Chapter 7: Network security
|
|
|
- Aubrey Park
- 9 years ago
- Views:
Transcription
1 Chapter 7: Network security Foundations: what is security? cryptography authentication message integrity key distribution and certification Security in practice: application layer: secure transport layer: Internet commerce, SSL, SET network layer: IP security 7: Network Security 1
2 Friends and enemies: Alice, Bob, Trudy Figure 7.1 goes here well-known in network security world Bob, Alice (lovers!) want to communicate securely Trudy, the intruder may intercept, delete, add messages 7: Network Security 2
3 What is network security? Secrecy: only sender, intended receiver should understand msg contents sender encrypts msg receiver decrypts msg Authentication: sender, receiver want to confirm identity of each other Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection 7: Network Security 3
4 Internet security threats Packet sniffing: broadcast media promiscuous NIC reads all packets passing by can read all unencrypted data (e.g. passwords) e.g.: C sniffs B s packets A C src:b dest:a payload B 7: Network Security 4
5 Internet security threats IP Spoofing: can generate raw IP packets directly from application, putting any value into IP source address field receiver can t tell if source is spoofed e.g.: C pretends to be B A C src:b dest:a payload B 7: Network Security 5
6 Internet security threats Denial of service (DOS): flood of maliciously generated packets swamp receiver Distributed DOS (DDOS): multiple coordinated sources swamp receiver e.g., C and remote host SYN-attack A A C SYN SYN SYN SYN SYN SYN SYN B 7: Network Security 6
7 The language of cryptography plaintext K A K B plaintext ciphertext Figure 7.3 goes here symmetric key crypto: sender, receiver keys identical public-key crypto: encrypt key public, decrypt key secret 7: Network Security 7
8 Symmetric key cryptography substitution cipher: substituting one thing for another monoalphabetic cipher: substitute one letter for another plaintext: ciphertext: abcdefghijklmnopqrstuvwxyz mnbvcxzasdfghjklpoiuytrewq E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc Q: How hard to break this simple cipher?: brute force (how hard?) other? 7: Network Security 8
9 Symmetric key crypto: DES DES: Data Encryption Standard US encryption standard [NIST 1993] 56-bit symmetric key, 64 bit plaintext input How secure is DES? DES Challenge: 56-bit-key-encrypted phrase ( Strong cryptography makes the world a safer place ) decrypted (brute force) in 4 months no known backdoor decryption approach making DES more secure use three keys sequentially (3-DES) on each datum use cipher-block chaining 7: Network Security 9
10 Public Key Cryptography symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if never met )? public key cryptography radically different approach [Diffie- Hellman76, RSA78] sender, receiver do not share secret key encryption key public (known to all) decryption key private (known only to receiver) 7: Network Security 10
11 Public key cryptography Figure 7.7 goes here 7: Network Security 11
12 Public key encryption algorithms Two inter-related requirements: 1 2 need d ( ) and e ( ) such that B.. d (e (m)) = m B B need public and private keys.. for d ( ) and e ( ) B B B RSA: Rivest, Shamir, Adelson algorithm 7: Network Security 12
13 RSA example: Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively prime). d=29 (so ed-1 exactly divisible by z. encrypt: letter m m e c = m e mod n l decrypt: c c d m = c d mod n letter l 7: Network Security 13
14 Authentication Goal: Bob wants Alice to prove her identity to him Protocol ap1.0: Alice says I am Alice Failure scenario?? 7: Network Security 14
15 Authentication: another try Protocol ap2.0: Alice says I am Alice and sends her IP address along to prove it. Failure scenario?? 7: Network Security 15
16 Authentication: another try Protocol ap3.0: Alice says I am Alice and sends her secret password to prove it. Failure scenario? 7: Network Security 16
17 Authentication: yet another try Protocol ap3.1: Alice says I am Alice and sends her encrypted secret password to prove it. I am Alice encrypt(password) Failure scenario? 7: Network Security 17
