Qualitative Dosimetric and Radiobiological Evaluation of High Dose Rate Interstitial brachytherapy Implants
|
|
|
- Morgan Gibson
- 9 years ago
- Views:
Transcription
1 Int. J. Med. Sci. 2008, 5 41 Research Paper International Journal of Medical Sciences ISSN (1):41-49 Ivyspring International Publisher. All rights reserved Qualitative Dosimetric and Radiobiological Evaluation of High Dose Rate Interstitial brachytherapy Implants Than S. Kehwar 1, Syed F. Akber 2, and Kamlesh Passi 3 1. Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA. 2. Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA 3. Department of Radiation Oncology, MD Oswal Memorial Cancer treatment and Research Center, Ludhiana (Pb), India. Correspondence to: T. S. Kehwar, D.Sc., DABR, Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Robert E. Eberly Pavilion, UPMC Cancer Center, 51 Brewer Drive, Uniontown, PA Phone: (724) ; Fax: (724) ; [email protected] Received: ; Accepted: ; Published: Radiation quality indices (QI), tumor control probability (TCP), and normal tissue complication probability(ntcp) were evaluated for ideal single and double plane HDR interstitial implants. In the analysis, geometrically optimized at volume (GOV) treatment plans were generated for different values of inter source spacing (ISS) within the catheter, inter catheter spacing (ICS), and inter plane spacing (IPS) for single - and double - plane implants. The dose volume histograms (DVH) were generated for each plan, and the coverage volumes of 100%, 150%, and 200% were obtained to calculate QIs, TCP, and NTCP. Formulae for biologically effective equivalent uniform dose (BEEUD), for tumor and normal tissues, were derived to calculate TCP and NTCP. Optimal values of QIs, except external volume index (EI), and TCP were obtained at ISS = 1.0 cm, and ICS = 1.0 cm, for single plane implants, and ISS = 1.0 cm, ICS = 1.0 cm, and IPS = 0.75 to 1.25 cm, for double plane implants. From this study, it is assessed that ISS = 1.0 cm, ICS = 1.0 cm, for single - plane implant and IPS between 0.75 cm to 1.25 cm provide better dose conformity and uniformity. Key words: HDR interstitial implants, quality indices, inter-source-spacing, inter-catheter-spacing, geometrical optimization at volume, biologically effective equivalent uniform dose. INTRODUCTION Use of computerized, remote controlled, high-dose-rate (HDR) brachytherapy units, and treatment planning systems provide conformal dose coverage to the target volume and minimum possible dose to surrounding normal tissues / critical organs. However, the basic principles of dosimetry systems [1 4] still influence the criteria of the source placement (activity distribution) and dose distributions in brachytherapy applications. In the HDR brachytherapy applications, such as in the treatment of carcinoma of the cervix (Ca.Cx.), the basic rules of the Manchester system [1] are still followed in many clinics World wide. In the HDR interstitial brachytherapy (ISBT) implants none of the classical dosimetry system [1 4] is followed. This is because modern HDR units have a high activity miniature type single stepping source, which offers an advantage of varying source positions (dwell positions) and time (dwell time) to a particular dwell position to obtain an appropriate dose distribution and isodose geometry. For HDR implants, a new dosimetry system, known as stepping source dosimetry system (SSDS) [5], has been devised in which source and dose distribution rules were formed using the selected basic rules of the Paris and the Manchester dosimetry systems with some modifications. Kwan et al [6] have done a computerized dosimetric study to determine optimal source and ribbon separation for single plane implants, and the ribbon and plane separation of for double plane implants were studied with respect to the dose homogeneity, for single and double plane iridium 192 (Ir 192) implants. In another study of Quimby type breast implants, interplanar spacing, based on the implant sizes, was studied [7]. None of the study has so far able to optimize these parameter for HDR single and double plane implants. In this work, we performed a computerized dosimetric study of HDR implants to find out optimal values of inter source spacing (ISS), within the catheter, and inter catheter spacing (ICS), within the target volume (TV), for ideal single plane implants. This was done by computing various radiation quality indices (QI) for geometrically optimized at volume (GOV) treatment plans. The GOV mode of optimization was chosen due to its simplicity, otherwise reader can choose any
2 Int. J. Med. Sci. 2008, 5 42 other suitable mode of optimization in practice. The inter plane spacing (IPS) for ideal double plane implants has also been determined using optimal values of ISS and ICS, obtained from single plane implants, by computing above said QIs for GOV treatment plans. The concept of Biologically Effective Equivalent Uniform Dose (BEEUD) has been introduced to calculate the tumor control probability (TCP) [8, 9] and normal tissue complications probability (NTCP) [10] for these HDR plans. METHODS AND MATERIALS Dosimetric parameters To investigate ideal values of ISS, ICS and IPS in HDR interstitial implants, for which nearly ideal dose distribution within the target volume and maximum sparing of the surrounding normal tissues / organs, can be achieved, a quantitative analysis of ideal single and double plane implants has been done for different ISS and ICS values. The analysis is performed by computing and comparing different QIs, TCP, and NTCP for GOV treatment plans of these implants. The quality indices used in this study are: the coverage index (CI), the external volume index (EI), the relative dose homogeneity index (DHI), the overdose index (ODI), and the dose non-uniformity ratio (DNR), and are defined as: 1. Coverage Index (CI): The fraction of the target volume that receives a dose equal to or greater than the reference dose [11]. CI = TV Dref /TV.(1) 2. External Volume Index (EI): The ratio of the volume of normal tissue that receives a dose equal to or greater than the reference dose to the volume of the target [11]. EI = NTV Dref /TV. (2) 3. Relative Dose Homogeneity Index (DHI): This is defined as the ratio of the target volume which receives a dose in the range of 1.0 to 1.5 times of the reference dose to the volume of the target that receives a dose equal to or greater than the reference dose [11]. DHI = [TV Dref TV 1.5Dref ]/TV Dref. (3) 4. Overdose Volume Index (ODI): This is the ratio of the target volume which receives a dose equal to or more than 2.0 times of the reference dose to the volume of the target that receives a dose equal to or greater than the reference dose [11]. ODI = TV 2.0Dref /TV Dref. (4) 5. Dose Non-uniformity Ratio (DNR): This is the ratio of the target volume which receives a dose equal to or greater than 1.5 times of the reference dose to the volume of the target which receives a dose equal to or greater than the reference dose [12]. DNR = TV 1.5Dref /TV Dref.