Hadoop At Yahoo! (Some Statistics)
|
|
|
- Jack Baldwin
- 9 years ago
- Views:
Transcription
1 Session B: Hadoop
2 Hadoop At Yahoo! (Some Statistics) 25,000 + machines in 10+ clusters Largest cluster is 3,000 machines 3 Petabytes of data (compressed, unreplicated) users 100,000+ jobs/week 2
3 Sample Applications Data analysis is the inner loop of Web 2.0 Data Information Value Log processing: reporting, buzz Search index Machine learning: Spam filters Competitive intelligence 3
4 Prominent Hadoop Users Yahoo! A9.com EHarmony Facebook Fox Interactive Media IBM Quantcast Joost Last.fm Powerset New York Times Rackspace
5 Yahoo! Search Assist
6 Search Assist Insight: Related concepts appear close together in text corpus Input: Web pages 1 Billion Pages, 10K bytes each 10 TB of input data Output: List(word, List(related words)) 6
7 Search Assist 7 // Input: List(URL, Text) foreach URL in Input : Words = Tokenize(Text(URL)); foreach word in Tokens : Insert (word, Next(word, Tokens)) in Pairs; Insert (word, Previous(word, Tokens)) in Pairs; // Result: Pairs = List (word, RelatedWord) Group Pairs by word; // Result: List (word, List(RelatedWords) foreach word in Pairs : Count RelatedWords in GroupedPairs; // Result: List (word, List(RelatedWords, count)) foreach word in CountedPairs : Sort Pairs(word, *) descending by count; choose Top 5 Pairs; // Result: List (word, Top5(RelatedWords))
8 You Might Also Know
9 You Might Also Know Insight: You might also know Joe Smith if a lot of folks you know, know Joe Smith if you don t know Joe Smith already Numbers: 100 MM users Average connections per user is 100 9
10 You Might Also Know // Input: List(UserName, List(Connections)) foreach u in UserList : // 100 MM foreach x in Connections(u) : // 100 foreach y in Connections(x) : // 100 if (y not in Connections(u)) : Count(u, y)++; // 3 Trillion Iterations Sort (u,y) in descending order of Count(u,y); Choose Top 3 y; Store (u, {y0, y1, y2}) for serving; 10
11 Performance 101 Random accesses for each user Assume 1 ms per random access 100 ms per user 100 MM users 100 days on a single machine 11
12 Map & Reduce Primitives in Lisp (& Other functional languages) 1970s Google Paper mapreduce.html 12
13 Map Output_List = Map (Input_List) Square (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = (1, 4, 9, 16, 25, 36,49, 64, 81, 100) 13
14 Reduce Output_Element = Reduce (Input_List) Sum (1, 4, 9, 16, 25, 36,49, 64, 81, 100) =
15 Parallelism Map is inherently parallel Each list element processed independently Reduce is inherently sequential Unless processing multiple lists Grouping to produce multiple lists 15
16 Search Assist Map // Input: Pairs = Tokenize_And_Pair ( Text ( Input ) ) Output = { (apache, hadoop) (hadoop, mapreduce) (hadoop, streaming) (hadoop, pig) (apache, pig) (hadoop, DFS) (streaming, commandline) (hadoop, java) (DFS, namenode) (datanode, block) (replication, default)... } 16
17 Search Assist Reduce // Input: GroupedList (word, GroupedList(words)) CountedPairs = CountOccurrences (word, RelatedWords) Output = { (hadoop, apache, 7) (hadoop, DFS, 3) (hadoop, streaming, 4) (hadoop, mapreduce, 9)... } 17
18 Issues with Large Data Map Parallelism: Splitting input data Shipping input data Reduce Parallelism: Grouping related data Dealing with failures Load imbalance 18
19 Apache Hadoop January 2006: Subproject of Lucene January 2008: Top-level Apache project Latest Version: 0.20.x Stable Version: 0.18.x Major contributors: Yahoo!, Facebook, Powerset 19
20 Apache Hadoop Reliable, Performant Distributed file system MapReduce Programming framework Sub-Projects: HBase, Hive, Pig, Zookeeper, Chukwa Related Projects: Mahout, Hama, Cascading, Scribe, Cassandra, Dumbo, Hypertable, KosmosFS 20
21 Problem: Bandwidth to Data Scan 100TB Datasets on 1000 node cluster Remote 10MB/s = 165 mins Local MB/s = 33-8 mins Moving computation is more efficient than moving data Need visibility into data placement 21