18 Authentication: yet another try Goal: avoid playback attack Nonce: number (R) used onlyonce in a lifetime ap4.0: to prove Alice live, Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key Figure 7.11 goes here Failures, drawbacks? 7: Network Security 18
19 Authentication: ap5.0 ap4.0 requires shared symmetric key problem: how do Bob, Alice agree on key can we authenticate using public key techniques? ap5.0: use nonce, public key cryptography Figure 7.12 goes here 7: Network Security 19
20 ap5.0: security hole Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice) Figure 7.14 goes here Need certified public keys (more later ) 7: Network Security 20
21 Digital Signatures Cryptographic technique analogous to handwritten signatures. Sender (Bob) digitally signs document, establishing he is document owner/creator. Verifiable, nonforgeable: recipient (Alice) can verify that Bob, and no one else, signed document. Simple digital signature for message m: Bob encrypts m with his public key d B, creating signed message, d B (m). Bob sends m and d B (m) to Alice. 7: Network Security 21
22 Digital Signatures (more) Suppose Alice receives msg m, and digital signature d B (m) Alice verifies m signed by Bob by applying Bob s public key e B to d B (m) then checks e B (d B (m) ) = m. If e B (d B (m) ) = m, whoever signed m must have used Bob s private key. Alice thus verifies that: Bob signed m. No one else signed m. Bob signed m and not m. Non-repudiation: Alice can take m, and signature d B (m) to court and prove that Bob signed m. 7: Network Security 22
23 Message Digests Computationally expensive to public-key-encrypt long messages Goal: fixed-length,easy to compute digital signature, fingerprint apply hash function H to m, get fixed size message digest, H(m). Hash function properties: Many-to-1 Produces fixed-size msg digest (fingerprint) Given message digest x, computationally infeasible to find m such that x = H(m) computationally infeasible to find any two messages m and m such that H(m) = H(m ). 7: Network Security 23
24 Digital signature = Signed message digest Bob sends digitally signed message: Alice verifies signature and integrity of digitally signed message: 7: Network Security 24
25 Hash Function Algorithms Internet checksum would make a poor message digest. Too easy to find two messages with same checksum. MD5 hash function widely used. Computes 128-bit message digest in 4-step process. arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x. SHA-1 is also used. US standard 160-bit message digest 7: Network Security 25
26 Trusted Intermediaries Problem: How do two entities establish shared secret key over network? Solution: trusted key distribution center (KDC) acting as intermediary between entities Problem: When Alice obtains Bob s public key (from web site, e- mail, diskette), how does she know it is Bob s public key, not Trudy s? Solution: trusted certification authority (CA) 7: Network Security 26
27 Key Distribution Center (KDC) Alice,Bob need shared symmetric key. KDC: server shares different secret key with each registered user. Alice, Bob know own symmetric keys, K A-KDC K B-KDC, for communicating with KDC. Alice communicates with KDC, gets session key R1, and K B-KDC (A,R1) Alice sends Bob K B-KDC (A,R1), Bob extracts R1 Alice, Bob now share the symmetric key R1. 7: Network Security 27
28 Certification Authorities Certification authority (CA) binds public key to particular entity. Entity (person, router, etc.) can register its public key with CA. Entity provides proof of identity to CA. CA creates certificate binding entity to public key. Certificate digitally signed by CA. When Alice wants Bob s public key: gets Bob s certificate (Bob or elsewhere). Apply CA s public key to Bob s certificate, get Bob s public key 7: Network Security 28
29 Secure Alice wants to send secret message, m, to Bob. generates random symmetric private key, K S. encrypts message with K S also encrypts K S with Bob s public key. sends both K S (m) and e B (K S ) to Bob. 7: Network Security 29
30 Secure (continued) Alice wants to provide sender authentication message integrity. Alice digitally signs message. sends both message (in the clear) and digital signature. 7: Network Security 30
31 Secure (continued) Alice wants to provide secrecy, sender authentication, message integrity. Note: Alice uses both her private key, Bob s public key. 7: Network Security 31
What is network security?