(5) Conditions for an ideal implant are where the values of QIs should be as follows CI = 1, EI = 0, DHI = 1, ODI = 0, and DNR = 0 To compute above defined QIs, for single plane implants, ideal targets of target volumes of the dimensions of Length (L= 6.0 cm) Width (W= 5.0 cm ) Thickness (T = 1.0 cm) have been taken into account. While changing the values of ISS and / or ICS, sometimes extra length and width of target volume were also added to keep constant distance between target surface and peripheral dwell positions and / or target surface and peripheral catheters. The catheters and peripheral dwell positions were placed within 0.5 cm of the boundary of the target volume. Treatment plans were generated using PLATO (Nucletron BV, Veenendaal, The Netherlands) 3 D treatment planning system. The dose points were placed on the surface of the target volume relative to the active dwell positions. All the dose points, in the implant, were used for dose normalization for the total dose of 42 Gy with 3.5 Gy per fraction. The Cumulative DVH (cdvh) for GOV treatment plans were generated for different values of ISS and ICS. The values of ICS vary from 0.5 cm to 2.0 cm, in steps of 0.25 cm. For each ICS values, the ISS varies from 0.25 cm to 2.0 cm in steps of 0.25 cm. In each treatment plan, the isodose surfaces of 100% (42 Gy), 150% (63 Gy) and 200% (84 Gy) were generated to find out the respective dose coverage volumes. By comparing the QIs for all treatment plans, the optimal values of ISS and ICS were obtained for which QIs to be the closest values of that of an ideal implant. The GOV treatment plans were also generated for double plane implants using optimal values of ISS and ICS, obtained from single plane implants QI analysis. The cdvhs were generated for inter plane spacing (IPS) vary from 0.5 cm to 2.0 cm in steps of 0.25 cm and the coverage volumes for the isodose surfaces of 100%, 150% and 200% were obtained from the cdvhs, as calculated for single plan implants, to compute the above said QIs for each treatment plan with different IPS value. Radiobiological models The linear quadratic (LQ) model provides a simple way to describe dose response of different fractionation schemes, in terms of the Biologically Effective Dose (BED) [13]. The BED for HDR ISBT [9] for a total dose of D (Gy) delivered with dose d (Gy) per fraction can be written by BED = D[1 + G d/(α/ß)].(6)
3 Int. J. Med. Sci. 2008, 5 43 Where α/ß ratio is the tissue specific parameter and is the ratio of the coefficients of lethal damage to the sublethal damage, and G is the factor accounting for incomplete repair of sublethal damage during interfraction interval between the fractions. In this study, it is assumed that the time interval between the fractions is sufficient enough to allow the full repair of the sublethal damage, hence G is taken as 1. The tumor control probability (TCP) [8, 9] for uniform dose distribution within the target volume is given by TCP = exp[ - ρ V exp(-α BED t )]. (7) Where ρ, V, α, and BED t are the clonogenic cell density, target volume, coefficient of lethal damage (radio sensitivity of lethal damage), and BED for the target, respectively. The dose distribution of HDR ISBT within target volume is highly non uniform and has high dose gradient, hence equation (7) can not be directly applied to compute accurate TCP. Hence, to get an appropriate expression of TCP for HDR ISBT implant different regions of HDR ISBT implant have been considered (Figure 1). It is also shown that target volume is divided into four regions which are (1) the region which receives a dose less than the reference dose, (2) the region which receives a dose in the range of 1.0 to 1.5 times of the reference dose, (3) the region which receives a dose in the range of 1.5 to 2.0 times of the reference dose, and (4) the region which receives a dose equal to or more than 2.0 times of the reference dose. Each region of target volume has its own BEEUD. The expression of BEEUD, for tumor, is derived in Apendix A, where it is considered that there is a non uniform dose distribution within the target volume. The target volume is divided into n number of voxels of small enough volume. So it can be assumed that the dose distribution within the voxel is uniform. The expression for BEEUD, given in equation (e) of Appendix A, is written as BEEUD t = -(1/α) ln[(1/v) Σ i v i exp{ - α BED ti }]. (8) Where V is the target volume, v i is the volume of i th voxel of the target volume, and BED ti is the BED of the i th voxel of the target volume. The subscript t denotes the target volume. With the use of BEEUD of each region, shown in Figure 1, the TCP may be written as TCP = TCP 1 TCP 2 TCP 3 TCP 4.(9) Where the terms TCP 1, TCP 2, TCP 3, and TCP 4 are the TCPs of above defined regions of the target volume, respectively. The expressions of these terms are given as follows 1. The TCP for the region of target volume which receives a dose less than the reference dose TCP 1 = exp[ - ρ (TV TV Dref ) exp( - α BEEUD t1 )] By rearranging and using the value of equation (1), we may write TCP 1 = exp[ - ρ TV Dref {(1 CI)/CI} exp( - α BEEUD t1 )]. (9a) 2. The TCP for the region of target volume that receives a dose in the range of 1.0 to 1.5 times of the reference dose TCP 2 = exp[ - ρ (TV Dref TV 1.5Dref ) exp( - α BEEUD t2 )] Using the value of equation (3), we may write TCP 2 = exp[ - ρ TV Dref. DHI exp( - α BEEUD t2 )]. (9b) 3. The TCP for the region of target volume that receives a dose in the range of 1.5 to 2.0 times of the reference dose TCP 3 = exp[ - ρ (TV 1.5Dref TV 2Dref ) exp( - α BEEUD t3 )] By rearranging and using the values of equations (4) & (5), we may write TCP 3 = exp[ - ρ TV Dref (DNR ODI) exp( - α BEEUD t3 )]. (9c) 4. The TCP for the region of target volume that receives a dose equal to or greater than 2 times of the reference dose TCP 4 = exp[ - ρ TV 2Dref exp( - α BEEUD t4 )] By using the value of equation (4), we may have the form of TCP4 TCP 4 = exp[ - ρ TV Dref.ODI exp( - α BEEUD t4 )]. (9d) Now multiplying and rearranging equations 9(a) 9(d), the expression of net TCP may be given by TCP = exp[ ρ TV Dref {({1 CI}/CI) exp( α BEEUD t1 )+DHI exp( α BEEUD t2 ) +(DNR ODI) exp( α BEEUD t3 )+ODI exp( α BEEUD t4 )}]. (10) Probably three radiobiological parameters, considered in the TCP formulation, such as clonogenic cell density (ρ), radio-sensitivity (α), and cell proliferation rate (T p ) influence the TCP phenomenological and are voxel dependent. In this work, it is assumed that first two parameters are constant throughout the target volume and influence of the cell proliferation rate is negligible. The radiobiologically based expression of normal tissue complication probability (NTCP) for uniform dose distribution within normal tissue / organ, was initially proposed by Kallman, et al [14] and was modified by Zaider and Amols [15]. Kehwar and Sharma [16] and Kehwar [10] have further extended this model for the multiple component (MC) and the linear quadratic (LQ) models, respectively. These extended forms, of the NTCP model for MC and LQ