22 Problem: Scaling Reliably Failure is not an option, it s a rule! 1000 nodes, MTBF < 1 day 4000 disks, 8000 cores, 25 switches, 1000 NICs, 2000 DIMMS (16TB RAM) Need fault tolerant store with reasonable availability guarantees Handle hardware faults transparently 22
23 Hadoop Goals Scalable: Petabytes (10 15 Bytes) of data on thousands on nodes Economical: Commodity components only Reliable Engineering reliability into every application is expensive 23
24 HDFS Data is organized into files and directories Files are divided into uniform sized blocks (default 64MB) and distributed across cluster nodes HDFS exposes block placement so that computation can be migrated to data 24
25 HDFS Blocks are replicated (default 3) to handle hardware failure Replication for performance and fault tolerance (Rack-Aware placement) HDFS keeps checksums of data for corruption detection and recovery 25
26 HDFS Master-Worker Architecture Single NameNode Many (Thousands) DataNodes 26
27 HDFS Master (NameNode) Manages filesystem namespace File metadata (i.e. inode ) Mapping inode to list of blocks + locations Authorization & Authentication Checkpoint & journal namespace changes 27
28 Namenode Mapping of datanode to list of blocks Monitor datanode health Replicate missing blocks Keeps ALL namespace in memory 60M objects (File/Block) in 16GB 28
29 Datanodes Handle block storage on multiple volumes & block integrity Clients access the blocks directly from data nodes Periodically send heartbeats and block reports to Namenode Blocks are stored as underlying OS s files 29
30 HDFS Architecture
31 Replication A file s replication factor can be changed dynamically (default 3) Block placement is rack aware Block under-replication & over-replication is detected by Namenode Balancer application rebalances blocks to balance datanode utilization 31
32 Accessing HDFS hadoop fs [-fs <local file system URI>] [-conf <configuration file>] [-D <property=value>] [-ls <path>] [-lsr <path>] [-du <path>] [-dus <path>] [-mv <src> <dst>] [-cp <src> <dst>] [-rm <src>] [-rmr <src>] [-put <localsrc>... <dst>] [-copyfromlocal <localsrc>... <dst>] [-movefromlocal <localsrc>... <dst>] [-get [-ignorecrc] [-crc] <src> <localdst> [-getmerge <src> <localdst> [addnl]] [-cat <src>] [-copytolocal [-ignorecrc] [-crc] <src> <localdst>] [-movetolocal <src> <localdst>] [-mkdir <path>] [-report] [-setrep [-R] [-w] <rep> <path/file>] [-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>] [-tail [-f] <path>] [-text <path>] [-chmod [-R] <MODE[,MODE]... OCTALMODE> PATH...] [-chown [-R] [OWNER][:[GROUP]] PATH...] [-chgrp [-R] GROUP PATH...] [-count[-q] <path>] [-help [cmd]] 32
33 HDFS Java API // Get default file system instance fs = Filesystem.get(new Configuration()); // Or Get file system instance from URIfs = Filesystem.get(URI.create(uri), new Configuration()); // Create, open, list, OutputStream out = fs.create(path, ); InputStream in = fs.open(path, ); boolean isdone = fs.delete(path, recursive); FileStatus[] fstat = fs.liststatus(path); 33
34 Hadoop MapReduce Record = (Key, Value) Key : Comparable, Serializable Value: Serializable Input, Map, Shuffle, Reduce, Output 34
35 Seems Familiar? cat /var/log/auth.log* \ grep session opened cut -d -f10 \ sort \ uniq -c > \ ~/userlist 35
36 Map Input: (Key1, Value1) Output: List(Key2, Value2) Projections, Filtering, Transformation 36
37 Shuffle Input: List(Key2, Value2) Output Sort(Partition(List(Key2, List(Value2)))) Provided by Hadoop 37
38 Reduce Input: List(Key2, List(Value2)) Output: List(Key3, Value3) Aggregation 38
39 Example: Unigrams Input: Huge text corpus Wikipedia Articles (40GB uncompressed) Output: List of words sorted in descending order of frequency 39
40 Unigrams $ cat ~/wikipedia.txt \ sed -e 's/ /\n/g' grep. \ sort \ uniq -c > \ ~/frequencies.txt $ cat ~/frequencies.txt \ # cat \ sort -n -k1,1 -r # cat > \ ~/unigrams.txt 40
41 MR for Unigrams mapper (filename, file-contents): for each word in file-contents: emit (word, 1) reducer (word, values): sum = 0 for each value in values: sum = sum + value emit (word, sum) 41