Network security Network Security Srinidhi Varadarajan Foundations: what is security? cryptography authentication message integrity key distribution and certification Security in practice: application
SECURITY IN NETWORKS
SECURITY IN NETWORKS GOALS Understand principles of network security: Cryptography and its many uses beyond confidentiality Authentication Message integrity Security in practice: Security in application,
Network Security. HIT Shimrit Tzur-David
Network Security HIT Shimrit Tzur-David 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key
Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Public Key Cryptography symmetric key crypto v requires sender, receiver know shared secret
Chapter 8 Security. IC322 Fall 2014. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012
Chapter 8 Security IC322 Fall 2014 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose and K.W. Ross, All
Network Security (2) CPSC 441 Department of Computer Science University of Calgary
Network Security (2) CPSC 441 Department of Computer Science University of Calgary 1 Friends and enemies: Alice, Bob, Trudy well-known in network security world Bob, Alice (lovers!) want to communicate
Principles of Network Security
he Network Security Model Bob and lice want to communicate securely. rudy (the adversary) has access to the channel. lice channel data, control s Bob Kai Shen data secure sender secure receiver data rudy
Security. Friends and Enemies. Overview Plaintext Cryptography functions. Secret Key (DES) Symmetric Key
Friends and Enemies Security Outline Encryption lgorithms Protocols Message Integrity Protocols Key Distribution Firewalls Figure 7.1 goes here ob, lice want to communicate securely Trudy, the intruder
What is network security?
hapter 7: Network security Founations: what is security? cryptography authentication message integrity key istribution an certification Friens an enemies: lice, ob, Truy Figure 7.1 goes here well-known
Network Security #10. Overview. Encryption Authentication Message integrity Key distribution & Certificates Secure Socket Layer (SSL) IPsec
Network Security #10 Parts modified from Computer Networking: A Top Down Approach Featuring the Internet, 2nd edition. Jim Kurose, Keith Ross, Addison-Wesley, 2002. 1 Overview Encryption Authentication
Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1
Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Goals v understand principles of network security: cryptography and its many uses beyond
TELE 301 Network Management. Lecture 18: Network Security
TELE 301 Network Management Lecture 18: Network Security Haibo Zhang Computer Science, University of Otago TELE301 Lecture 18: Network Security 1 Security of Networks Security is something that is not
Chapter 8 Network Security
Chapter 8 Network Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and
Security: Focus of Control. Authentication
Security: Focus of Control Three approaches for protection against security threats a) Protection against invalid operations b) Protection against unauthorized invocations c) Protection against unauthorized
Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
Application Layer (1)
Application Layer (1) Functionality: providing applications (e-mail, www, USENET etc) providing support protocols to allow the real applications to function properly security comprising a large number
Overview of Network Security
Overview of Network Security from à Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross AddisonWesley, July 2007. 81 Roadmap: What is network security? Principles of cryptography
Chapter 8 Network Security. Slides adapted from the book and Tomas Olovsson
Chapter 8 Network Security Slides adapted from the book and Tomas Olovsson Roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity Security protocols and measures: Securing
Lukasz Pater CMMS Administrator and Developer
Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign
Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1
Contents Security requirements Public key cryptography Key agreement/transport schemes Man-in-the-middle attack vulnerability Encryption. digital signature, hash, certification Complete security solutions
CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash
Properties of Secure Network Communication
Properties of Secure Network Communication Secrecy: Only the sender and intended receiver should be able to understand the contents of the transmitted message. Because eavesdroppers may intercept the message,
Telematics Chapter 11: Network Security Beispielbild User watching video clip
Telematics Chapter 11: Network Security Beispielbild User watching video clip Server with video clips Application Layer Application Layer Prof. Dr. Mesut Güneş Presentation Layer Presentation Layer Computer
Network Security [2] Plain text Encryption algorithm Public and private key pair Cipher text Decryption algorithm. See next slide
Network Security [2] Public Key Encryption Also used in message authentication & key distribution Based on mathematical algorithms, not only on operations over bit patterns (as conventional) => much overhead
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Public Key Cryptogrophy 1 Roadmap Introduction RSA Diffie-Hellman Key Exchange Public key and
Module 8. Network Security. Version 2 CSE IIT, Kharagpur
Module 8 Network Security Lesson 2 Secured Communication Specific Instructional Objectives On completion of this lesson, the student will be able to: State various services needed for secured communication
Cryptosystems. Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K.