4 Int. J. Med. Sci. 2008, 5 44 models, were fitted to the normal tissue tolerance doses reported by Emami et al [17] at TD 5/5 and TD 50/5 for partial volumes of different normal tissues / organs. Kehwar s [10] NTCP equation of LQ model may be written as NTCP = exp[ N 0 v k exp( α BED n )]. (11) Where v and BED n are the fractional partial volume (v=v/v 0, here V and V 0 are the partial volume and the reference volume of the normal tissue / organ, respectively) and BED of normal tissue / organ. The N 0 and k are tissue-specific, non-negative adjustable parameters. The dose distribution outside the target volume within the adjacent normal tissue is highly non-uniform, hence equation (11) can not be applied to calculate NTCP for such a high dose gradient. For the purpose, entire volume of the normal tissue / organ is divided into two regions, viz (1) the region that receives a dose less than the reference dose, and (2) the region that receives a dose equal to or greater than the reference dose. Each region of normal tissue has its own BEEUD. The expression of BEEUD for normal tissue is derived in Apendix B, where it is considered that there is a non-uniform dose distribution within the normal tissue, and is divided into n number of very-very small sub-volumes (voxels). It has also been assumed that the dose distribution within a sub-volume is uniform. From equation (11), it is seen that the equation of NTCP is not an additive term of the volume, as TCP for TV, so the NTCP of voxels can not provide net NTCP of entire normal tissue. Therefore, equation (11) has been modified to account for addition of the volumes of the voxels, and the new term is known as the NTCP factor (NTCPF) which is written as NTCPF = exp[(n 0 ) -1/k Σ i {(V i /V 0 ) exp[(α/k) BED ni ]}]. (12) Where V 0 is the reference volume of the normal tissue / organ and V i is the volume of ith voxel in the normal tissue / organ. The expression of BEEUD, from Appendix B, for normal tissue is written by BEEUD n = (k/α) ln[σ i {(V i /V 0 ) exp[(α/k) BED ni ]}]. (13) With the use of BEEUD of each region of normal tissue / organ, the NTCPF may be written as NTCPF = NTCPF n1 NTCPF n2. (14) Where the terms NTCPF n1, and NTCPF n2 are the NTCPFs of above defined two normal tissue regions, respectively. The expressions of these terms are given as follows 1. The NTCPF for the region of normal tissue / organ which receives a dose less than the reference dose NTCPF n1 = exp[(n 0 ) 1/k (1/V 0 ) (V NTV Dref ) exp{(α/k) BEEUD n1 }] Where, V, is the normal tissue volume of the normal tissue / organ. By rearranging and using the value of equation (2), we may write NTCPF n1 = exp[(n 0 ) 1/k (TV/V 0 ) (V/TV EI) exp{(α/k) BEEUD n1 }].(14a) 2. The NTCPF for the region of normal tissue / organ that receives a dose equal to or greater than the reference dose NTCPF n2 = exp[(n 0 ) 1/k (1/V 0 ) (NTV Dref ) exp{(α/k)beeud n2 }] Using the value of equation (3), we may write NTCPF n2 = exp[(n 0 ) 1/k (TV.EI/V 0 ) exp{(α/k)beeud n2 }].(14b) By adding and rearranging equations (14a) and (14b), the net NTCPF will be written as NTCPF = exp[(n 0 ) 1/k (TV/V 0 )[(V/TV EI) exp{(α/k)beeud n1 }+(EI/V 0 ) exp{(α/k)beeud n2 }]]. (15) The net NTCP from equation (15) is written by NTCP = (NTCPF) k. (16) For statistical comparison, two tail unpaired t-student test is employed to the results of NO and GOV plans. RESULTS Dosimetric Analysis a) Single Plane Implant The curves were plotted for single plane implants between ISS and IQs, which are shown in Figures 2 to Figure 6. Figure 2 shows that the CI decreases from 0.98 to 0.97 for the values of ISS, which may be considered almost constant. The slope of the linear lines is for all ICS values. The CI at ISS = 1.0 cm and ICS = 1.0 cm are 0.98 these plans. Figure 3 shows that the value of EI increases in a linear trend insignificantly for all ICS values, and for any value of ISS. In these plans, the slopes of all linear lines remain almost constant with an average of (0.0012, ). It is clear from Figure 4 that initially the value of DHI increases with increasing ISS and ICS and reaches to a maximum value at ISS = 1.0 cm and ICS = 1.0 cm, and then decreases with ISS. The values of DHI at ISS = 1.0 cm and ICS = 1.0 cm are for these plans. The relation between ODI and ISS for different ICS values is given in Figure 5. It appears that the value of ODI decreases with increasing ISS and ICS and reaches to a minimum at ISS = 1.0 cm & ICS = 1.0 cm, thereafter it starts increasing with ISS and ICS.
5 Int. J. Med. Sci. 2008, 5 45 The values of ODI at ISS = 1.0 cm and ICS = 1.0 cm are for these plans. Figure 6 shows similar relation between DNR and ISS as between ODI and ISS. The calculated QIs for an ideal HDR implant reveals that at ISS = 1.0 cm and ICS = 1.0 cm, the values of DHI, ODI and DNR attain an optimal level. In this study, the values of QIs for single - plane implant at ISS =1.0 cm and ICS = 1.0 cm are CI = 0.98; EI = 0.062; DHI = 0.851; ODI = 0.079, and DNR = 0.149, respectively. Figure 4: Comparison of calculated DHI for varying ISS and ICS for GOV plans, of ideal HDR single plane interstitial implants. Figure 1: Schematic diagram showing target volume (TV), portion of target volume (TVD ref ) that receives dose equal to or more than the reference dose D ref, the isodose surface that receives 1.5 time of the reference dose (1.5 D ref ), and that receives 2.0 times of the reference dose (2.0 D ref ). Figure 5: Comparison of calculated ODI for varying ISS and ICS for GOV plans, of ideal HDR single plane interstitial implants. Figure 2: A quantitative comparison of CI calculated for varying ISS and ICS values for NO and GOV plans for ideal HDR single plane interstitial implants. Figure 6: Comparison of calculated DNR for varying ISS and ICS for GOV plans, of ideal HDR single plane interstitial implants. Figure 3: Comparison of calculated EI for varying ISS and ICS for GOV plans, of ideal HDR single plane interstitial implants. b) Double Plane Implant For simplicity of the study, the best suitable values of ISS and ICS (ISS = 1.0 cm & ICS = 1.0 cm) for which DHI, ODI and DNR attain optimal values in single - plane implants, were used to construct the double plane implant. These values of ISS and ICS may not be optimal for double plane implants. The implant length and width were kept constant while the interplane separation (IPS) allowed to vary from 0.5 cm to 2.0 cm in steps of 0.25 cm. The GOV plans were generated for each IPS and to find out the
6 Int. J. Med. Sci. 2008, 5 46 volume coverage for 100%, 150% and 200% isodose surfaces the DVHs were generated. From above determined volumes, the QIs were computed and found that the variation of QIs with IPS is similar to that as of IQs with ISS. For IPS = 0.75 cm to 1.25 cm the QIs are optimal to treat a target of thickness from 1.75 to 2.25 cm. The values of QIs for IPS = 1.0 cm are CI = 0.978, EI = 0.08, DHI = 0.88, ODI = 0.09 and DNR = If the IPS is further increased beyond 1.25 cm the DHI decreases and ODI increases, and a cold spot is generated between the two planes. Plots between QIs and IPS, for both type of plans, were similar to that for single plan implants, hence to avoid repetition of the figures, we have not included in this paper. Radiobiological Analysis BEEUDs have been calculated using equation (8) for different portions of the TV with the use of α/β = 10 Gy, α = 0.35 Gy -1 [13], and clonogenic cell density ρ = 10 7 [18] to calculate the net value of TCP using equation (10) for entire TV. In the calculation of BEEUD, for a particular region of the TV, the volume of that region is subdivided into very small sub-volumes and it is assumed that there is a uniform dose distribution within each sub-volume. The plots between net TCPs and ISS are shown in Figure 7, where the TCP for ICS = 1.0 cm and ISS = 1.0 cm implant is higher compared to other ICS and ISS settings. Figure 7: Comparison of calculated TCP, based on LQ equation, for varying ISS and ICS for GOV plans, of ideal HDR single plane interstitial implants. To calculate the NTCP for normal tissue, the normal tissue / organ is divided into two regions, (i) the region that receives a dose less than the reference dose, and (ii) the region that receives a dose equal to or greater than the reference dose. For demonstration purpose and to simulate the lung complications in breast HDR implants, the BEEUDs values were calculated for each region of the normal tissue / organ using derived values of the parameters [10], N 0 = 3.93, k =1.03, for combined set of lung tolerance data, and α = Gy -1, for lung tolerance data of Emami et al [17] and published values of α/β = 6.9 Gy [19, 20]. The plots of NTCP and ISS for different ICS setting are shown in Figure 8, where it is seen that the value of NTCP increases with increasing ICS and ISS and highest value was found at ICS = 2.0 cm and ISS = 2.0 cm. Similar results were obtained for double plan implants, but to avoid repetition, the figures have not been included. Figure 8: Comparison of calculated NTCP, based on LQ equation, for varying ISS and ICS GOV plans, of ideal HDR single plane interstitial implants. DISCUSSION A number of quality indices have been proposed to evaluate LDR and HDR interstitial implants, such as, DHI and DNR proposed by Saw and Suntharalingam [21, 22] and Saw et al [12] for LDR interstitial brachytherapy and was adopted by Meertens et al [11] for the evaluation of HDR interstitial implants. Hence, in this study we used the QI values as defined by Meertens et al [11]. The expressions for TCP and NTCP incorporating above defined QIs were derived in this work, and the effects of the variation in ISS and ICS were investigated in GOV plans of ideal HDR interstitial implants. Figures 7 and 8 show the effect of variation in ISS and ICS on TCP and NTCP. The calculations of TCP and NTCP, done by most of the investigators [8, 9, 10, 14, 15, 16], based on either entire target or normal tissue volume with a single dose or by dividing the entire volume in small voxels. In this work, we have opted different approach, where TV and NTV are divided into 4 and 2 parts to define target and normal tissue related QIs, respectively. The expressions of BEEUD were derived for these parts of TV and NTV, and were incorporated into the expression of the TCP and NTCP. In the Paris dosimetry system, designed for Ir 192 wires and ribbons, suggests that to obtain a better
7 Int. J. Med. Sci. 2008, 5 47 coverage of the TV, one have to increase the active length of the catheters, and peripheral catheters have to be placed outside the target volume. But by doing so, this also increases the EI which consequently will increase the NTCP. Many researchers investigated this aspect and stated that active length of the catheters can be reduced compared to non optimized plans with uniform dwell times [5, 23, 24, 25] by properly optimizing the implant, because in optimization the dwell times of the dwell positions at the ends of the catheters and peripheral catheters are increased to compensate for the lack of source locations beyond the outermost dwell positions. Kwan et al [6] have reported that with respect to the dose homogeneity, within the implants, the optimal source and ribbon separation for single plane implants was found to be 1.0 cm, and the ribbon and plane separation of 1.5 cm was found for double plane implants, maintaining a 1.0 cm source separation. Zwicker et al [7] found that interplanar spacing in Quimby type breast implants was implant size dependent. Major et al [26] have studied the effect of source step size and catheter separation on DNR for non-optimized and optimized interstitial breast HDR implants. In their study, the lowest value of DNR is reported for 10 mm source step size. The effect of catheter separation is studied at 5 mm source step size. The catheter separation was increased from 10 to 20 mm, for which the value of DNR reported to be increased from 0.15 to While in the present study, QIs were evaluated for the above mentioned values of ISS and ICS and lowest DNR is found at ISS = 1.0 cm and ICS = 1.0 cm, where ISS =1.0 cm is same as 10 mm source step size. From the results of the present study, it can be concluded that in HDR ISBT implants the GOV provides an optimum outcome with regard to afore mentioned QIs, TCP, and NTCP, and is best achieved nearly uniform dose distribution within the implanted volume. While HDR ISBT implants done using classical dosimetry systems or non- optimization process lead to unsatisfactory results. It is also seen that on the basis of CI, EI and NTCP plots, no conclusion can be drawn as to what values of ICS and ISS (and IPS) would be used to optimize the single and double plane HDR implants. While DHI, ODI, DNR and TCP clearly reveal that their optimal values are at ICS = 1.0 cm and ISS = 1.0 cm, for single plane implant and ICS = 1.0 cm, ISS = 1.0 cm, and IPS = 0.75 to 1.25 cm, for double plane implants as shown in the study. CONFLICT OF INTEREST The authors have declared that no conflict of interest exists. REFERENCES 1. Peterson R, Parker HM. Dosage system for gamma-ray therapy. Br J Radiol 1934; 7: Quimby EH. The grouping of radium tubes in packs and plagues to produce the desired distribution of radiation. Am J Roentgenol 1932; 27: Quimby EH. The development of dosimetry in radium therapy. In: Hilaris BS, ed. Afterloading: 20 Years of Experience, ; Proceedings of the 2nd International Symposium on Radiation Therapy. New York: Memorial Sloan-Kettering Cancer Center. 1975; Pierquin B, Dutreix A, Paine CH, et al. The Paris system in interstitial radiation therapy. Acta Radiol Oncol 1978; 17: van der Laarse R. The stepping source dosimetry system as an extension of the Paris system. In: Mould RF, Battermann JJ, Martinez AA, Speiser BL, eds. Brachytherapy from radium to optimization. Veenendaal, The Netherlands: Nucletron International. 1994; Kwan DK, Kagan AR, Olch AJ, Chan PYM, et al. Single and double plane iridium 192 interstitial implants: Implantation guidelines and dosimetry. Med. Phys. 1983; 10(4): Zwicker RD, Schmidt R, Schiller B. Planning of Ir 192 seed implants for boost irradiation to the breast. Int J Radtiat Oncol Biol Phys 1985; 11: Nahum AE, Tait DM. Maximising control by customized dose prescription for pelvic tumours. In: Advanced Radiation Therapy: Tumour Response Monitoring and Treatment Planning. Ed. Breit A (Heidelberg: Springer) 1992; Visser AG, van den Aardweg GJMJ, Levendag PC. Pulse dose rate and fractionated high dose rate brachytherapy: Choice of brachytherapy schedules to replace low dose rate treatments. Int J Radtiat Oncol Biol Phys 1996; 34(2): Kehwar TS. Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Cancer Res Ther 2005; 1(3): Meertens H, Borger J, Steggerda M, Blom A. Evaluation and optimization of interstitial brachytherapy dose distribution. In: Mould RF, Battermann JJ, Martinez AA, Speiser BL, eds. Brachytherapy from radium to optimization. Veenendaal, The Netherlands: Nucletron International. 1994; Saw CB, Suntharalingam N, Wu A. Concept of dose nonuniformity in interstitial brachytherapy. Int J Radiat Oncol Biol Phys 1993; 26(3): Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62: Kallman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 1992; 62: Zaider M, Amols HI. Practical considerations in using calculated healthy - tissue complication probabilities for treatment plan optimization. Int J Radiat Oncol Biol Phys 1999; 44: Kehwar TS, Sharma SC. The best fit of the normal tissue tolerance data to the multiple component model. Polish J Med Phys Eng 2003; 9(4): Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic radiation. Int J Radiat Oncol Biol Phys 1991; 21: Webb S, Nahum AE. A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol 1993; 38: Overgaard M. The clinical implication of non-standard fractionation. Int J Radiat Oncol Biol Phys 1985; 11: Overgaard M. Spontaneous radiation-induced rib fractures in
