AN862. OPTIMIZING Si534X JITTER PERFORMANCE IN NEXT GENERATION INTERNET INFRASTRUCTURE SYSTEMS. 1. Introduction
|
|
|
- Ophelia Parker
- 9 years ago
- Views:
Transcription
1 OPTIMIZING Si534X JITTER PERFORMANCE IN NEXT GENERATION INTERNET INFRASTRUCTURE SYSTEMS 1. Introduction To realize 100 fs jitter performance of the Si534x jitter attenuators and clock generators in real-world applications, designers should consider a few simple guidelines to minimize crosstalk and optimize overall jitter performance. These guidelines apply to frequency synthesis of any high-speed clock generator. Whenever a number of high frequency, fast rise time, large-amplitude signals are close to one another, there will be some amount of crosstalk between them. The jitter of the Si534x family is so low that what used to be relatively minor crosstalk is now a non-trivial portion of the final measured output jitter. The source of some of the crosstalk will be due to the Si534x device and some will be introduced by the PCB. It is difficult to allocate the jitter portions between the two sources because the jitter can only be measured when the Si534x is mounted on a PCB. This application note provides simple guidelines to enable designers to optimize jitter performance. 2. Four Simple Rules for Optimal Jitter Performance 2.1. Select the Differential Output Options (LVDS, LVPECL, HCSL) Differential outputs produce balanced, complementary output signals designed to yield the best jitter performance. These differential signal formats also inherently produce minimal common mode noise (minimizing EMI), and they generally consume lower power than CMOS formats Order the Output Clocks Carefully One of the easiest ways to reduce crosstalk is to arrange the clock outputs so clocks that are more likely to experience crosstalk between one another are not physically located next to one another. For networking applications, jitter integration bandwidths typically come from the relevant communications standards that are important to the end system. Jitter outside of the integration bands is considered to not be an issue. The details of the integration band will differ from application to application and from standard to standard. The commonly used, default integration band of 12 khz to 20 MHz comes from SONET OC-48 and is used here in this example: If two adjacent clock outputs are closer to each other than 20 MHz, which is the extent of the jitter integration band, then there might be crosstalk issues. Consider the example of when a MHz clock output is next to a MHz clock output. Since MHz MHz = 730 khz, the mixing differences between the two will be well within the 12 khz to 20 MHz jitter mask band. Therefore, the designer should avoid placing a MHz clock next to an MHz clock. Note that this integration bandwidth proximity placement guideline does not apply to clocks that are simple integer multiples of one another. For example, a 125 MHz clock can be located next to a 625 MHz clock because 125 MHz * 5 = 625 MHz. The simple integer relationship means that the edges of one clock will not be moving with respect to the edges of the other clock Separate Clocks with Unused Outputs Unused clock outputs can be used to physically separate clocks that would otherwise interfere with one another. For example, if there is an unused clock output, it can be placed between a MHz and a MHz clock to physically separate them. Table 1 shows the benefits of rearranging the used output clocks and strategically placing unused output clocks to improve jitter. In this example, a ten output Si5345 was programmed in two different ways: one ignores the recommendations for rearranging clock outputs and the other takes them into account. The jitter was integrated from 12 khz to 20 MHz and all of the outputs are LVDS at 2.5 V. Clearly, rearranging the outputs lowers the jitter and results in high performance at all outputs. See Appendix A to view the phase noise plots that generated the data. Rev /14 Copyright 2014 by Silicon Laboratories AN862
