revised:

More information

DXC Family. Multiservice Access Node FEATURES

DXC Family. Multiservice Access Node FEATURES DXC Family Multiservice Access Node FEATURES Digital cross-connection for up to 30 n x 56/64 kbps or T1/E1 over copper or fiber The modular DXC family includes the following chassis types: DXC-30 with

More information

VALIANT COMMUNICATIONS LIMITED

VALIANT COMMUNICATIONS LIMITED VALIANT COMMUNICATIONS LIMITED TM VCL-EC T1 Echo Canceller 1U, 19 inch Version with Telnet T1, 1U Echo Canceller Product Brochure & Data Sheet 1 Product Overview Valiant offers a compact, robust and cost

More information

TAN-065 Application Note. Physical Interface

TAN-065 Application Note. Physical Interface PPLICTION NOTE - 86VL3X PHYSICL INTERCE pplication Note Physical Interface XRT86VL3x DS-1/E1 ramer + LIU Combo 1 PPLICTION NOTE - 86VL3X PHYSICL INTERCE REV. 1.00 TLE O CONTENTS 1.0 GENERL DESCRIPTION

More information

DS26503 T1/E1/J1 BITS Element

DS26503 T1/E1/J1 BITS Element DESIGN KIT AVAILABLE DS26503 T1/E1/J1 BITS Element www.maxim-ic.com GENERAL DESCRIPTION The DS26503 is a building-integrated timingsupply (BITS) clock-recovery element. It also functions as a basic T1/E1

More information

T1/E1 Line Interface

T1/E1 Line Interface Provides Analog Transmission Line Interface for T1 and E1 Applications Dropin Replacement for CS61574 with the Following Enhancements: Lower Power Consumption Transmitter ShortCircuit Current Limiting

More information

Loop-IP6700 TDMoEthernet

Loop-IP6700 TDMoEthernet Loop- Description Loop- is designed to transport /T1/DTE/E3/DS3 signal with timing plus Ethernet traffic over IP network, electrical or optical. This is a cost effective way of migrating to IP network

More information

G.703 Fractional T1 Access Unit. User Guide

G.703 Fractional T1 Access Unit. User Guide G.703 Fractional T1 Access Unit User Guide Description The G.703 T1/FT1 ACCESS UNIT is a single port access unit for T1 or Fractional T1 services. Data Port rates are selectable via DIP-switches, for

More information

T1/E1 Universal Line Interface

T1/E1 Universal Line Interface Features T1/E1 Universal Line Interface l Provides T1 and E1, Long Haul and Short Haul Line Interface l Provides a QRSS Test Signal and Error Detector l Impedance Matching Line Driver Using a Single Transformer

More information

Serial Communications

Serial Communications Serial Communications 1 Serial Communication Introduction Serial communication buses Asynchronous and synchronous communication UART block diagram UART clock requirements Programming the UARTs Operation

More information

BTM10 Series Transmission Analyzer

BTM10 Series Transmission Analyzer BTM10 Series Transmission Analyzer BTM10/E1 BTM10/T1 BTM10/E1/T1 E1 and T1 Telecom/Datacom Analyzer Portable Analyzer series Introduction The BTM10 series analyzers come in three firmware models that support

More information

DS2182A T1 Line Monitor

DS2182A T1 Line Monitor DS218A DS2182A T1 Line Monitor FEATURES Performs framing and monitoring functions Supports Superframe and Extended Superframe formats Four onboard error counters 16-bit bipolar violation 8-bit CRC 8-bit

More information

DS21354/DS21554. 3.3V/5V E1 Single-Chip Transceivers

DS21354/DS21554. 3.3V/5V E1 Single-Chip Transceivers www.maxim-ic.com GENERAL DESCRIPTION The DS21354/DS213554 single-chip transceivers (SCTs) contain all the necessary functions to connect to E1 lines. The devices are upward-compatible versions of the DS2153

More information

PA-MC-T3 Multi-Channel T3 Synchronous Serial Port Adapter Enhancement

PA-MC-T3 Multi-Channel T3 Synchronous Serial Port Adapter Enhancement PA-MC-T3 Multi-Channel T3 Synchronous Serial Port Adapter Enhancement This feature module describes the PA-MC-T3 Multi-Channel T3 port adapter (PA-MC-T3 [=]), which can now be configured as either customer