8 Int. J. Med. Sci. 2008, 5 48 breast cancer patients treated with postmastectomy irradiation. Acta Oncologica 1988; 27: Saw CB, Suntharalingam N. Quantitative assessment of interstitial implants. Int J Radiat Oncol Biol Phys 1990; 20: Saw CB, Suntharalingam N. Reference dose rates for singleplane and double-plane Iridium-192 implants. Med Phys 1988; 15: Baltas D, Kolotas C, Geramani K, et al. A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys 1998; 40: Anacak Y, Esassolak M, Aydin A, et al. Effect of geometric optimization on the treatment volumes and the dose homogeneity of biplane interstitial brachytherapy implants. Radoth Oncol 1997; 45: Kolkman-Deurloo IKK, Visser AG, Niel CGJH, et al. Optimization of interstitial volume implants. Radioth Oncol 1994; 31: Major T, Polgar C, Somogyi A, et al. Evaluation of the dose uniformity for double-plan high dose rate interstitial breast implants with the use of dose reference points and dose non-uniformity ratio. Radioth Oncol 2000; 54: Stavreva NA, Stavrev PV, Round WH. Comments on the article A model for calculating tumour control probability in radiotherapy including the effect of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol 1995; 40: Webb S, Evans PM, Swindell W, Deasy JO. A proof that uniform dose gives the greatest TCP for fixed integral dose in the planning target volume. Phys Med Biol 1994; 39: APPENDIX A. Biologically Effective Equivalent Uniform Dose (BEEUD) for Tumors The tumor control probability (TCP) for uniform dose distribution within the target (tumor) volume is given by equation (7) in the text. To get maximum tumor cell killing in a tumor with uniform clonogenic cell density and avoid necrosis of the normal tissue present within the target volume, the dose distribution within the target volume should be uniform [18, 27, 28]. However in HDR interstitial implants uniform dose distribution is rarely achieved. Hence the biologically effective dose (BED) or TCP calculated on the basis of the dose that corresponds to the isodose surface which encompasses the target volume or mean or median target dose would not be an appropriate representative to predict an accurate treatment outcome. Therefore, to account for non uniform dose distribution, the target volume is divided into n number of sub-volumes (voxels). The number of sub-volumes depends on the volume of the target and user choice. The larger the number of the sub-volumes the more accurate the calculations. If the volume of each voxel is small enough, the dose distribution within the voxel may be considered uniform. Now the TCP is calculated voxel by voxel, and net TCP for entire target volume is given by product of all voxel based TCPs, which can be written as TCP = Π i exp[ - ρ v i exp( - αbed ti )]. (a) Where BED ti is the BED of i th voxel of volume v i of the target. Here i = 1, 2, 3, n. Equation (a) may be written as TCP = exp[ - ρ Σ i v i exp( - αbed ti )]. (b) Let us assume that Biologically Effective Equivalent Uniform Dose (BEEUD) is the biological dose that produces equivalent biological effect to that of an absolutely uniform dose delivered to the entire target volume V. For such type of dose TCP is given by TCP = exp[ - ρ V exp( - αbeeud t )].(c) By equating and rearranging the equations (b) and (c), we get an expression of BEEUD for tumor and may be written by BEEUD t = (1/α) ln[(1/v)σ i v i exp( - α BED ti )]. (d) Where i = 1, 2, 3, n. In the calculation of TCP, for non-uniform dose distribution within the tumor, the use of BEEUD is an appropriate term instead of BED. APPENDIX B. Biologically Effective Equivalent Uniform Dose (BEEUD) for Normal Tissues The Biologically Effective Equivalent Uniform Dose (BEEUD) derived in Appendix A can not be applied to predict NTCP because dose distribution in normal tissue / organ and the NTCP formulae are not similar to that of the tumor. The BEEUD for normal tissue / organ is derived using NTCP model, and is given in equation (11). The dose distribution within normal tissue / organ is highly heterogeneous. Hence to derive BEEUD for such a dose distribution, entire volume of the normal tissue / organ is divided into n number of sub-volumes (voxels), similar to that of target volume. Accuracy of the NTCP depends on the number of sub-volumes. If the volume of each voxel is small enough, the dose distribution within the voxel may be considered uniform. In reality, the dose gradient within adjacent normal tissues / organs to the target volume is too high, so it is not possible to have uniform dose distribution in any voxel. The NTCP equation for i th voxel is written as NTCP i = exp[ - N 0 (V i /V 0 ) -k exp( - α BED ni )]. (e) The NTCP is not an additive term of the volume, so the NTCPs of the voxels can not provide net NTCP of entire normal tissue / organ volume. For the purpose, equation (e) may be written in the additive form of the volume and new term is known as the NTCP factor (NTCPF). By taking logarithm of both sides of equation (e), we have ln(ntcp i ) = - N 0 (V i /V 0 ) -k exp( - α BED ni )
9 Int. J. Med. Sci. 2008, 5 49 or [ - ln(ntcp i )] = N 0 (V i /V 0 ) -k exp( - α BED ni ) or [ - ln(ntcp i )] -1/k = (N 0 ) -1/k (V i /V 0 ) exp[(α/k) BED ni or [(1/k) ln(ntcp i )] = (N 0 ) -1/k (V i /V 0 ) exp[(α/k) BED ni Taking exponential to both sides we may write exp[(1/k) ln(ntcp i )] = exp[(n 0 ) -1/k (V i /V 0 ) exp{(α/k) BED ni }] Write out L.H.S equals to NTCPF and may be written as NTCPF i = exp[(n 0 ) -1/k (V i /V 0 ) exp{(α/k) BED ni }]. (f) Where V 0 is the reference volume of the normal tissue / organ and V i is the volume of i th voxel of the normal tissue /organ. It may be assume that NTCPF for each voxel is mutually exclusive, hence, the NTCPF for entire volume of the normal tissue / organ can be written as NTCPF = exp[(n 0 ) -1/k Σ i {(V i /V 0 ) exp[(α/k) BED ni ]}]. (g) Let us assume that Biologically Effective Equivalent Uniform Dose (BEEUD) is the biological dose delivered uniformly to the entire organ volume V 0 that produces equivalent NTCPF to that of equation (g), which may be given by NTCPF = exp[(n 0 ) -1/k (V 0 /V 0 )exp{(α/k) BEEUD n }] or NTCPF = exp[(n 0 ) -1/k exp{(α/k) BEEUD n }]. (h) By equating and rearranging equations (g) & (h) we have an expression of BEEUD for normal tissue / organ, which may be given by BEEUD n = (k/α) ln[σ i {(V i /V 0 ) exp[(α/k) BED i ]}]. (i) In the calculation of NTCP, the use of BEEUD, for normal tissue / organ with highly non-uniform dose distribution, would provide better radiobiological in sites.