42 MR for Unigrams mapper (word, frequency): emit (frequency, word) reducer (frequency, words): for each word in words: emit (word, frequency) 42
43 MR Dataflow
44 Pipeline Details
45 Hadoop Streaming Hadoop is written in Java Java MapReduce code is native What about Non-Java Programmers? Perl, Python, Shell, R grep, sed, awk, uniq as Mappers/Reducers Text Input and Output 45
46 Hadoop Streaming Thin Java wrapper for Map & Reduce Tasks Forks actual Mapper & Reducer IPC via stdin, stdout, stderr Key.toString() \t Value.toString() \n Slower than Java programs Allows for quick prototyping / debugging 46
47 Hadoop Streaming $ bin/hadoop jar hadoop-streaming.jar \ -input in-files -output out-dir \ -mapper mapper.sh -reducer reducer.sh # mapper.sh sed -e 's/ /\n/g' grep. # reducer.sh uniq -c awk '{print $2 "\t" $1}' 47
48 MR Architecture
49 Job Submission
50 Initialization
51 Scheduling
52 Execution
53 Reduce Task
54 Session C: Pig 54
55 What is Pig? System for processing large semistructured data sets using Hadoop MapReduce platform Pig Latin: High-level procedural language Pig Engine: Parser, Optimizer and distributed query execution 55
56 Pig vs SQL Pig is procedural (How) Nested relational data model Schema is optional Scan-centric analytic workloads Limited query optimization SQL is declarative Flat relational data model Schema is required OLTP + OLAP workloads Significant opportunity for query optimization
57 Pig vs Hadoop Increase programmer productivity Decrease duplication of effort Insulates against Hadoop complexity Version Upgrades JobConf configuration tuning Job Chains 57
58 Example Input: User profiles, Page visits Find the top 5 most visited pages by users aged 18-25
59 In Native Hadoop
60 In Pig Users = load users as (name, age); Filtered = filter Users by age >= 18 and age <= 25; Pages = load pages as (user, url); Joined = join Filtered by name, Pages by user; Grouped = group Joined by url; Summed = foreach Grouped generate group, COUNT(Joined) as clicks; Sorted = order Summed by clicks desc; Top5 = limit Sorted 5; store Top5 into top5sites ; 60
61 Natural Fit
62 Comparison
63 Flexibility & Control Easy to plug-in user code Metadata is not mandatory Pig does not impose a data model on you Fine grained control Complex data types 63
64 Pig Data Types Tuple: Ordered set of fields Field can be simple or complex type Nested relational model Bag: Collection of tuples Can contain duplicates Map: Set of (key, value) pairs 64
65 Simple data types int : 42 long : 42L float : f double : chararray : UTF-8 String bytearray : blob 65
66 NULL Same as SQL: unknown or non-existent Loader inserts NULL for empty data Operations can produce NULL divide by 0 dereferencing a non-existent map key 66
67 Expressions A = LOAD data.txt AS (f1:int, f2:{t:(n1:int, n2:int)}, f3: map[] ) A = { } (1, -- A.f1 or A.$0 { (2, 3), (4, 6) }, -- A.f2 or A.$1 [ yahoo # mail ] -- A.f3 or A.$2 67
68 Counting Word Frequencies Input: Large text document Process: Load the file For each line, generate word tokens Group by word Count words in each group 68
69 Load myinput = load '/user/milindb/text.txt' USING TextLoader() as (myword:chararray); (program program) (pig pig) (program pig) (hadoop pig) (latin latin) (pig latin) 69
70 Tokenize words = FOREACH myinput GENERATE FLATTEN(TOKENIZE(*)); (program) (program) (pig) (pig) (program) (pig) (hadoop) (pig) (latin) (latin) (pig) (latin) 70
71 Group grouped = GROUP words BY $0; (pig, {(pig), (pig), (pig), (pig), (pig)}) (latin, {(latin), (latin), (latin)}) (hadoop, {(hadoop)}) (program, {(program), (program), (program)}) 71
72 Count counts = FOREACH grouped GENERATE group, COUNT(words); (pig, 5L) (latin, 3L) (hadoop, 1L) (program, 3L) 72
73 Store store counts into /user/milindb/output using PigStorage(); pig 5 latin 3 hadoop 1 program 3 73