Cryptosystems Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K. C= E(M, K), Bob sends C Alice receives C, M=D(C,K) Use the same key to decrypt. Public
Network Security. Gaurav Naik Gus Anderson. College of Engineering. Drexel University, Philadelphia, PA. Drexel University. College of Engineering
Network Security Gaurav Naik Gus Anderson, Philadelphia, PA Lectures on Network Security Feb 12 (Today!): Public Key Crypto, Hash Functions, Digital Signatures, and the Public Key Infrastructure Feb 14:
Information Security
Information Security Dr. Vedat Coşkun Malardalen September 15th, 2009 08:00 10:00 [email protected] www.isikun.edu.tr/~vedatcoskun What needs to be secured? With the rapid advances in networked
Security in Computer Networks
Security in Computer Networks Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-10/
159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology
Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication
Client Server Registration Protocol
Client Server Registration Protocol The Client-Server protocol involves these following steps: 1. Login 2. Discovery phase User (Alice or Bob) has K s Server (S) has hash[pw A ].The passwords hashes are
Lecture 9: Application of Cryptography
Lecture topics Cryptography basics Using SSL to secure communication links in J2EE programs Programmatic use of cryptography in Java Cryptography basics Encryption Transformation of data into a form that
Getting the most from Apple Mail
Getting the most from Apple Mail Larry Kerschberg, Roy Wagner, Jonathan Bernstein and Friends February 28, 2015 1 Topics Mail on Macs and ios devices Configuring your accounts IMAP Folders VIP Contacts,
Computer and Network Security. Alberto Marchetti Spaccamela
Computer and Network Security Alberto Marchetti Spaccamela Slides are strongly based on material by Amos Fiat Good crypto courses on the Web with interesting material on web site of: Ron Rivest, MIT Dan
Network Security. Network Security. Security in Computer Networks
Network Security Network Security introduction cryptography authentication key exchange Reading: Tannenbaum, section 7.1 Ross/Kurose, Ch 7 (which is incomplete) Intruder may eavesdrop remove, modify, and/or
Key Management (Distribution and Certification) (1)
Key Management (Distribution and Certification) (1) Remaining problem of the public key approach: How to ensure that the public key received is really the one of the sender? Illustration of the problem
Chapter 10. Network Security
Chapter 10 Network Security 10.1. Chapter 10: Outline 10.1 INTRODUCTION 10.2 CONFIDENTIALITY 10.3 OTHER ASPECTS OF SECURITY 10.4 INTERNET SECURITY 10.5 FIREWALLS 10.2 Chapter 10: Objective We introduce
Network Security. Security Attacks. Normal flow: Interruption: 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室
Network Security 孫 宏 民 [email protected] Phone: 03-5742968 國 立 清 華 大 學 資 訊 工 程 系 資 訊 安 全 實 驗 室 Security Attacks Normal flow: sender receiver Interruption: Information source Information destination
Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015
Network Security CS 5490/6490 Fall 2015 Lecture Notes 8/26/2015 Chapter 2: Introduction to Cryptography What is cryptography? It is a process/art of mangling information in such a way so as to make it
Common security requirements Basic security tools. Example. Secret-key cryptography Public-key cryptography. Online shopping with Amazon
1 Common security requirements Basic security tools Secret-key cryptography Public-key cryptography Example Online shopping with Amazon 2 Alice credit card # is xxxx Internet What could the hacker possibly
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
Chapter 8. Network Security
Chapter 8 Network Security Cryptography Introduction to Cryptography Substitution Ciphers Transposition Ciphers One-Time Pads Two Fundamental Cryptographic Principles Need for Security Some people who
CSE/EE 461 Lecture 23
CSE/EE 461 Lecture 23 Network Security David Wetherall [email protected] Last Time Naming Application Presentation How do we name hosts etc.? Session Transport Network Domain Name System (DNS) Data
Final Exam. IT 4823 Information Security Administration. Rescheduling Final Exams. Kerberos. Idea. Ticket
IT 4823 Information Security Administration Public Key Encryption Revisited April 5 Notice: This session is being recorded. Lecture slides prepared by Dr Lawrie Brown for Computer Security: Principles
Cryptography & Digital Signatures
Cryptography & Digital Signatures CS 594 Special Topics/Kent Law School: Computer and Network Privacy and Security: Ethical, Legal, and Technical Consideration Prof. Sloan s Slides, 2007, 2008 Robert H.