The validation of a tumour control probability (TCP) model for supporting radiotherapy treatment planning.
The validation of a tumour control probability (TCP) model for supporting radiotherapy treatment planning. KAROLINA KOKUREWICZ S U P E R V I S O R S : D I N O J A R O S Z Y N S K I, G I U S E P P E S C
NIA RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning
NIA RADIATION ONCOLOGY CODING STANDARD Dosimetry Planning CPT Codes: 77295, 77300, 77301, 77306, 77307, 77321, 77316, 77317, 77318, 77331, 77399 Original Date: April, 2011 Last Reviewed Date: November,
How To Know If You Should Get A Brachytherapy Or Radioactive Seed Implantation
MEDICAL POLICY SUBJECT: BRACHYTHERAPY OR PAGE: 1 OF: 5 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy
Inclusion of Biological Information in Treatment Planning Optimization Dag Rune Olsen
Inclusion of Biological Information in Treatment Planning Optimization Dag Rune Olsen Institute for Cancer Research, Norwegian Radium Hospital, University of Oslo Theragnostics biological conformality
Brachytherapy of the Uterine Corpus: Some Physical Considerations. Bruce Thomadsen. University of Wisconsin -Madison
Brachytherapy of the Uterine Corpus: Some Physical Considerations Bruce Thomadsen University of Wisconsin -Madison Conflicts of Interest The author has no known conflicts involving this presentation Learning
A COMPARISON BETWEEN TANDEM AND OVOIDS AND INTERSTITIAL GYNECOLOGIC TEMPLATE BRACHYTHERAPY DOSIMETRY USING A HYPOTHETICAL COMPUTER MODEL
PII S0360-3016(01)02691-8 Int. J. Radiation Oncology Biol. Phys., Vol. 52, No. 2, pp. 538 543, 2002 Copyright 2002 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/02/$ see front
Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment.
Dictionary Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment. Applicator A device used to hold a radioactive source
High-dose-rate Interstitial Brachytherapy for Mobile Tongue Cancer: Influence of the Non-irradiated Period
High-dose-rate Interstitial Brachytherapy for Mobile Tongue Cancer: Influence of the Non-irradiated Period NAOYA KAKIMOTO 1, TAKEHIRO INOUE 2, TOSHIHIKO INOUE 2, SHUMEI MURAKAMI 1, SOUHEI FURUKAWA 1, KEN
THE DOSIMETRIC EFFECTS OF
THE DOSIMETRIC EFFECTS OF OPTIMIZATION TECHNIQUES IN IMRT/IGRT PLANNING 1 Multiple PTV Head and Neck Treatment Planning, Contouring, Data, Tips, Optimization Techniques, and algorithms AAMD 2013, San Antonio,
6 Reporting in Brachytherapy: Dose and Volume Specification Richard Pötter, Erik Van Limbergen, André Wambersie
6 Reporting in Brachytherapy: Dose and Volume Specification Richard Pötter, Erik Van Limbergen, André Wambersie Chapter Outline 1 Introduction 1.1 From prescribing to recording and reporting 1.2 The three
Accelerated Partial Breast Irradiation (APBI) for Breast Cancer [Pre-authorization Required]
Accelerated Partial Breast Irradiation (APBI) for Breast Cancer [Pre-authorization Required] Medical Policy: MP-SU-01-11 Original Effective Date: February 24, 2011 Reviewed: February 24, 2012 Revised:
IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment.
DERYA ÇÖNE RADIOTHERAPY THERAPIST ACIBADEM KOZYATAGI HOSPITAL RADIATION ONCOLOGY DEPARTMENT IGRT IGRT (image-guided radiation therapy) is a technique that reduces geometric uncertainties by considering
Patient Guide. Brachytherapy: The precise answer for tackling breast cancer. Because life is for living
Patient Guide Brachytherapy: The precise answer for tackling breast cancer Because life is for living This booklet is designed to provide information that helps women who have been diagnosed with early
Transition from 2D to 3D Brachytherapy in Cervical Cancers: The Vienna Experience. Richard Pötter MD. BrachyNext, Miami, 2014.
Transition from 2D to 3D Brachytherapy in Cervical Cancers: The Vienna Experience Richard Pötter MD BrachyNext, Miami, 2014 Disclosures Richard Pötter, MD, does not have any financial relationships or
TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software.
SAMPLE CLINICAL RESEARCH APPLICATION ABSTRACT: TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software. Hypothesis:
Independent corroboration of monitor unit calculations performed by a 3D computerized planning system
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 1, NUMBER 4, FALL 2000 Independent corroboration of monitor unit calculations performed by a 3D computerized planning system Konrad W. Leszczynski* and
Accelerated Partial Breast Irradiation (APBI) for Breast Cancer [Preauthorization Required]
Accelerated Partial Breast Irradiation (APBI) for Breast Cancer [Preauthorization Required] Medical Policy: MP-SU-01-11 Original Effective Date: February 24, 2011 Reviewed: Revised: This policy applies
Important Information for Women with Breast Cancer. what lumpectomy
Important Information for Women with Breast Cancer what lumpectomy begins Your most important decisions MammoSite completes Today, more and more women with early-stage breast cancer are able to treat their
Radiation Oncology Centers Participating in MassHealth. Daniel Tsai, Assistant Secretary and Director of MassHealth
Executive Office of Health and Human s Office of Medicaid www.mass.gov/masshealth May 2015 TO: FROM: RE: Radiation Oncology Centers Participating in Daniel Tsai, Assistant Secretary and Director of (2015
Chapter 13 BRACHYTHERAPY: PHYSICAL AND CLINICAL ASPECTS
Chapter 13 BRACHYTHERAPY: PHYSICAL AND CLINICAL ASPECTS N. SUNTHARALINGAM Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America E.B.