74 Example: Log Processing -- use a custom loader Logs = load apachelogfile using CommonLogLoader() as (addr, logname, user, time, method, uri, p, bytes); -- apply your own function Cleaned = foreach Logs generate addr, canonicalize(url) as url; Grouped = group Cleaned by url; -- run the result through a binary Analyzed = stream Grouped through urlanalyzer.py ; store Analyzed into analyzedurls ; 74
75 Schema on the fly -- declare your types Grades = load studentgrades as (name: chararray, age: int, gpa: double); Good = filter Grades by age > 18 and gpa > 3.0; -- ordering will be by type Sorted = order Good by gpa; store Sorted into smartgrownups ; 75
76 Nested Data Logs = load weblogs as (url, userid); Grouped = group Logs by url; -- Code inside {} will be applied to each -- value in turn. DisinctCount = foreach Grouped { Userid = Logs.userid; DistinctUsers = distinct Userid; generate group, COUNT(DistinctUsers); } store DistinctCount into distinctcount ; 76
77 Pig Architecture
78 Pig Frontend
79 Logical Plan Directed Acyclic Graph Logical Operator as Node Data flow as edges Logical Operators One per Pig statement Type checking with Schema 79
80 Pig Statements Load Read data from the file system Store Write data to the file system Dump Write data to stdout
81 Pig Statements Foreach..Generate Filter Stream..through Apply expression to each record and generate one or more records Apply predicate to each record and remove records where false Stream records through user-provided binary
82 Pig Statements Group/CoGroup Join Collect records with the same key from one or more inputs Join two or more inputs based on a key Order..by Sort records based on a key
83 Physical Plan Pig supports two back-ends Local Hadoop MapReduce 1:1 correspondence with most logical operators Except Distinct, Group, Cogroup, Join etc 83
84 MapReduce Plan Detect Map-Reduce boundaries Group, Cogroup, Order, Distinct Coalesce operators into Map and Reduce stages Job.jar is created and submitted to Hadoop JobControl 84
85 Lazy Execution Nothing really executes until you request output Store, Dump, Explain, Describe, Illustrate Advantages In-memory pipelining Filter re-ordering across multiple commands 85
86 Parallelism Split-wise parallelism on Map-side operators By default, 1 reducer PARALLEL keyword group, cogroup, cross, join, distinct, order 86
87 Running Pig $ pig grunt > A = load students as (name, age, gpa); grunt > B = filter A by gpa > 3.5 ; grunt > store B into good_students ; grunt > dump A; (jessica thompson, 73, 1.63) (victor zipper, 23, 2.43) (rachel hernandez, 40, 3.60) grunt > describe A; A: (name, age, gpa ) 87
88 Running Pig Batch mode $ pig myscript.pig Local mode $ pig x local Java mode (embed pig statements in java) Keep pig.jar in the class path 88
89 SQL to Pig SQL Pig...FROM MyTable... A = LOAD MyTable USING PigStorage( \t ) AS (col1:int, col2:int, col3:int); SELECT col1 + col2, col3... B = FOREACH A GENERATE col1 + col2, col3;...where col2 > 2 C = FILTER B by col2 > 2;
90 SQL to Pig SQL Pig SELECT col1, col2, sum(col3) FROM X GROUP BY col1, col2 D = GROUP A BY (col1, col2) E = FOREACH D GENERATE FLATTEN(group), SUM(A.col3);...HAVING sum(col3) > 5 F = FILTER E BY $2 > 5;...ORDER BY col1 G = ORDER F BY $0;
91 SQL to Pig SQL Pig SELECT DISTINCT col1 from X I = FOREACH A GENERATE col1; J = DISTINCT I; SELECT col1, count(distinct col2) FROM X GROUP BY col1 K = GROUP A BY col1; L = FOREACH K { M = DISTINCT A.col2; GENERATE FLATTEN(group), count(m); }
92 SQL to Pig SQL Pig N = JOIN A by col1 INNER, B by col1 INNER; O = FOREACH N GENERATE A.col1, B.col3; SELECT A.col1, B. col3 FROM A JOIN B USING (col1) -- Or N = COGROUP A by col1 INNER, B by col1 INNER; O = FOREACH N GENERATE flatten(a), flatten(b); P = FOREACH O GENERATE A.col1, B.col3
Introduction to Apache Hadoop & Pig. Milind Bhandarkar ([email protected]) Y!IM: gridsolutions
Introduction to Apache Hadoop & Pig Milind Bhandarkar ([email protected]) Y!IM: gridsolutions Agenda Apache Hadoop Map-Reduce Distributed File System Writing Scalable Applications Apache Pig Q & A