Lecture 9 - Network Security TDTS41-2006 (ht1)
Lecture 9 - Network Security TDTS41-2006 (ht1) Prof. Dr. Christoph Schuba Linköpings University/IDA [email protected] Reading: Office hours: [Hal05] 10.1-10.2.3; 10.2.5-10.7.1; 10.8.1 9-10am on Oct. 4+5,
Message authentication and. digital signatures
Message authentication and " Message authentication digital signatures verify that the message is from the right sender, and not modified (incl message sequence) " Digital signatures in addition, non!repudiation
First Semester Examinations 2011/12 INTERNET PRINCIPLES
PAPER CODE NO. EXAMINER : Martin Gairing COMP211 DEPARTMENT : Computer Science Tel. No. 0151 795 4264 First Semester Examinations 2011/12 INTERNET PRINCIPLES TIME ALLOWED : Two Hours INSTRUCTIONS TO CANDIDATES
Security in Distributed Systems. Network Security
Security in Distributed Systems Introduction Cryptography Authentication Key exchange Computer Science Lecture 18, page 1 Network Security Intruder may eavesdrop remove, modify, and/or insert messages
CRYPTOGRAPHY IN NETWORK SECURITY
ELE548 Research Essays CRYPTOGRAPHY IN NETWORK SECURITY AUTHOR: SHENGLI LI INSTRUCTOR: DR. JIEN-CHUNG LO Date: March 5, 1999 Computer network brings lots of great benefits and convenience to us. We can
Public Key (asymmetric) Cryptography
Public-Key Cryptography UNIVERSITA DEGLI STUDI DI PARMA Dipartimento di Ingegneria dell Informazione Public Key (asymmetric) Cryptography Luca Veltri (mail.to: [email protected]) Course of Network Security,
Content Teaching Academy at James Madison University
Content Teaching Academy at James Madison University 1 2 The Battle Field: Computers, LANs & Internetworks 3 Definitions Computer Security - generic name for the collection of tools designed to protect
Public Key Cryptography Overview
Ch.20 Public-Key Cryptography and Message Authentication I will talk about it later in this class Final: Wen (5/13) 1630-1830 HOLM 248» give you a sample exam» Mostly similar to homeworks» no electronic
Network Security Technology Network Management
COMPUTER NETWORKS Network Security Technology Network Management Source Encryption E(K,P) Decryption D(K,C) Destination The author of these slides is Dr. Mark Pullen of George Mason University. Permission
Network Security Concepts: Review
Network Security Concepts: Review Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/
7! Cryptographic Techniques! A Brief Introduction
7! Cryptographic Techniques! A Brief Introduction 7.1! Introduction to Cryptography! 7.2! Symmetric Encryption! 7.3! Asymmetric (Public-Key) Encryption! 7.4! Digital Signatures! 7.5! Public Key Infrastructures
Security in Computer Networks
CHAPTER 8 Security in Computer Networks Way back in Section 1.6 we described some of the more prevalent and damaging classes of Internet attacks, including malware attacks, denial of service, sniffing,
An Introduction to Cryptography as Applied to the Smart Grid
An Introduction to Cryptography as Applied to the Smart Grid Jacques Benoit, Cooper Power Systems Western Power Delivery Automation Conference Spokane, Washington March 2011 Agenda > Introduction > Symmetric
Cornerstones of Security
Internet Security Cornerstones of Security Authenticity the sender (either client or server) of a message is who he, she or it claims to be Privacy the contents of a message are secret and only known to
Introduction to Computer Security
Introduction to Computer Security Hash Functions and Digital Signatures Pavel Laskov Wilhelm Schickard Institute for Computer Science Integrity objective in a wide sense Reliability Transmission errors
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Chapter 8. Cryptography Symmetric-Key Algorithms. Digital Signatures Management of Public Keys Communication Security Authentication Protocols
Network Security Chapter 8 Cryptography Symmetric-Key Algorithms Public-Key Algorithms Digital Signatures Management of Public Keys Communication Security Authentication Protocols Email Security Web Security
Security vulnerabilities in the Internet and possible solutions