2 Table 1. Impacts of Output Clock Ordering on Jitter Performance Sub-optimal Clock Ordering Optimal Clock Ordering Output Frequency (MHz) Jitter (fsec RMS) Frequency (MHz) Jitter (fsec RMS) not used not used 8 not used not used Avoid Using CMOS Output Formats in Jitter Critical Applications Because CMOS output buffers swing rail-to-rail and are not balanced (unlike such output formats as LVPECL, LVDS, CML, and HCSL), CMOS outputs create significant current surges at all of the clock edges and, therefore, are prime crosstalk aggressors. For this reason, CMOS outputs should be avoided whenever possible for jitter sensitive applications. When CMOS formats must be used, the CMOS clocks should be quarantined and kept away from critical clock outputs that are not the same frequency. Select the "complementary" output option (instead of the in-phase option) in ClockBuilder Pro to help balance the output current surges during transitions. If one of the output sides of the CMOS pair is unused but actively toggling, do not terminate the load. Consider using an external, low jitter, differential mode to CMOS buffer (see products/clocksoscillators/clock-buffer/pages/fanout-buffers.aspx). Place the buffer away from the Si534x device on the PCB to avoid coupling. 2 Rev. 1.0
3 3. Spurs, Jitter Integration Band, and Harmonics Jitter performance degrades when nearby clock outputs couple into an output clock. As an example, consider that a MHz clock output is located next to a MHz clock output. The difference in frequency between the two is MHz MHz = 730 khz. As a result, there is a spur located at 730 MHz off of the MHz carrier, corresponding to the first harmonic that is labeled 1st in Figure 1. As expected with a square wave produced by a CMOS output clock, the second harmonic is significantly smaller, which is located at 2 * 730 MHz = 1.46 MHz off of the carrier and is labeled 2nd. The third harmonic is larger than the second, but not as large as the first. It is located at 3 * 730 khz = 2.19 MHz and is labeled 3rd. Because all of these and the other harmonically related spurs are located within the 12 khz to 20 MHz jitter integration band, they all can contribute to degrading the jitter performance shown in Table 1 for differential output clocks. The magnitude of this degradation (which can be hundreds of femtoseconds when CMOS clocks couple to other CMOS clocks) is dependent on many factors, among them I/O voltage, signal format, and PCB layout. Figure 1. Spurs and Harmonics Example for CMOS to CMOS Outputs Rev
4 4. Conclusion By following the basic guidelines in this application note, designers can achieve 100 fs class jitter performance with the Si534x jitter attenuators and clock generators. For clocks which must have jitter performance at this level, designers should: Select differential formats for all jitter sensitive clocks. Order the output clocks carefully (by frequency and integration bandwidth proximity). Separate coupling sensitive clocks by placing unused outputs between outputs. Choose CMOS format only for clocks where jitter performance is not critical. 4 Rev. 1.0
5 APPENDIX PHASE NOISE PLOTS The following phase noise plots apply to Table 1. The phase noise equipment used was the Agilent E5052B Signal Source Analyzer connected to a Silicon Labs Si5345-EVB (evaluation board) with a 48 MHz crystal as the XAXB reference. The differential signals had a Pulse Engineering CX2156 balun between the evaluation board and the E5052B. For the plots, all of the clock outputs were 2.5 V LVDS. Recommended, differential Figure 2. Recommended, LVDS, Output 0 Rev
6 Figure 3. Recommended, LVDS, output 1 Figure 4. Recommended, LVDS, output 2 6 Rev. 1.0
7 Figure 5. Recommended LVDS, output 4 Figure 6. Recommended LVDS, output 5 Rev
8 Figure 7. Recommended LVDS, output 6 Figure 8. Recommended LVDS, output 8 8 Rev. 1.0
9 Figure 9. Recommended LVDS, output 9 Rev
10 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and ios (CBGo only). Timing Portfolio SW/HW Quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world s most energy friendly microcontrollers", Ember, EZLink, EZMac, EZRadio, EZRadioPRO, DSPLL, ISOmodem, Precision32, ProSLIC, SiPHY, USBXpress and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX USA
AN962: Implementing Master-Slave Timing Redundancy in Wireless and Packet- Based Network Applications
AN962: Implementing -Slave Timing Redundancy in Wireless and Packet- Based Network Applications Robust synchronization distribution schemes have historically been essential to communication networks and
TS1005 Demo Board COMPONENT LIST. Ordering Information. SC70 Packaging Demo Board SOT23 Packaging Demo Board TS1005DB TS1005DB-SOT