MapReduce Programming with Apache Hadoop Viraj Bhat [email protected]
MapReduce Programming with Apache Hadoop Viraj Bhat [email protected] - 1 - Agenda Session I and II (8-12pm) Introduction Hadoop Distributed File System (HDFS) Hadoop Map-Reduce Programming Hadoop Architecture
CS242 PROJECT. Presented by Moloud Shahbazi Spring 2015
CS242 PROJECT Presented by Moloud Shahbazi Spring 2015 AGENDA Project Overview Data Collection Indexing Big Data Processing PROJECT- PART1 1.1 Data Collection: 5G < data size < 10G Deliverables: Document
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
Lecture 2 (08/31, 09/02, 09/09): Hadoop. Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015
Lecture 2 (08/31, 09/02, 09/09): Hadoop Decisions, Operations & Information Technologies Robert H. Smith School of Business Fall, 2015 K. Zhang BUDT 758 What we ll cover Overview Architecture o Hadoop
HDFS File System Shell Guide
Table of contents 1 Overview...3 1.1 cat... 3 1.2 chgrp... 3 1.3 chmod... 3 1.4 chown... 4 1.5 copyfromlocal...4 1.6 copytolocal...4 1.7 count... 4 1.8 cp... 4 1.9 du... 5 1.10 dus...5 1.11 expunge...5
Hadoop Shell Commands
Table of contents 1 FS Shell...3 1.1 cat... 3 1.2 chgrp... 3 1.3 chmod... 3 1.4 chown... 4 1.5 copyfromlocal...4 1.6 copytolocal...4 1.7 cp... 4 1.8 du... 4 1.9 dus...5 1.10 expunge...5 1.11 get...5 1.12
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed
Hadoop Shell Commands
Table of contents 1 DFShell... 3 2 cat...3 3 chgrp...3 4 chmod...3 5 chown...4 6 copyfromlocal... 4 7 copytolocal... 4 8 cp...4 9 du...4 10 dus... 5 11 expunge... 5 12 get... 5 13 getmerge... 5 14 ls...
File System Shell Guide
Table of contents 1 Overview...3 1.1 cat... 3 1.2 chgrp... 3 1.3 chmod... 3 1.4 chown... 4 1.5 copyfromlocal...4 1.6 copytolocal...4 1.7 count... 4 1.8 cp... 5 1.9 du... 5 1.10 dus...5 1.11 expunge...6
Using Hadoop for Webscale Computing. Ajay Anand Yahoo! [email protected] Usenix 2008
Using Hadoop for Webscale Computing Ajay Anand Yahoo! [email protected] Agenda The Problem Solution Approach / Introduction to Hadoop HDFS File System Map Reduce Programming Pig Hadoop implementation
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected]
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected] Who Am I? Yahoo! Architect on Hadoop Map/Reduce Design, review, and implement features in Hadoop Working on Hadoop full time since Feb
Hadoop and its Usage at Facebook. Dhruba Borthakur [email protected], June 22 rd, 2009
Hadoop and its Usage at Facebook Dhruba Borthakur [email protected], June 22 rd, 2009 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed on Hadoop Distributed File System Facebook
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
Data Science Analytics & Research Centre
Data Science Analytics & Research Centre Data Science Analytics & Research Centre 1 Big Data Big Data Overview Characteristics Applications & Use Case HDFS Hadoop Distributed File System (HDFS) Overview
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
Apache Hadoop FileSystem and its Usage in Facebook
Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs
CS54100: Database Systems
CS54100: Database Systems Cloud Databases: The Next Post- Relational World 18 April 2012 Prof. Chris Clifton Beyond RDBMS The Relational Model is too limiting! Simple data model doesn t capture semantics
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software?
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? 可 以 跟 資 料 庫 結 合 嘛? Can Hadoop work with Databases? 開 發 者 們 有 聽 到
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture
Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2012/13
Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2012/13 Hadoop Ecosystem Overview of this Lecture Module Background Google MapReduce The Hadoop Ecosystem Core components: Hadoop
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
HDFS Under the Hood. Sanjay Radia. [email protected] Grid Computing, Hadoop Yahoo Inc.