Oncentra Brachy Comprehensive treatment planning for brachytherapy. Time to focus on what counts
Oncentra Brachy Comprehensive treatment planning for brachytherapy Time to focus on what counts Time to focus on what counts In contemporary brachytherapy, the medical physicist needs to process an increasing
Understanding brachytherapy
Understanding brachytherapy Brachytherapy Cancer Treatment Legacy Cancer Institute Your health care provider has requested that you receive a type of radiation treatment called brachytherapy as part of
Key words: treatment planning, quality assurance, 3D treatment planning
American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning Benedick Fraass a) University of Michigan Medical
Basic Radiation Therapy Terms
Basic Radiation Therapy Terms accelerated radiation: radiation schedule in which the total dose is given over a shorter period of time. (Compare to hyperfractionated radiation.) adjuvant therapy (add-joo-vunt):
MINIMALLY INVASIVE THERMAL THERAPY FOR CANCER TREATMENT BY USING THIN COAXIAL ANTENNAS
MINIMALLY INVASIVE THERMAL THERAPY FOR CANCER TREATMENT BY USING THIN COAXIAL ANTENNAS K. Ito 1, K. Saito 1, T. Taniguchi 2, S. Okabe 2, and H. Yoshimura 1 1 Faculty of Engineering, Chiba University, Chiba,
Patient Guide. The precise answer for tackling cervical cancer. Brachytherapy: Because life is for living
Patient Guide Brachytherapy: The precise answer for tackling cervical cancer Because life is for living The aim of this booklet is to help women who have been diagnosed with cervical cancer and their family
Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate
Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_the_prostate
Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients
대한방사선종양학회지 2005;23(3):169~175 Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients Department of Radiation Oncology, College of Medicine, Ewha Womans University
Protons vs. CyberKnife. Protons vs. CyberKnife. Page 1 UC SF. What are. Alexander R. Gottschalk, M.D., Ph.D.
Protons vs. CyberKnife UC SF Protons vs. CyberKnife UC SF Alexander R. Gottschalk, M.D., Ph.D. Associate Professor and Director of the CyberKnife Radiosurgery Program Department of Radiation Oncology University
Autoradiograph of Ra-223
Session 4 Radiation protection of patients, staff and the public during therapeutic use of sealed and unsealed radioactive sources Summary of Contributed Papers Makoto Hosono, MD PhD Kinki University School
Manual for simulation of EB processing. Software ModeRTL
1 Manual for simulation of EB processing Software ModeRTL How to get results. Software ModeRTL. Software ModeRTL consists of five thematic modules and service blocks. (See Fig.1). Analytic module is intended
Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University
Clinical Physics Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Physics of Radiotherapy using External Beam Dose distribution PHANTOMS Basic dose distribution data are usually
Radiation Oncology Nursing Care. Helen Lusby Radiation Oncology Nurse BAROC 2012
Radiation Oncology Nursing Care Helen Lusby Radiation Oncology Nurse BAROC 2012 Definitions Radiation Therapy: Treatment of cancer using x- ray particles that cause ionisation within the cells. External
PRINIPLES OF RADIATION THERAPY Adarsh Kumar. The basis of radiation therapy revolve around the principle that ionizing radiations kill cells
PRINIPLES OF RADIATION THERAPY Adarsh Kumar The basis of radiation therapy revolve around the principle that ionizing radiations kill cells Radiotherapy terminology: a. Radiosensitivity: refers to susceptibility
Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021
Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021 Introduction Prostate is one of the treatment sites that is well suited for IMRT. For
Cyberknife Information Guide. Prostate Cancer Treatment
Cyberknife Information Guide Prostate Cancer Treatment CYBERKNIFE INFORMATION GUIDE PROSTATE CANCER TREATMENT As a patient recently diagnosed with localized prostate cancer, it is important that you familiarize
The Science behind Proton Beam Therapy
The Science behind Proton Beam Therapy Anthony Zietman MD Shipley Professor of Radiation Oncology Massachusetts General Hospital Harvard Medical School Principles underlying Radiotherapy Radiation related
Guidelines for the treatment of breast cancer with radiotherapy
London Cancer Guidelines for the treatment of breast cancer with radiotherapy March 2013 Review March 2014 Version 1.0 Contents 1. Introduction... 3 2. Indications and dosing schedules... 3 2.1. Ductal
intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis 11/2009 5/2016 5/2017 5/2016
Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Abdomen File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis
Implementation Date: April 2015 Clinical Operations
National Imaging Associates, Inc. Clinical guideline PROSTATE CANCER Original Date: March 2011 Page 1 of 5 Radiation Oncology Last Review Date: March 2015 Guideline Number: NIA_CG_124 Last Revised Date:
The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2
The Canadian National System for Incident Reporting in Radiation Treatment (NSIR-RT) Taxonomy March 2, 2015 V2 Taxonomy Data Category Number Description Data Fields and Menu Choices 1. Impact 1.1 Incident
Radiotherapy and Oncology 78 (2006) 67 77 www.thegreenjournal.com
Radiotherapy and Oncology 78 (2006) 67 77 www.thegreenjournal.com ESTRO project Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning
NOVEL USES OF A CT-ON-RAILS IN AN INTEGRATED BRACHYTHERAPY OR SUITE
NOVEL USES OF A CT-ON-RAILS IN AN INTEGRATED BRACHYTHERAPY OR SUITE OPTMIZING YOUR BRACHYTHERAPY WORKFLOW WITH CT-ON-RAILS SYSTEM Marc Gaudet MD, MSc, MHA FRCPC Chief, Radiation Oncology Director, Oncology
MVP/Care Core National 2015 Radiation Therapy Prior Authorization List (Effective January 1, 2015)
MVP/Care Core National 2015 Radiation Therapy Prior Authorization List (Effective January 1, 2015) CODE CODE TYPE Description 0330 REVCODE RADIOLOGY/THERAPEUTIC - GENERAL CLASSIFICATION 0333 REVCODE RADIOLOGY/THERAPEUTIC
HYPOFRACTIONATED WHOLE-BREAST RADIOTHERAPY FOR WOMEN WITH EARLY BREAST CANCER: MYTHS AND REALITIES
doi:10.1016/j.ijrobp.2010.08.035 Int. J. Radiation Oncology Biol. Phys., Vol. 79, No. 1, pp. 1 9, 2011 Copyright Ó 2011 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/$ - see front matter
Evaluation of complexity and deliverability of IMRT- treatment plans. Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer
Evaluation of complexity and deliverability of IMRT- treatment plans Author: Elin Svensson Supervisors: Anna Bäck and Anna Karlsson Hauer June 11 Abstract Background: Intensity modulated beams are used
Introduction to the Monte Carlo method
Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
GYNECOLOGIC CANCERS Facts to Help Patients Make an Informed Decision
RADIATION THERAPY FOR GYNECOLOGIC CANCERS Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY FACTS ABOUT GYNECOLOGIC CANCERS Gynecologic cancers
HDR Brachytherapy 1: Overview of QA. Disclosures: Learning Objectives 7/23/2014
HDR Brachytherapy 1: Overview of QA Bruce Libby Department of Radiation Oncology University of Virginia Health System Disclosures: Nondisclosure agreement with Varian Brachytherapy Shareholder- Varian,