More information

DS1621 Digital Thermometer and Thermostat

DS1621 Digital Thermometer and Thermostat Digital Thermometer and Thermostat www.dalsemi.com FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent

More information

MT9043 T1/E1 System Synchronizer

MT9043 T1/E1 System Synchronizer T1/E1 System Synchronizer Features Supports AT&T TR62411 and Bellcore GR-1244- CORE, Stratum 4 Enhanced and Stratum 4 timing for DS1 interfaces Supports ETSI ETS 300 011, TBR 4, TBR 12 and TBR 13 timing

More information

Megaplex-2100/2104 Modules ML-1/2E1/T1, MLF-1/2E1/T1

Megaplex-2100/2104 Modules ML-1/2E1/T1, MLF-1/2E1/T1 Data Sheet Megaplex-2100/2104 Modules ML-1/2E1/T1, MLF-1/2E1/T1 Copper or Fiber Optic Interface, Single/Dual E1/T1 Main Link Modules Connecting Megaplex-2100/2104 to various E1 and T1 services One or two

More information

24-Port Channelized E1/T1 Line Card Overview

24-Port Channelized E1/T1 Line Card Overview CHAPTER -Port Channelized E/T Line Card Overview This chapter describes the Cisco series -port channelized E/T line card (referred to as the -port channelized E/T line card), and contains the following

More information

Managing High-Speed Clocks

Managing High-Speed Clocks Managing High-Speed s & Greg Steinke Director, Component Applications Managing High-Speed s Higher System Performance Requires Innovative ing Schemes What Are The Possibilities? High-Speed ing Schemes

More information

TAN-030 Application Note Performance Characteristics of the XRT7300 Device for DS3 Applications Rev. 1.00

TAN-030 Application Note Performance Characteristics of the XRT7300 Device for DS3 Applications Rev. 1.00 APPLICATION NOTE PERFORMANCE CHARACTERISTICS OF THE XRT7300 DEVICE FOR DS3 APPLICATIONS 1 Table of Contents Table of Contents... 2 1.0 INTRODUCTION... 3 2.0 TRANSMIT OUTPUT PULSE TEMPLATE MEASUREMENTS

More information

Using FPGAs to Design Gigabit Serial Backplanes. April 17, 2002

Using FPGAs to Design Gigabit Serial Backplanes. April 17, 2002 Using FPGAs to Design Gigabit Serial Backplanes April 17, 2002 Outline System Design Trends Serial Backplanes Architectures Building Serial Backplanes with FPGAs A1-2 Key System Design Trends Need for.

More information

SRX 210 Services Gateway T1/E1 Mini-Physical Interface Module

SRX 210 Services Gateway T1/E1 Mini-Physical Interface Module SRX 210 Services Gateway T1/E1 Mini-Physical Interface Module The T1/E1 Mini-PIM provides the physical connection to T1 or E1 network media types and also performs T1 or E1 framing and line-speed signaling.

More information

DS26514 4-Port T1/E1/J1 Transceiver

DS26514 4-Port T1/E1/J1 Transceiver 19-5856; Rev 4; 5/11 DS26514 4-Port T1/E1/J1 Transceiver General Description The DS26514 is a 4-port framer and line interface unit (LIU) combination for T1, E1, J1 applications. Each port is independently

More information

TDMoEthernet. Description

TDMoEthernet. Description Loop-IP6700 TDMoEthernet Description Loop-IP6700 TDMoEthernet is used to transport TDM traffic over IP network, in addition to Ethernet traffic. As the core communications network migrates from TDM to

More information

3.3V DS21352 and 5V DS21552 T1 Single-Chip Transceivers

3.3V DS21352 and 5V DS21552 T1 Single-Chip Transceivers www.maxim-ic.com FEATURES Complete DS1/ISDN PRI/J1 transceiver functionality Long and Short haul LIU Crystal less jitter attenuator Generates DSX 1 and CSU line build-outs HDLC controller with 64-byte