Security vulnerabilities in the Internet and possible solutions 1. Introduction The foundation of today's Internet is the TCP/IP protocol suite. Since the time when these specifications were finished in
Savitribai Phule Pune University
Savitribai Phule Pune University Centre for Information and Network Security Course: Introduction to Cyber Security / Information Security Module : Pre-requisites in Information and Network Security Chapter
Introduction to Network Security
Introduction to Network Security Gerald A. Marin These slides are provided solely for the use of FIT students taking this course in Network Security. No further copies are permitted. Some materials are
Computer Networks. Network Security and Ethics. Week 14. College of Information Science and Engineering Ritsumeikan University
Computer Networks Network Security and Ethics Week 14 College of Information Science and Engineering Ritsumeikan University Security Intro for Admins l Network administrators can break security into two
NETWORK ADMINISTRATION AND SECURITY
NETWORK ADMINISTRATION AND SECURITY Unit I (NAS) (W- 10) Q. 1) What is Security Attack? Explain general categories of attack with examples. 7 Q. 2) List and define the five security services. 5 Q. 3) Define
Symmetric Key cryptosystem
SFWR C03: Computer Networks and Computer Security Mar 8-11 200 Lecturer: Kartik Krishnan Lectures 22-2 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single
Computer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography
Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University
Digital Certificates (Public Key Infrastructure) Reshma Afshar Indiana State University October 2015 1 List of Figures Contents 1 Introduction 1 2 History 2 3 Public Key Infrastructure (PKI) 3 3.1 Certificate
CS 348: Computer Networks. - Security; 30 th - 31 st Oct 2012. Instructor: Sridhar Iyer IIT Bombay
CS 348: Computer Networks - Security; 30 th - 31 st Oct 2012 Instructor: Sridhar Iyer IIT Bombay Network security Security Plan (RFC 2196) Identify assets Determine threats Perform risk analysis Implement
IT Networks & Security CERT Luncheon Series: Cryptography
IT Networks & Security CERT Luncheon Series: Cryptography Presented by Addam Schroll, IT Security & Privacy Analyst 1 Outline History Terms & Definitions Symmetric and Asymmetric Algorithms Hashing PKI
Outline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg
Outline CSc 466/566 Computer Security 8 : Cryptography Digital Signatures Version: 2012/02/27 16:07:05 Department of Computer Science University of Arizona [email protected] Copyright c 2012 Christian
Chapter 8 Network Security
Chapter 8 A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete slides (including
Managing and Securing Computer Networks. Guy Leduc. Chapter 4: Securing TCP. connections. connections. Chapter goals: security in practice:
Managing and Securing Computer Networks Guy Leduc Chapter 4: Securing TCP connections Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley, March 2012. (section
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ MEng. Nguyễn CaoĐạt
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ MEng. Nguyễn CaoĐạt 1 Lecture 11: Network Security Reference: Chapter 8 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice
Network Security Protocols
Network Security Protocols EE657 Parallel Processing Fall 2000 Peachawat Peachavanish Level of Implementation Internet Layer Security Ex. IP Security Protocol (IPSEC) Host-to-Host Basis, No Packets Discrimination
Netzwerksicherheit: Anwendungen
Internet-Technologien (CS262) Netzwerksicherheit: Anwendungen 22. Mai 2015 Christian Tschudin & Thomas Meyer Departement Mathematik und Informatik, Universität Basel Chapter 8 Security in Computer Networks
1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies
1720 - Forward Secrecy: How to Secure SSL from Attacks by Government Agencies Dave Corbett Technical Product Manager Implementing Forward Secrecy 1 Agenda Part 1: Introduction Why is Forward Secrecy important?