Re irradiation Using HDR Interstitial Brachytherapy for Locally Recurrent. Disclosure
Re irradiation Using HDR Interstitial Brachytherapy for Locally Recurrent Cervical lcancer Yasuo Yoshioka, MD Department of Radiation Oncology Osaka University Graduate School of Medicine Osaka, Japan
Deformable Registration for Image-Guided Radiation Therapy
Symposium Multimodality Imaging for Radiotherapy : State of the art, needs and perspectives 1/33 Deformable Registration for Image-Guided Radiation Therapy David Sarrut «Radiation, images, oncology» team
Preface to Practice Standards
0 0 0 0 Preface to Practice Standards A profession s practice standards serve as a guide for appropriate practice. The practice standards define the practice and establish general criteria to determine
PROFORMA ACCEPTANCE / QUALITY ASSURANCE TESTS OF REMOTE AFTERLOADING BRACHYTHERAPY UNIT
RP&AD /Remote QA/ 01 PROFORMA FOR ACCEPTANCE / QUALITY ASSURANCE TESTS OF REMOTE AFTERLOADING BRACHYTHERAPY UNIT BHABHA ATOMIC RESEARCH CENTRE Radiological Physics & Advisory Division CT & CRS Building,
Goals and Objectives: Breast Cancer Service Department of Radiation Oncology
Goals and Objectives: Breast Cancer Service Department of Radiation Oncology The breast cancer service provides training in the diagnosis, management, treatment, and follow-up of breast malignancies, including
Radiotherapy in Hungary: present status and future needs. Tibor Major, PhD National Institute of Oncology Radiotherapy Department Budapest, Hungary
Radiotherapy in Hungary: present status and future needs Tibor Major, PhD National Institute of Oncology Radiotherapy Department Budapest, Hungary Academia Europaea Section Workshops, Bergen, 10 September,
CYBERKNIFE RADIOSURGERY FOR EARLY PROSTATE CANCER Rationale and Results. Alan Katz MD JD Flushing, NY USA
CYBERKNIFE RADIOSURGERY FOR EARLY PROSTATE CANCER Rationale and Results Alan Katz MD JD Flushing, NY USA Prostate Ablative Therapy Over the last 10 years our therapy has improved bned rates for LDR/HDR
A new score predicting the survival of patients with spinal cord compression from myeloma
A new score predicting the survival of patients with spinal cord compression from myeloma (1) Sarah Douglas, Department of Radiation Oncology, University of Lubeck, Germany; [email protected] (2) Steven
CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
Non-coronary Brachytherapy
Non-coronary Brachytherapy I. Policy University Health Alliance (UHA) will reimburse for non-coronary brachytherapy when it is determined to be medically necessary and when it meets the medical criteria
DRAFT. Algebra 1 EOC Item Specifications
DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as
Accreditation a tool to help reduce medical errors. Professor Arthur T Porter PC MD FACR FRCPC FACRO
Accreditation a tool to help reduce medical errors Professor Arthur T Porter PC MD FACR FRCPC FACRO Errors in Radiotherapy Radiation therapy is a highly regulated medical practice with historically low
Breast Cancer Accelerated Partial Breast Irradiation Bruce G. Haffty, MD Professor and Chairman Dept Radiation Oncology UMDNJ-RWJMS Cancer Institute
Breast Cancer Accelerated Partial Breast Irradiation Bruce G. Haffty, MD Professor and Chairman Dept Radiation Oncology UMDNJ-RWJMS Cancer Institute of New Jersey Rationale for Partial Breast Radiation
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
The feasibility of a QA program for ISIORT Trials
Baveno, Italy June 22-24, 2012 The feasibility of a QA program for ISIORT Trials Frank W. Hensley 1, Don A. Goer 2, Sebastian Adamczyk 3, Falk Roeder 1, Felix Sedlmayer 4, Peter Kopp 4 1 University Clinics
Chapter 12 QUALITY ASSURANCE OF EXTERNAL BEAM RADIOTHERAPY
Chapter 12 QUALITY ASSURANCE OF EXTERNAL BEAM RADIOTHERAPY D.I. THWAITES Department of Oncology Physics, Edinburgh Cancer Centre, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
Appendix 4-C. Open Channel Theory
4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient
INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT
58 INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT Sudipa Sarker 1 * and Mahbub Hossain 2 1 Department of Industrial and Production Engineering Bangladesh
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS
INTENSITY MODULATED RADIATION THERAPY (IMRT) FOR PROSTATE CANCER PATIENTS HOW DOES RADIATION THERAPY WORK? Cancer is the unrestrained growth of abnormal cells within the body. Radiation therapy kills both
RADIATION THERAPY & CANCER
CANCERCARE MANITOBA Mission Statement CancerCare Manitoba, by an act of the legislature, is responsible for cancer prevention, detection, care, research and education throughout Manitoba. RADIATION THERAPY
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy
M D Anderson Cancer Center Orlando TomoTherapy s Implementation of Image-guided Adaptive Radiation Therapy Katja Langen, PhD Research supported by TomoTherapy Inc. Today s Lecture Introduction to helical
Corporate Medical Policy Brachytherapy Treatment of Breast Cancer
Corporate Medical Policy Brachytherapy Treatment of Breast Cancer File Name: Origination: Last CAP Review: Next CAP Review: Last Review: brachytherapy_treatment_of_breast_cancer 7/1996 5/2015 5/2016 5/2015
MMA - April 2004 Update of the Hospital Outpatient Prospective Payment System (OPPS)
Related Change Request (CR) #: 3154 Related CR Release Date: March 30, 2004 Related CR Transmittal #: 132 Effective Date: April 1, 2004, except as otherwise noted Implementation Date: April 5, 2004 MMA
What is the purpose of this document? What is in the document? How do I send Feedback?
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Statistics
Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical
European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru
1. Provide clinical training in radiation oncology physics within a structured clinical environment.
Medical Physics Residency Program Overview Our Physics Residency Training is a 2 year program typically beginning July 1 each year. The first year resident will work closely with medical physicists responsible
Nursing Care of the Patient Receiving Brachytherapy for Gynecologic Cancer
Nursing Care of the Patient Receiving Brachytherapy for Gynecologic Cancer Una Randall, RN, BSN, OCN Dana Farber / Brigham and Women s Cancer Center Department of Radiation Oncology Una Randall is not
Integration of a fin experiment into the undergraduate heat transfer laboratory
Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: [email protected]
Role of IMRT in the Treatment of Gynecologic Malignancies. John C. Roeske, PhD Associate Professor The University of Chicago
Role of IMRT in the Treatment of Gynecologic Malignancies John C. Roeske, PhD Associate Professor The University of Chicago Acknowledgements B Aydogan, PhD Univ of Chicago P Chan, MD Princess Margaret
Effects of Cell Phone Radiation on the Head. BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes
Effects of Cell Phone Radiation on the Head BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes Group 3 Angela Cai Youjin Cho Mytien Nguyen Praveen Polamraju Table of Contents I.
Dosimetric impact of the 160 MLC on head and neck IMRT treatments
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Dosimetric impact of the 160 MLC on head and neck IMRT treatments Prema Rassiah-Szegedi, a Martin Szegedi, Vikren Sarkar, Seth Streitmatter,