More information

DS12887. Real Time Clock FEATURES PIN ASSIGNMENT PIN DESCRIPTION

DS12887. Real Time Clock FEATURES PIN ASSIGNMENT PIN DESCRIPTION DS12887 Real Time Clock FEATURES Drop in replacement for IBM AT computer clock/ calendar Pin compatible with the MC146818B and DS1287 Totally nonvolatile with over 10 years of operation in the absence

More information

VCL-PRI ISDN VALIANT COMMUNICATIONS LIMITED. Primary Rate (Euro-ISDN) Multiplexer. Product Brochure & Data Sheet

VCL-PRI ISDN VALIANT COMMUNICATIONS LIMITED. Primary Rate (Euro-ISDN) Multiplexer. Product Brochure & Data Sheet VALIANT COMMUNICATIONS LIMITED VCL-PRI ISDN Primary Rate (Euro-ISDN) Multiplexer Product Brochure & Data Sheet 1 INDEX S.No. Particulars Pg. No. 1. Product Overview - VCL-PRI ISDN (Euro ISDN Multiplexer)

More information

TECHNICAL TBR 12 BASIS for December 1993 REGULATION

TECHNICAL TBR 12 BASIS for December 1993 REGULATION TECHNICAL TBR 12 BASIS for December 1993 REGULATION Source: ETSI TC-BT Reference: DTBR/BT-02036 ICS: 33.040.40 Key words: ONP, leased lines, D2048U Business Telecommunications (BT); Open Network Provision

More information

DS1307ZN. 64 x 8 Serial Real-Time Clock

DS1307ZN. 64 x 8 Serial Real-Time Clock DS137 64 x 8 Serial Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid

More information

- T-Carrier Technologies -

- T-Carrier Technologies - 1 T-Carrier Fundamentals - T-Carrier Technologies - T-Carrier systems provide digitized communication for voice or data traffic across a telephone provider s network. The T-Carrier specification defines

More information

DS12885, DS12885Q, DS12885T. Real Time Clock FEATURES PIN ASSIGNMENT

DS12885, DS12885Q, DS12885T. Real Time Clock FEATURES PIN ASSIGNMENT DS12885, DS12885Q, DS12885T Real Time Clock FEATURES Drop in replacement for IBM AT computer clock/calendar Pin configuration closely matches MC146818B and DS1285 Counts seconds, minutes, hours, days,

More information

ETSI EN 300 011-1 V1.2.2 (2000-05)

ETSI EN 300 011-1 V1.2.2 (2000-05) EN 300 011-1 V1.2.2 (2000-05) European Standard (Telecommunications series) Integrated Services Digital Network (ISDN); Primary rate User Network Interface (UNI); Part 1: Layer 1 specification 2 EN 300

More information

Configuring E1 and T1 Interfaces

Configuring E1 and T1 Interfaces 4 Configuring E1 and T1 Interfaces Contents Overview of E1 and T1 WAN Connections.......................... 4-3 Elements of an E1- or T1-Carrier Line.......................... 4-3 Connecting Your Premises

More information

Configuring E1 and T1 Interfaces

Configuring E1 and T1 Interfaces 4 Configuring E1 and T1 Interfaces Contents Overview of E1 and T1 WAN Connections.......................... 4-3 Elements of an E1- or T1-Carrier Line.......................... 4-3 Connecting Your Premises

More information

It explains the differences between the Plesiochronous Digital Hierarchy and the Synchronous Digital Hierarchy.