REVISION NOTE The current revision for the TS1005 Demo Boards display the identifier TS100x Demo Board on the top side of the evaluation board as depicted in Figure 1. If the identifier is not printed
AN803. LOCK AND SETTLING TIME CONSIDERATIONS FOR Si5324/27/ 69/74 ANY-FREQUENCY JITTER ATTENUATING CLOCK ICS. 1. Introduction
LOCK AND SETTLING TIME CONSIDERATIONS FOR Si5324/27/ 69/74 ANY-FREQUENCY JITTER ATTENUATING CLOCK ICS 1. Introduction As outlined in the Product Bulletin*, issued in January 2013, Silicon Labs has made
Figure 1. 8-Bit USB Debug Adapter
8-BIT USB DEBUG ADAPTER USER S GUIDE 1. Introduction The 8-bit USB Debug Adapter (UDA) provides the interface between the PC s USB port and the Silicon Labs 8-bit target device s in-system debug/programming
AN952: PCIe Jitter Estimation Using an Oscilloscope
AN952: PCIe Jitter Estimation Using an Oscilloscope Jitter of the reference clock has a direct impact on the efficiency of the data transfer between two PCIe devices. The data recovery process is able
AN111: Using 8-Bit MCUs in 5 Volt Systems
This document describes how to incorporate Silicon Lab s 8-bit EFM8 and C8051 families of devices into existing 5 V systems. When using a 3 V device in a 5 V system, the user must consider: A 3 V power
Figure 1. Proper Method of Holding the ToolStick. Figure 2. Improper Method of Holding the ToolStick
TOOLSTICK PROGRAMMING ADAPTER USER S GUIDE 1. Handling Recommendations The ToolStick Base Adapter and daughter cards are distributed without any protective plastics. To prevent damage to the devices or
AN580 INFRARED GESTURE SENSING. 1. Introduction. 2. Hardware Considerations
INFRARED GESTURE SENSING 1. Introduction Touchless user interfaces are an emerging trend in embedded electronics as product designers seek out innovative control methods and more intuitive ways for users
AN486: High-Side Bootstrap Design Using ISODrivers in Power Delivery Systems
AN486: High-Side Bootstrap Design Using ISODrivers in Power Delivery Systems Silicon Labs ISOdrivers are isolated gate drivers that combine low latency, high-drivestrength gate drive circuits with on-chip
UG129: ZigBee USB Virtual Gateway Reference Design (RD-0002-0201) User's Guide
UG129: ZigBee USB Virtual Gateway Reference Design (RD-0002-0201) User's Guide The ZigBee USB Virtual Gateway Reference Design (RD-0002-0201) is designed to demonstrate ZigBee gateway functionality with
UG103.8: Application Development Fundamentals: Tools
UG103.8: Application Development Fundamentals: Tools This document provides an overview of the toolchain used to develop, build, and deploy EmberZNet and Silicon Labs Thread applications, and discusses
Making Prototyping Boards for the EFM32 kits
Making Prototyping Boards for the EFM32 kits AN0031 - Application Note Introduction This application note describes how anyone can make their own custom prototyping boards that can be connected directly
AN922: Using the Command Line Interface (CLI) for Frequency On-the-Fly with the Si5346/47
AN922: Using the Command Line Interface (CLI) for Frequency On-the-Fly with the Si5346/47 Clockbuilder Pro comes with a command line interface (CLI)that can be used for adjusting the configuration of Si534x/8x
RoHs compliant, Pb-free Industrial temperature range: 40 to +85 C Footprint-compatible with ICS552-02 1.8, 2.5, or 3.3 V operation 16-TSSOP
1:8 LOW JITTER CMOS CLOCK BUFFER WITH 2:1 INPUT MUX (
AN583: Safety Considerations and Layout Recommendations for Digital Isolators
AN583: Safety Considerations and Layout Recommendations for Digital Isolators This application note details the creepage and clearance requirements of an isolator type component, such as a digital isolator,
UG103-13: Application Development Fundamentals: RAIL
UG103-13: Application Development Fundamentals: RAIL Silicon Labs RAIL (Radio Abstraction Interface Layer) provides an intuitive, easily-customizable radio interface layer that is designed to support proprietary
CPU. PCIe. Link. PCIe. Refclk. PCIe Refclk. PCIe. PCIe Endpoint. PCIe. Refclk. Figure 1. PCIe Architecture Components
AN562 PCI EXPRESS 3.1 JITTER REQUIREMENTS 1. Introduction PCI Express () is a serial point-to-point interconnect standard developed by the Peripheral Component Interconnect Special Interest Group (PCI-SIG).