Authentication, digital signatures, PRNG
Multimedia Security Authentication, digital signatures, PRNG Mauro Barni University of Siena Beyond confidentiality Up to now, we have been concerned with protecting message content (i.e. confidentiality)
ECE 428 Network Security
ECE 428 Network Security 1 Learning objectives Security requirements and tools Symmetric-key (secret key) cryptography Substitution, transposition, and product ciphers (DES) Public key cryptography: RSA
Authentication requirement Authentication function MAC Hash function Security of
UNIT 3 AUTHENTICATION Authentication requirement Authentication function MAC Hash function Security of hash function and MAC SHA HMAC CMAC Digital signature and authentication protocols DSS Slides Courtesy
Data Communications & Networks. Session 11 Main Theme Network Security. Dr. Jean-Claude Franchitti
Data Communications & Networks Session 11 Main Theme Network Security Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from
Module 7 Security CS655! 7-1!
Module 7 Security CS655! 7-1! Issues Separation of! Security policies! Precise definition of which entities in the system can take what actions! Security mechanism! Means of enforcing that policy! Distributed
Authentication Types. Password-based Authentication. Off-Line Password Guessing
Authentication Types Chapter 2: Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter 3: Security on Network and Transport Layer Chapter 4:
Chapter 8. Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009. Thanks and enjoy!
Chapter 8 Network Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and
Overview of CSS SSL. SSL Cryptography Overview CHAPTER
CHAPTER 1 Secure Sockets Layer (SSL) is an application-level protocol that provides encryption technology for the Internet, ensuring secure transactions such as the transmission of credit card numbers
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 9: Authentication protocols, digital signatures Ion Petre Department of IT, Åbo Akademi University 1 Overview of
The Misuse of RC4 in Microsoft Word and Excel
The Misuse of RC4 in Microsoft Word and Excel Hongjun Wu Institute for Infocomm Research, Singapore [email protected] Abstract. In this report, we point out a serious security flaw in Microsoft
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a one-round Feistel cipher
Transport Level Security
Transport Level Security Overview Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-14/
2.4: Authentication Authentication types Authentication schemes: RSA, Lamport s Hash Mutual Authentication Session Keys Trusted Intermediaries
Chapter 2: Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter 3: Security on Network and Transport Layer Chapter 4: Security on the Application
Secure Socket Layer. Introduction Overview of SSL What SSL is Useful For
Secure Socket Layer Secure Socket Layer Introduction Overview of SSL What SSL is Useful For Introduction Secure Socket Layer (SSL) Industry-standard method for protecting web communications. - Data encryption
Message Authentication Codes
2 MAC Message Authentication Codes : and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 28 October 2013 css322y13s2l08, Steve/Courses/2013/s2/css322/lectures/mac.tex,
THE UNIVERSITY OF TRINIDAD & TOBAGO
THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS DECEMBER 2013 ALTERNATE Course Code and Title: TCOM3003 Communication Security and Privacy Programme: Bachelor of Applied Science in Computer