It explains the differences between the Plesiochronous Digital Hierarchy and the Synchronous Digital Hierarchy. TECHNICAL TUTORIAL Subject: SDH Date: October, 00 Prepared by: John Rumsey SDH Synchronous Digital Hierarchy. Introduction. The Plesiochronous Digital Hierarchy (PDH). The Synchronous Digital Hierarchy

More information

DS1621 Digital Thermometer and Thermostat

DS1621 Digital Thermometer and Thermostat www.maxim-ic.com FEATURES Temperature measurements require no external components Measures temperatures from -55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is -67 F to 257 F in 0.9 F increments

More information

ORION TELECOM NETWORKS INC. T1

ORION TELECOM NETWORKS INC. T1 RION TELECOM NETWORKS ORION TELECOM NETWORKS INC. T1 Protection (Fail-Over) Switch Product Brochure & Data Sheet Headquarters: Phoenix, Arizona Orion Telecom Networks Inc. 20100, N 51st Ave, Suite B240,

More information

DataSMART 554 & 558 T1/FT1 Plug-in DSU/CSUs Page 1 of 8. T1/FT1 Single-port Plug-in DSU/CSUs

DataSMART 554 & 558 T1/FT1 Plug-in DSU/CSUs Page 1 of 8. T1/FT1 Single-port Plug-in DSU/CSUs 554 & 558 T1/FT1 Plug-in DSU/CSUs Page 1 of 8 = PDF Leased Line Economical T1 Internet Access Central Site T1 Management T1/FT1 Single-port Plug-in DSU/CSUs Key Features Specifications Ordering Information

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS INTRODUCTION TO MUTIPLEXING Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link INTRODUCTION

More information

ARM Thumb Microcontrollers. Application Note. Software ISO 7816 I/O Line Implementation. Features. Introduction

ARM Thumb Microcontrollers. Application Note. Software ISO 7816 I/O Line Implementation. Features. Introduction Software ISO 7816 I/O Line Implementation Features ISO 7816-3 compliant (direct convention) Byte reception and transmission with parity check Retransmission on error detection Automatic reception at the

More information

DS21348/DS21Q348 3.3V E1/T1/J1 Line Interface

DS21348/DS21Q348 3.3V E1/T1/J1 Line Interface 3.3V E1/T1/J1 Line Interface www.maxim-ic.com FEATURES Complete E1, T1, or J1 Line Interface Unit (LIU) Supports Both Long-Haul And Short-Haul Trunks Internal Software-Selectable Receive-Side Termination

More information

Chapter 2 - The TCP/IP and OSI Networking Models

Chapter 2 - The TCP/IP and OSI Networking Models Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application

More information

Cisco 8-Port Channelized T1/E1 Shared Port Adapter

Cisco 8-Port Channelized T1/E1 Shared Port Adapter Cisco 8-Port Channelized T1/E1 Shared Port Adapter The Cisco I-Flex approach combines shared port adapters (SPAs) and SPA interface processors (SIPs), providing an extensible design that helps prioritize

More information

Adtech Data Link Simulators.

Adtech Data Link Simulators. Adtech Data Link Simulators. Adtech SX series Data Link Simulators create the same delay and error characteristics caused by long distance terrestrial and satellite data links. By providing realistic simulations

More information

Pericom PCI Express 1.0 & PCI Express 2.0 Advanced Clock Solutions

Pericom PCI Express 1.0 & PCI Express 2.0 Advanced Clock Solutions Pericom PCI Express 1.0 & PCI Express 2.0 Advanced Clock Solutions PCI Express Bus In Today s Market PCI Express, or PCIe, is a relatively new serial pointto-point bus in PCs. It was introduced as an AGP

More information

Multiple clock domains

Multiple clock domains DESIGNING A ROBUST USB SERIAL INTERFACE ENGINE(SIE) What is the SIE? A typical function USB hardware interface is shown in Fig. 1. USB Transceiver USB Serial Interface Engine Status Control Data Buffers/

More information

Below is a diagram explaining the data packet and the timing related to the mouse clock while receiving a byte from the PS-2 mouse:

Below is a diagram explaining the data packet and the timing related to the mouse clock while receiving a byte from the PS-2 mouse: PS-2 Mouse: The Protocol: For out mini project we designed a serial port transmitter receiver, which uses the Baud rate protocol. The PS-2 port is similar to the serial port (performs the function of transmitting

More information

T-BERD 107A. T-Carrier Analyzer

T-BERD 107A. T-Carrier Analyzer T-BERD T-Carrier Analyzer Today s demanding network testing environment calls for an instrument that is powerful, compact, and easy to use. TTC s T-BERD meets all these requirements and more. Ideal for