Current Digital to Analog Converter
Current Digital to Analog Converter AN0064 - Application Note Introduction This application note describes how to use the EFM32 Current Digital to Analog Converter (IDAC), a peripheral that can source
Bootloader with AES Encryption
...the world's most energy friendly microcontrollers Bootloader with AES Encryption AN0060 - Application Note Introduction This application note describes the implementation of a bootloader capable of
Figure 1. Classes of Jitter
A PRIMER ON JITTER, JITTER MEASUREMENT AND PHASE-LOCKED LOOPS 1. Introduction As clock speeds and communication channels run at ever higher frequencies, engineers who have previously had little need to
AN614 A SIMPLE ALTERNATIVE TO ANALOG ISOLATION AMPLIFIERS. 1. Introduction. Input. Output. Input. Output Amp. Amp. Modulator or Driver
A SIMPLE ALTERNATIVE TO ANALOG ISOLATION AMPLIFIERS 1. Introduction Analog circuits sometimes require linear (analog) signal isolation for safety, signal level shifting, and/or ground loop elimination.
Backup Power Domain. AN0041 - Application Note. Introduction
Backup Power Domain AN0041 - Application Note Introduction This application note describes how to use the EFM32 Backup Power Domain and Backup Real Time Counter. An included software example for the Giant
AN437. Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS. 1. Introduction. 2. Relevant Measurements to comply with FCC
Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS 1. Introduction This document provides measurement results and FCC compliance results for the Si4432B when operated from 902 928 MHz. The measurement
Simplifying System Design Using the CS4350 PLL DAC
Simplifying System Design Using the CS4350 PLL 1. INTRODUCTION Typical Digital to Analog Converters (s) require a high-speed Master Clock to clock their digital filters and modulators, as well as some
ETRX3USB ETRX3USB-LRS ETRX3USB+8M ETRX3USB-LRS+8M PRODUCT MANUAL
Telegesis ETRX3USB TG-PM-0518-ETRX357USB r4 Product Manual Telegesis is a trademark of Silicon Laboratories Inc. ZigBee USB STICKS: ETRX3USB ETRX3USB-LRS ETRX3USB+8M ETRX3USB-LRS+8M PRODUCT MANUAL 2015
Any-Rate Precision Clocks
Any-Rate Precision Clocks Wireline Market Overview Analog Modems Large installed base and growth in embedded applications Voice Transition to VoIP to reduce service provider cost-of-ownership Timing Large,
ZL40221 Precision 2:6 LVDS Fanout Buffer with Glitchfree Input Reference Switching and On-Chip Input Termination Data Sheet
Features Inputs/Outputs Accepts two differential or single-ended inputs LVPECL, LVDS, CML, HCSL, LVCMOS Glitch-free switching of references On-chip input termination and biasing for AC coupled inputs Six
USB Audio Simplified
USB Audio Simplified The rapid expansion of the universal serial bus (USB) standard in consumer electronics products has extended the use of USB connectivity to propagate and control digital audio. USB
Signal Types and Terminations
Helping Customers Innovate, Improve & Grow Application Note Signal Types and Terminations Introduction., H, LV, Sinewave, Clipped Sinewave, TTL, PECL,,, CML Oscillators and frequency control devices come
Selecting the Right MCU Can Squeeze Nanoamps out of Your Next Internet of Things Application
Selecting the Right MCU Can Squeeze Nanoamps out of Your Next Internet of Things Application www.silabs.com Introduction Industry leaders predict that the number of connected devices for the Internet of
PC Base Adapter Daughter Card UART GPIO. Figure 1. ToolStick Development Platform Block Diagram
TOOLSTICK VIRTUAL TOOLS USER S GUIDE RELEVANT DEVICES 1. Introduction The ToolStick development platform consists of a ToolStick Base Adapter and a ToolStick Daughter card. The ToolStick Virtual Tools
AN75. Si322X DUAL PROSLIC DEMO PBX AND GR 909 LOOP TESTING SOFTWARE GUIDE. 1. Introduction
Si322X DUAL PROSLIC DEMO PBX AND GR 909 LOOP TESTING SOFTWARE GUIDE 1. Introduction Silicon Laboratories has developed example software for the Si3220/Si3225 Dual ProSLIC. The source code itself is available
LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays
AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as
Connect the EFM32 with a Smart Phone through the Audio Jack
...the world's most energy friendly microcontrollers Connect the EFM32 with a Smart Phone through the Audio Jack AN0054 - Application Note Introduction This application note describes how to connect the
Si52142 PCI-EXPRESS GEN 1, GEN 2, & GEN 3 TWO OUTPUT CLOCK GENERATOR WITH 25 MHZ REFERENCE CLOCK. Features. Applications.