HDFS Under the Hood Sanjay Radia [email protected] Grid Computing, Hadoop Yahoo Inc. 1 Outline Overview of Hadoop, an open source project Design of HDFS On going work 2 Hadoop Hadoop provides a framework
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Distributed Filesystems
Distributed Filesystems Amir H. Payberah Swedish Institute of Computer Science [email protected] April 8, 2014 Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 1 / 32 What is Filesystem? Controls
Big Data Management and NoSQL Databases
NDBI040 Big Data Management and NoSQL Databases Lecture 3. Apache Hadoop Doc. RNDr. Irena Holubova, Ph.D. [email protected] http://www.ksi.mff.cuni.cz/~holubova/ndbi040/ Apache Hadoop Open-source
RDMA for Apache Hadoop 0.9.9 User Guide
0.9.9 User Guide HIGH-PERFORMANCE BIG DATA TEAM http://hibd.cse.ohio-state.edu NETWORK-BASED COMPUTING LABORATORY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING THE OHIO STATE UNIVERSITY Copyright (c)
Introduction to HDFS. Prasanth Kothuri, CERN
Prasanth Kothuri, CERN 2 What s HDFS HDFS is a distributed file system that is fault tolerant, scalable and extremely easy to expand. HDFS is the primary distributed storage for Hadoop applications. HDFS
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
COSC 6397 Big Data Analytics. 2 nd homework assignment Pig and Hive. Edgar Gabriel Spring 2015
COSC 6397 Big Data Analytics 2 nd homework assignment Pig and Hive Edgar Gabriel Spring 2015 2 nd Homework Rules Each student should deliver Source code (.java files) Documentation (.pdf,.doc,.tex or.txt
Apache Hadoop FileSystem Internals
Apache Hadoop FileSystem Internals Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Storage Developer Conference, San Jose September 22, 2010 http://www.facebook.com/hadoopfs
Big Data Too Big To Ignore
Big Data Too Big To Ignore Geert! Big Data Consultant and Manager! Currently finishing a 3 rd Big Data project! IBM & Cloudera Certified! IBM & Microsoft Big Data Partner 2 Agenda! Defining Big Data! Introduction
and HDFS for Big Data Applications Serge Blazhievsky Nice Systems
Introduction PRESENTATION to Hadoop, TITLE GOES MapReduce HERE and HDFS for Big Data Applications Serge Blazhievsky Nice Systems SNIA Legal Notice The material contained in this tutorial is copyrighted
Design and Evolution of the Apache Hadoop File System(HDFS)
Design and Evolution of the Apache Hadoop File System(HDFS) Dhruba Borthakur Engineer@Facebook Committer@Apache HDFS SDC, Sept 19 2011 Outline Introduction Yet another file-system, why? Goals of Hadoop
5 HDFS - Hadoop Distributed System
5 HDFS - Hadoop Distributed System 5.1 Definition and Remarks HDFS is a file system designed for storing very large files with streaming data access patterns running on clusters of commoditive hardware.
EXPERIMENTATION. HARRISON CARRANZA School of Computer Science and Mathematics
BIG DATA WITH HADOOP EXPERIMENTATION HARRISON CARRANZA Marist College APARICIO CARRANZA NYC College of Technology CUNY ECC Conference 2016 Poughkeepsie, NY, June 12-14, 2016 Marist College AGENDA Contents
Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela
Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Hadoop Distributed File System. Dhruba Borthakur June, 2007
Hadoop Distributed File System Dhruba Borthakur June, 2007 Goals of HDFS Very Large Distributed File System 10K nodes, 100 million files, 10 PB Assumes Commodity Hardware Files are replicated to handle
Extreme computing lab exercises Session one
Extreme computing lab exercises Session one Michail Basios ([email protected]) Stratis Viglas ([email protected]) 1 Getting started First you need to access the machine where you will be doing all
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
HDFS. Hadoop Distributed File System
HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files
Introduction to HDFS. Prasanth Kothuri, CERN
Prasanth Kothuri, CERN 2 What s HDFS HDFS is a distributed file system that is fault tolerant, scalable and extremely easy to expand. HDFS is the primary distributed storage for Hadoop applications. Hadoop
Introduction to MapReduce and Hadoop
Introduction to MapReduce and Hadoop Jie Tao Karlsruhe Institute of Technology [email protected] Die Kooperation von Why Map/Reduce? Massive data Can not be stored on a single machine Takes too long to process
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.
Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software
Hadoop Distributed File System (HDFS)
1 Hadoop Distributed File System (HDFS) Thomas Kiencke Institute of Telematics, University of Lübeck, Germany Abstract The Internet has become an important part in our life. As a consequence, companies
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Extreme computing lab exercises Session one
Extreme computing lab exercises Session one Miles Osborne (original: Sasa Petrovic) October 23, 2012 1 Getting started First you need to access the machine where you will be doing all the work. Do this
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
HDFS Architecture Guide
by Dhruba Borthakur Table of contents 1 Introduction... 3 2 Assumptions and Goals... 3 2.1 Hardware Failure... 3 2.2 Streaming Data Access...3 2.3 Large Data Sets... 3 2.4 Simple Coherency Model...3 2.5
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Big Data and Analytics by Seema Acharya and Subhashini Chellappan Copyright 2015, WILEY INDIA PVT. LTD. Introduction to Pig
Introduction to Pig Agenda What is Pig? Key Features of Pig The Anatomy of Pig Pig on Hadoop Pig Philosophy Pig Latin Overview Pig Latin Statements Pig Latin: Identifiers Pig Latin: Comments Data Types
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 15
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 15 Big Data Management V (Big-data Analytics / Map-Reduce) Chapter 16 and 19: Abideboul et. Al. Demetris
HADOOP MOCK TEST HADOOP MOCK TEST II
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
Chase Wu New Jersey Ins0tute of Technology
CS 698: Special Topics in Big Data Chapter 4. Big Data Analytics Platforms Chase Wu New Jersey Ins0tute of Technology Some of the slides have been provided through the courtesy of Dr. Ching-Yung Lin at
Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind
Big Data. Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich
Big Data Donald Kossmann & Nesime Tatbul Systems Group ETH Zurich MapReduce & Hadoop The new world of Big Data (programming model) Overview of this Lecture Module Background Google MapReduce The Hadoop
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today Marco Nicosia Grid Services Operations [email protected] What is Apache Hadoop? Distributed File System and Map-Reduce programming platform
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop Why Another Data Warehousing System? Data, data and more data 200GB per day in March 2008 12+TB(compressed) raw data per day today Trends
Introduction to Pig. Content developed and presented by: 2009 Cloudera, Inc.
Introduction to Pig Content developed and presented by: Outline Motivation Background Components How it Works with Map Reduce Pig Latin by Example Wrap up & Conclusions Motivation Map Reduce is very powerful,
Processing of massive data: MapReduce. 2. Hadoop. New Trends In Distributed Systems MSc Software and Systems
Processing of massive data: MapReduce 2. Hadoop 1 MapReduce Implementations Google were the first that applied MapReduce for big data analysis Their idea was introduced in their seminal paper MapReduce:
TP1: Getting Started with Hadoop
TP1: Getting Started with Hadoop Alexandru Costan MapReduce has emerged as a leading programming model for data-intensive computing. It was originally proposed by Google to simplify development of web
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
The Hadoop Distributed File System
The Hadoop Distributed File System Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo! Sunnyvale, California USA {Shv, Hairong, SRadia, Chansler}@Yahoo-Inc.com Presenter: Alex Hu HDFS
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
Comparative analysis of mapreduce job by keeping data constant and varying cluster size technique
Comparative analysis of mapreduce job by keeping data constant and varying cluster size technique Mahesh Maurya a, Sunita Mahajan b * a Research Scholar, JJT University, MPSTME, Mumbai, India,[email protected]
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
Hadoop Hands-On Exercises
Hadoop Hands-On Exercises Lawrence Berkeley National Lab July 2011 We will Training accounts/user Agreement forms Test access to carver HDFS commands Monitoring Run the word count example Simple streaming
How To Use Hadoop
Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop
Lecture 10 - Functional programming: Hadoop and MapReduce
Lecture 10 - Functional programming: Hadoop and MapReduce Sohan Dharmaraja Sohan Dharmaraja Lecture 10 - Functional programming: Hadoop and MapReduce 1 / 41 For today Big Data and Text analytics Functional
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
BIG DATA HANDS-ON WORKSHOP Data Manipulation with Hive and Pig
BIG DATA HANDS-ON WORKSHOP Data Manipulation with Hive and Pig Contents Acknowledgements... 1 Introduction to Hive and Pig... 2 Setup... 2 Exercise 1 Load Avro data into HDFS... 2 Exercise 2 Define an
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