More information

F2400 FOM II Series Fiber Optic Modem Technical Manual

F2400 FOM II Series Fiber Optic Modem Technical Manual F2400 FOM II Series Fiber Optic Modem Technical Manual T1 Revision B Copyright April 2003 VERSITRON, Inc. 83 Albe Drive / Suite C Newark, DE 19702 www.versitron.com A030430283T PROPRIETARY DATA All data

More information

cpci cfxo3120 FXO/FXS VoIP Gateway

cpci cfxo3120 FXO/FXS VoIP Gateway cpci cfxo3120 FXO/FXS VoIP Gateway March 2009 1 of 6 S-1056 PRODUCT DESCRIPTION The MediaPro cfxo3120 is a combination FXO and FXS Controller and VoIP Gateway in a 6U cpci Board. The cfxo3120 includes

More information

Telecommunications Switching Systems (TC-485) PRACTICAL WORKBOOK FOR ACADEMIC SESSION 2011 TELECOMMUNICATIONS SWITCHING SYSTEMS (TC-485) FOR BE (TC)

Telecommunications Switching Systems (TC-485) PRACTICAL WORKBOOK FOR ACADEMIC SESSION 2011 TELECOMMUNICATIONS SWITCHING SYSTEMS (TC-485) FOR BE (TC) PRACTICAL WORKBOOK FOR ACADEMIC SESSION 2011 TELECOMMUNICATIONS SWITCHING SYSTEMS (TC-485) FOR BE (TC) Department of Electronic Engineering NED University of Engineering and Technology, Karachi LABORATORY

More information

E1-GSM RION ORION TELECOM NETWORKS INC. E1 Channel Bank with 30 X GSM Wireless Interface(s) TELECOM NETWORKS

E1-GSM RION ORION TELECOM NETWORKS INC. E1 Channel Bank with 30 X GSM Wireless Interface(s) TELECOM NETWORKS RION TELECOM NETWORKS ORION TELECOM NETWORKS INC. E1-GSM TM E1 Channel Bank with 30 X GSM Wireless Interface(s) Product Overview Features & Highlights Ordering Information Product Specifications 1. E1

More information

Memory Module Specifications KVR667D2D4F5/4G. 4GB 512M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS

Memory Module Specifications KVR667D2D4F5/4G. 4GB 512M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS Memory Module Specifications KVR667DD4F5/4G 4GB 5M x 7-Bit PC-5300 CL5 ECC 40- FBDIMM DESCRIPTION This document describes s 4GB (5M x 7-bit) PC-5300 CL5 SDRAM (Synchronous DRAM) fully buffered ECC dual

More information

DigiPoints Volume 1. Student Workbook. Module 5 Growing Capacity Through Technology

DigiPoints Volume 1. Student Workbook. Module 5 Growing Capacity Through Technology Growing Capacity Through Technology Page 5. 1 DigiPoints Volume 1 Module 5 Growing Capacity Through Technology Summary This module covers the North American Digital Hierarchy (NADH), the European Digital

More information

HDSL Basics. HDSL Basics. Introduction. HDSL Overview

HDSL Basics. HDSL Basics. Introduction. HDSL Overview 1 Introduction Providing T1 service is a competitive race, and High-bit-rate Digital Subscriber Line () is quickly emerging as the ideal solution to remain a step ahead. Currently touted as repeaterless

More information

SSD1298. Advance Information. 240 RGB x 320 TFT LCD Controller Driver integrated Power Circuit, Gate and Source Driver with built-in RAM

SSD1298. Advance Information. 240 RGB x 320 TFT LCD Controller Driver integrated Power Circuit, Gate and Source Driver with built-in RAM SOLOMON SYSTECH SEMICONDUCTOR TECHNICAL DATA SSD1298 Advance Information 240 RGB x 320 TFT LCD Controller Driver integrated Power Circuit, Gate and Source Driver with built-in RAM This document contains

More information

Loop-IP6700 TDMoEthernet

Loop-IP6700 TDMoEthernet Loop-IP6700 TDMoEthernet Description Feature 1U height WAN port One electric Ethernet (10/100 BaseT) or optical Ethernet (10/100 Base-FX) Tributary ports TDM interfaces low speed, up to 4 E1/T1 low speed,