PCI-EXPRESS GEN 1, GEN 2, & GEN 3 TWO OUTPUT CLOCK GENERATOR WITH 25 MHZ REFERENCE CLOCK Features PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant Gen 3 SRNS Compliant Two 100 MHz, 125
Si52144 PCI-EXPRESS GEN 1, GEN 2, & GEN 3 QUAD OUTPUT CLOCK GENERATOR. Features. Applications. Description. Functional Block Diagram
PCI-EXPRESS GEN 1, GEN 2, & GEN 3 QUAD OUTPUT CLOCK GENERATOR Features PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant Gen 3 SRNS Compliant Supports Serial ATA (SATA) at 100 MHz Low power,
Table 1. RF Pico Boards of the EZRadioPRO Development Kits. Qty Description Part Number
EZRADIOPRO DEVELOPMENT KITS USER S GUIDE 1. Kits Overview This user's guide describes the development kits of the EZRadioPRO wireless development kit family. Each kit contains two RF nodes based on the
Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier
The AAT50 is a high efficiency, 2.5W mono class D audio power amplifier. It can be used in portable devices, such as MP4s, cell phones, laptops, GPS and PDAs. The device can work as a filterless class
Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
Cloud-Based Apps Drive the Need for Frequency-Flexible Clock Generators in Converged Data Center Networks
Cloud-Based Apps Drive the Need for Frequency-Flexible Generators in Converged Data Center Networks Introduction By Phil Callahan, Senior Marketing Manager, Timing Products, Silicon Labs Skyrocketing network
APPLICATION. si32library. Callback CMSIS HARDWARE. Figure 1. Firmware Layer Block Diagram
PRECISION32 SOFTWARE DEVELOPMENT KIT CODE EXAMPLES OVERVIEW 1. Introduction The Precision32 code examples are part of the Software Development Kit (SDK) installed with the Precision32 software package
Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking
Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking Electromagnetic interference (EMI), once the exclusive concern of equipment designers working with high-speed signals, is no longer
UG103.8 APPLICATION DEVELOPMENT FUNDAMENTALS: TOOLS
APPLICATION DEVELOPMENT FUNDAMENTALS: TOOLS This document provides an overview of the toolchain used to develop, build, and deploy EmberZNet and Silicon Labs Thread applications, and discusses some additional
Signal Integrity: Tips and Tricks
White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary
Analog to Digital Converter
Analog to Digital Converter AN0021 - Application Note Introduction This application note describes how to use the EFM32 Analog to Digital Converter to convert an analog input voltage to a digital value.
Pericom PCI Express 1.0 & PCI Express 2.0 Advanced Clock Solutions
Pericom PCI Express 1.0 & PCI Express 2.0 Advanced Clock Solutions PCI Express Bus In Today s Market PCI Express, or PCIe, is a relatively new serial pointto-point bus in PCs. It was introduced as an AGP
CS4525 Power Calculator
1. OVERVIEW CS4525 Power Calculator The CS4525 Power Calculator provides many important application-specific performance numbers for the CS4525 based on user-supplied design parameters. The Power Calculator
1 Software Overview... 2. 1.1 ncp-uart... 2 1.2 ash-v3-test-app... 2 1.3 ash-v3-test-app Command Line Options... 2. 2 Testing... 2
ASHV3-UART HOST INTERFACING GUIDE This document describes how to set up and test UART communication between a host and Network Co-Processor (NCP) using ASHv3-UART. It assumes that you have a Raspberry
ZigBee-2.4-DK 2.4 GHZ ZIGBEE DEVELOPMENT KIT USER S GUIDE. 1. Kit Contents. Figure 1. 2.4 GHz ZigBee Development Kit
2.4 GHZ ZIGBEE DEVELOPMENT KIT USER S GUIDE 1. Kit Contents The 2.4 GHz ZigBee Development Kit contains the following items, shown in Figure 1. 2.4 GHz 802.15.4/ZigBee Target Boards (6) Antennas (6) 9
11. High-Speed Differential Interfaces in Cyclone II Devices
11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
Digital Isolator Evolution Drives Optocoupler Replacement
Digital Isolator Evolution Drives Optocoupler Replacement Introduction Optocouplers have existed in various forms since the late 1960s and find use in many different applications. Because optocouplers
UG103.14: Application Development Fundamentals: Bluetooth Smart Technology
UG103.14: Application Development Fundamentals: Bluetooth Smart Technology This volume of Silicon Labs Application Development Fundamentals series provides an overview of Bluetooth Smart, also known as
Telegesis is a trademark of Silicon Laboratories Inc. Telegesis ZigBee Communications Gateway. Product Manual
Telegesis ZigBee Communications Gateway TG-PM-510 ZigBee Communications Gateway Product Manual 0510r6 Telegesis is a trademark of Silicon Laboratories Inc. Telegesis ZigBee Communications Gateway Product
Electromagnetic. Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking EMI CONTROL. The authors describe the