More information

TECHNICAL TBR 14 BASIS for April 1994 REGULATION

TECHNICAL TBR 14 BASIS for April 1994 REGULATION TECHNICAL TBR 14 BASIS for April 1994 REGULATION Source: ETSI TC-BTC Reference: DTBR/BTC-02038 ICS: 33.040.40 Key words: ONP, leased line Business TeleCommunications (BTC); 64 kbit/s digital unrestricted

More information

How To Connect A G.711 To A G711 Network With A Gbnet (G.723) (Gbnet) (Geo) (Ipnet) And Gb Net (G723.1)

How To Connect A G.711 To A G711 Network With A Gbnet (G.723) (Gbnet) (Geo) (Ipnet) And Gb Net (G723.1) Traffic Handling Characteristics Payload Handling Voice Processing Packetization Period Silence Suppression Echo Cancellation Fax support Voice Band Data (modem) support DTMF Support G.711 PCM @ 64Kbps

More information

UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board.

UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board. Bus Interfaces Different types of buses: ISA (Industry Standard Architecture) EISA (Extended ISA) VESA (Video Electronics Standards Association, VL Bus) PCI (Periheral Component Interconnect) USB (Universal

More information

Data Cables. Schmitt TTL LABORATORY ELECTRONICS II

Data Cables. Schmitt TTL LABORATORY ELECTRONICS II Data Cables Data cables link one instrument to another. Signals can attenuate or disperse on long wires. A direct wire works best for short cables of less than 10 ft. A TTL cable connection can use a Schmitt

More information

DS26521. Single T1/E1/J1 Transceiver GENERAL DESCRIPTION FEATURES APPLICATIONS FUNCTIONAL DIAGRAM ORDERING INFORMATION. www.maxim-ic.

DS26521. Single T1/E1/J1 Transceiver GENERAL DESCRIPTION FEATURES APPLICATIONS FUNCTIONAL DIAGRAM ORDERING INFORMATION. www.maxim-ic. DS26521 Single T1/E1/J1 Transceiver www.maxim-ic.com GENERAL DESCRIPTION The DS26521 is a single-channel framer and line interface unit (LIU) combination for T1, E1, and J1 applications. Each channel is

More information

DS1821 Programmable Digital Thermostat and Thermometer

DS1821 Programmable Digital Thermostat and Thermometer ma www.maxim-ic.com FEATURES Requires no external components Unique 1-Wire interface requires only one port pin for communication Operates over a -55 C to +125 C (67 F to +257 F) temperature range Functions

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

FCD-E1LC, FCD-T1LC Managed E1/T1 or Fractional E1/T1 Access Units

FCD-E1LC, FCD-T1LC Managed E1/T1 or Fractional E1/T1 Access Units Where to buy > See the product page > Data Sheet FCD-E1LC, FCD-T1LC Managed TDM multiplexers for access to full or fractional E1/T1 services Managed access units for E1/T1 or fractional E1/T1 service E1/T1

More information

DS2154. Enhanced E1 Single Chip Transceiver PRELIMINARY FEATURES PACKAGE OUTLINE. ORDERING INFORMATION DS2154L (0 C to 70 C) DS2154LN ( 40 C to +85 C)

DS2154. Enhanced E1 Single Chip Transceiver PRELIMINARY FEATURES PACKAGE OUTLINE. ORDERING INFORMATION DS2154L (0 C to 70 C) DS2154LN ( 40 C to +85 C) PRELIMINARY DS2154 Enhanced E1 Single Chip Transceiver FEATURES Complete E1(CEPT) PCM 30/ISDN PRI transceiver functionality PACKAGE OUTLINE Onboard long and short haul line interface for clock/ data recovery

More information

WEB RANger-II Internet Access Router

WEB RANger-II Internet Access Router Data Sheet WEB RANger-II Wide-ranging Internet and voice connectivity for small or medium size offices IP/IPX routing and standard bridging Data services over E1/T1, fractional E1/T1, Frame Relay, ISDN,

More information