From September 2011 High Frequency Electronics Copyright 2011 Summit Technical Media, LLC Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking By Jeffrey Batchelor and Jimmy Ma Silicon
Selecting the Optimum PCI Express Clock Source
Selecting the Optimum PCI Express Clock Source PCI Express () is a serial point-to-point interconnect standard developed by the Component Interconnect Special Interest Group (PCI-SIG). lthough originally
ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET
DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock
Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND
DATASHEET IDT5P50901/2/3/4 Description The IDT5P50901/2/3/4 is a family of 1.8V low power, spread spectrum clock generators capable of reducing EMI radiation from an input clock. Spread spectrum technique
SPREAD SPECTRUM CLOCK GENERATOR. Features
DATASHEET ICS7152 Description The ICS7152-01, -02, -11, and -12 are clock generators for EMI (Electro Magnetic Interference) reduction (see below for frequency ranges and multiplier ratios). Spectral peaks
Clock Jitter Definitions and Measurement Methods
January 2014 Clock Jitter Definitions and Measurement Methods 1 Introduction Jitter is the timing variations of a set of signal edges from their ideal values. Jitters in clock signals are typically caused
High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate
Application Report SLLA091 - November 2000 High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate Boyd Barrie, Huimin Xia ABSTRACT Wizard Branch, Bus Solution
Design Challenges for Adding Relative Humidity Sensors
Design Challenges for Adding Relative Humidity Sensors Introduction As more and more electronic components are finding their way into outdoor equipment and remote locations, the need for environmental
AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators
PCB Design Guidelines for Dual Power Supply Voltage Translators Jim Lepkowski ON Semiconductor Introduction The design of the PCB is an important factor in maximizing the performance of a dual power supply
HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER
HOW TO GET 23 BITS OF EFFECTIVE RESOLUTION FROM YOUR 24-BIT CONVERTER The ADS20 and ADS2 are precision, wide dynamic range, Σ A/D converters that have 24 bits of no missing code and up to 23 bits rms of
USER GUIDE. ATWINC1500B Hardware Design Guidelines - IEEE 802.11 b/g/n IoT Module. Atmel SmartConnect. Introduction
USER GUIDE ATWINC1500B Hardware Design Guidelines - IEEE 802.11 b/g/n IoT Module Atmel SmartConnect Introduction This document details the hardware design guidelines for a customer to design the Atmel
DRM compatible RF Tuner Unit DRT1
FEATURES DRM compatible RF Tuner Unit DRT1 High- Performance RF Tuner Frequency Range: 10 KHz to 30 MHz Input ICP3: +13,5dBm, typ. Noise Figure @ full gain: 14dB, typ. Receiver Factor: -0,5dB, typ. Input
QSG108: Blue Gecko Bluetooth Smart Software Quick-Start Guide
QSG108: Blue Gecko Bluetooth Smart Software Quick-Start Guide Blue Gecko Bluetooth Smart Software Quick-Start Guide This document walks you through the architecture and APIs of the Blue Gecko Bluetooth
AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE
BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE Introduction This application note describes the use of BELASIGNA 250 and BELASIGNA 300 in low bandwidth applications. The intended
USB FM Radio-RD USB FM RADIO USER S GUIDE. 1. USB FM Radio Setup. One-time set-up enables configuration of presets and region specific FM band
USB FM RADIO USER S GUIDE 1. USB FM Radio Setup Follow the instructions listed below to set up and configure the USB FM Radio. 1. Download the USB FM Radio Player from the Silicon Laboratories website
CAN bus ESD protection diode
Rev. 04 15 February 2008 Product data sheet 1. Product profile 1.1 General description in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package designed to protect two automotive Controller
AN655 R ANGE TEST APPLICATION FOR EZRADIO AND EZRADIOPRO. 1. Introduction. 2. Supported Radio Types
R ANGE TEST APPLICATION FOR EZRADIO AND EZRADIOPRO 1. Introduction The range evaluation demo provides an easy way to evaluate the link budget of EZRadio and EZRadioPRO devices by performing a range test
Using Pre-Emphasis and Equalization with Stratix GX
Introduction White Paper Using Pre-Emphasis and Equalization with Stratix GX New high speed serial interfaces provide a major benefit to designers looking to provide greater data bandwidth across the backplanes
AN335 USB DRIVER INSTALLATION UTILITY. 1. Description. 2. Installation. 2.1. Install Package
USB DRIVER INSTALLATION UTILITY 1. Description The driver installer and uninstaller combination is a customizable installation utility for Silicon Laboratories USB drivers. These utilities are completely
PESDxU1UT series. 1. Product profile. Ultra low capacitance ESD protection diode in SOT23 package. 1.1 General description. 1.
Rev. 02 20 August 2009 Product data sheet 1. Product profile 1.1 General description Ultra low capacitance ElectroStatic Discharge (ESD) protection diode in a SOT23 (TO-236AB) small SMD plastic package
AN10850. LPC1700 timer triggered memory to GPIO data transfer. Document information. LPC1700, GPIO, DMA, Timer0, Sleep Mode
LPC1700 timer triggered memory to GPIO data transfer Rev. 01 16 July 2009 Application note Document information Info Keywords Abstract Content LPC1700, GPIO, DMA, Timer0, Sleep Mode This application note
AN-837 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
Application Note. PCIEC-85 PCI Express Jumper. High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s
PCIEC-85 PCI Express Jumper High Speed Designs in PCI Express Applications Generation 3-8.0 GT/s Copyrights and Trademarks Copyright 2015, Inc. COPYRIGHTS, TRADEMARKS, and PATENTS Final Inch is a trademark
PAC52XX Clock Control Firmware Design
APPLICATION NOTE PAC52XX Clock Control Firmware Design TM Marc Sousa Senior Manager, Systems and Firmware www.active-semi.com Copyright 2014 Active-Semi, Inc. TABLE OF CONTENTS APPLICATION NOTE... 1 Table
CP2110-EK CP2110 EVALUATION KIT USER S GUIDE. 1. Kit Contents. 2. Relevant Documentation. 3. Software Setup
CP2110 EVALUATION KIT USER S GUIDE 1. Kit Contents The CP2110 Evaluation Kit contains the following items: CP2110 Evaluation Board RS232 Serial Cable USB Cable DVD Quick Start Guide 2. Relevant Documentation
Clocks Basics in 10 Minutes or Less. Edgar Pineda Field Applications Engineer Arrow Components Mexico
Clocks Basics in 10 Minutes or Less Edgar Pineda Field Applications Engineer Arrow Components Mexico Presentation Overview Introduction to Clocks Clock Functions Clock Parameters Common Applications Summary
Accelerometer and Gyroscope Design Guidelines
Application Note Accelerometer and Gyroscope Design Guidelines PURPOSE AND SCOPE This document provides high-level placement and layout guidelines for InvenSense MotionTracking devices. Every sensor has
AN588 ENERGY HARVESTING REFERENCE DESIGN USER S GUIDE. 1. Kit Contents. 2. Introduction. Figure 1. Energy Harvesting Sensor Node
ENERGY HARVESTING REFERENCE DESIGN USER S GUIDE 1. Kit Contents The RF to USB Reference Design contains the following items: Si1012 Energy Harvesting Wireless Sensor Node EZRadioPRO USB Dongle ToolStick
APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description
APPLICATION NOTE RF System Architecture Considerations ATAN0014 Description Highly integrated and advanced radio designs available today, such as the Atmel ATA5830 transceiver and Atmel ATA5780 receiver,
AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR131: Using the AVR s High-speed PWM APPLICATION NOTE Introduction This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available
Glitch Free Frequency Shifting Simplifies Timing Design in Consumer Applications
Glitch Free Frequency Shifting Simplifies Timing Design in Consumer Applications System designers face significant design challenges in developing solutions to meet increasingly stringent performance and
USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices
USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices White Paper April 2012 Document: 327216-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
PECL and LVDS Low Phase Noise VCXO (for 65-130MHz Fund Xtal) XIN XOUT N/C N/C CTRL VCON (0,0) OESEL (Pad #25) 1 (default)
Reserved BUF BUF 62 mil OESEL^ Reserved Reserved PL520-30 FEATURES 65MHz to 130MHz Fundamental Mode Crystals. Output range (no PLL): 65MHz 130MHz (3.3V). 65MHz 105MHz (2.5V). Low Injection Power for crystal
How To Develop A Toolstick
TOOLSTICK BASE ADAPTER USER S GUIDE 1. Handling Recommendations To enable development, the ToolStick Base Adapter and daughter cards are distributed without any protective plastics. To prevent damage to
4 OUTPUT PCIE GEN1/2 SYNTHESIZER IDT5V41186
DATASHEET IDT5V41186 Recommended Applications 4 Output synthesizer for PCIe Gen1/2 General Description The IDT5V41186 is a PCIe Gen2 compliant spread-spectrum-capable clock generator. The device has 4
AN3332 Application note
Application note Generating PWM signals using STM8S-DISCOVERY Application overview This application user manual provides a short description of how to use the Timer 2 peripheral (TIM2) to generate three
PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide
Application Note PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Introduction This document explains how to design a PCB with Prolific PL-277x SuperSpeed USB 3.0 SATA Bridge
LatticeECP3 High-Speed I/O Interface
April 2013 Introduction Technical Note TN1180 LatticeECP3 devices support high-speed I/O interfaces, including Double Data Rate (DDR) and Single Data Rate (SDR) interfaces, using the logic built into the
AN220 USB DRIVER CUSTOMIZATION
USB DRIVER CUSTOMIZATION Relevant Devices This application note applies to the following devices: CP2101/2/3, C8051F320/1/6/7, C8051F340/1/2/3/4/5/6/7 1. Introduction The information in this document and
Hardware Configurations for the i.mx Family USB Modules
Freescale Semiconductor Application Note Document Number: AN4136 Rev. 0, 06/2010 Hardware Configurations for the i.mx Family USB Modules by Multimedia Applications Division Freescale Semiconductor, Inc.
AN104 I NTEGRATING KEIL 8051 TOOLS INTO THE SILICON LABS IDE. 1. Introduction. 2. Key Points. 3. Create a Project in the Silicon Labs IDE
I NTEGRATING KEIL 8051 TOOLS INTO THE SILICON LABS IDE 1. Introduction This application note describes how to integrate the Keil 8051 Tools into the Silicon Labs IDE (Integrated Development Environment).
Intel architecture. Platform Basics. White Paper Todd Langley Systems Engineer/ Architect Intel Corporation. September 2010
White Paper Todd Langley Systems Engineer/ Architect Intel Corporation Intel architecture Platform Basics September 2010 324377 Executive Summary Creating an Intel architecture design encompasses some
AND8336. Design Examples of On Board Dual Supply Voltage Logic Translators. Prepared by: Jim Lepkowski ON Semiconductor. http://onsemi.
Design Examples of On Board Dual Supply Voltage Logic Translators Prepared by: Jim Lepkowski ON Semiconductor Introduction Logic translators can be used to connect ICs together that are located on the
MPC8245/MPC8241 Memory Clock Design Guidelines: Part 1
Freescale Semiconductor AN2164 Rev. 4.1, 03/2007 MPC8245/MPC8241 Memory Clock Design Guidelines: Part 1 by Esther C. Alexander RISC Applications, CPD Freescale Semiconductor, Inc. Austin, TX This application
Low Phase Noise XO (for HF Fund. and 3 rd O.T.) XIN XOUT N/C N/C OE CTRL N/C (0,0) Pad #9 OUTSEL
Reserved BUF BUF 62 mil Reserved Reserved FEATURES 100MHz to 200MHz Fund. or 3 rd OT Crystal. Output range: 100 200MHz (no multiplication). Available outputs: PECL, or LVDS. OESEL/OECTRL for both PECL
