Effect of Consolidation Process on Tensile Properties of Fe Cu P/M Alloy from Rapidly Solidified Powder

Size: px
Start display at page:

Download "Effect of Consolidation Process on Tensile Properties of Fe Cu P/M Alloy from Rapidly Solidified Powder"

Transcription

1 Materials Transactions, Vol. 44, No. 7 (2003) pp to 1315 Special Issue on Growth of Ecomaterials as a Key to Eco-Society #2003 The Japan Institute of Metals Effect of Consolidation Process on Tensile Properties of Fe Cu P/M Alloy from Rapidly Solidified Powder Hideki Kakisawa*, Kazumi Minagawa, Susumu Takamori, Yoshiaki Osawa and Kohmei Halada National Institute for Materials Science, Tsukuba , Japan The possibilities for recycling scrap iron utilizing copper impurity as a reinforcement were investigated. For this purpose, Fe Cu powder was prepared by high-pressure water atomization and consolidated by groove rolling at a warm temperature in order to maintain the powder microstructure. The effect of the rolling reduction rate on the mechanical properties of the consolidated samples was examined in this paper. The powder was successfully consolidated without coarse copper precipitation by the rolling technique, though pores were observed at the primary powder boundaries at the low reduction rates. With the increase of the reduction rate, the powder was more elongated and adhered with other powder, and the pore volume fraction decreased. Strength and elongation in tensile testing were measured, and the Vickers hardness of the consolidated samples was examined. All the properties tested improved by increasing the reduction rate. The tensile properties required a more intensive rolling process to bring about the full performance originated by the maintained powder microstructure than the hardness. Using the determined optimum rolling condition, a high strength material was achieved via the proposed processing, showing the prospect for a new recycling process of scrap iron. (Received January 27, 2003; Accepted March 27, 2003) Keywords: Iron copper rapidly solidified powder, rolling consolidation, reduction rate, tensile properties 1. Introduction *Corresponding author: KAKISAWA.Hideki@nims.go.jp Copper, a major impurity in scrap iron from vehicles and electrical appliances, is one of the most troublesome elements to recycling. It is very difficult to remove, by refining, copper that is contained in iron. The liquid copper phase in iron causes surface cracking during hot rolling; it is known that the limitation of copper in rolled bar steel is 0.4 mass%. Copper in the amount of 0.4 mass% in rolled bar steel will cause surface cracking to occur. 1) The embrittlement of steel products due to coarse copper precipitation is also a problem. Iron scrap with significant copper impurity has been recycled in casting at best, or has been dumped without recycling. However, a huge amount of scrap iron is being produced, and the copper content in iron scrap has continued to increase over the years. 2) It is necessary to develop a new type of processing so that copper rich scrap can be recycled without removing the copper. New uses for copper-rich scrap iron, in addition to casting, are also needed. We have been investigating the utilization of copper impurity as a reinforcement using a powder metallurgical technique. In powder metallurgy, an Fe Cu system has often been used. Liquid phase sintering is used for the consolidation of iron powder, utilizing melted copper surrounding iron powder. 3 5) Fe Cu powders in which copper has been supersaturated by mechanical alloying are consolidated in various methods at relatively low temperatures of 873 K. 6 9) The immiscibility of these metals produces an ultrafine microstructure, and the powder microstructure which is maintained due to the low consolidating temperature results in nanostructured materials with good mechanical properties. However, much time and energy is required to prepare the raw powder used in processes that use mechanical alloying. In our study, a rapidly solidified Fe Cu powder from high-pressure water atomization, where copper is nanodispersed, was used ) It has been known that precipitation hardening operates when copper precipitates in ferrite matrix on the order of nanometers ) By consolidating at 873 K using the rolling technique, the copper impurities remained nano-dispersed in the iron matrix throughout the process without either liquid phase or coarse precipitation, and the consolidated materials showed high strength. 10,11) In this paper, the effect of the reduction rate on the consolidation procedure of the powder was investigated, and the optimum consolidation condition was determined from the results obtained from tensile testing. 2. Experimental Procedure Fe Cu alloy powder (Nippon Atomized Metal Powders Corporation, Tokyo, Japan) was prepared using a highpressure water atomizing method with a copper content, c cu, of 0.5, 2 and 5 mass%. The atomized powder was sorted, and the mean powder size was set to 5 mm. In X-ray diffraction analysis of the as-atomized powders, peak sets of fcc copper and ferrite were detected, indicating that the copper was precipitated in the ferrite matrix. Figure 1 shows the cross section of the powder (Cu: 0.5 mass%) observed by scanning electron microscopy (SEM). There were no coarse copper precipitates either in the powder or on the powder surface; most of the precipitated coppers were less than 20 nm in diameter. The powder with 2 mass% copper was used to determine the optimum consolidation condition. The powder was filled in a low carbon steel sheath, and was sealed after being evacuated at 753 K for 54 ks in order to remove the surface contaminant of the powder. The sheath had an outer diameter of 40 mm and an inner diameter of 30 mm. The volumetric capacity of the sheath was 84.3 cm 3, and approximately 330 g of the powder were put into the sheath. The sheath was then heavily deformed and consolidated with groove rolling at 873 K. The 40 mm diameter sheaths were formed into bars,

2 1312 H. Kakisawa, K. Minagawa, S. Takamori, Y. Osawa and K. Halada Fig. 1 SEM observation of the cross-section of the atomized powder (Cu: 0.5 mass%). Table 1 Rolling path and cross-section reduction rate. Rolling path Bar diameter (mm) cross-section reduction rate and the powder was consolidated through the rolling process. The rolling paths are listed in Table 1. During the rolling, the sheath were re-heated at 873 K for 300 s every three steps to avoid a temperature drop. The 3-step rolling took less than 60 s. The cross-section reduction rate, R, defined by R ¼ S 0 S 100ð%Þ ð1þ S 0 where S 0 is the initial cross-section of the bar, and S is the cross-section after rolling, was varied, and bars with R ¼ 65:4, 71.6, 76.7, 80.8, and 87.2 were obtained. After rolling, the consolidated samples were cooled in air. Transverse and longitudinal sections of the consolidated samples were observed by scanning electron microscopy (SEM). Electron probe microanalysis (EPMA) of the sections was conducted. Vickers microhardness was measured with an applied load of 500 N and a holding time of 15 s. Tensile testing was done in air at room temperature using round tensile test specimens that had a parallel span of 24.5 mm and a diameter of 3.5 mm. The crosshead speed was a constant rate of 8: mm/s. Note that the primary outer sheath parts were completely removed when the bars were machined to specimens with a diameter of 3.5 mm. After the testing, SEM observations of the fracture surface and longitudinal section of the fractured specimens were carried out. The powder with 0.5 and 5 mass% copper was also consolidated in the same conditions, with the cross-section reduction rate fixed on R ¼ 87:2. The consolidated samples were subjected to tensile testing under the same test conditions mentioned above. Fig. 2 SEM observation of the longitudinal sections of the consolidated samples (Cu: 2 mass%): (a) R ¼ 65:4, (b) R ¼ 76:7, and (c) R ¼ 84:4. 3. Results and Discussion Figure 2 shows the longitudinal sections of the consolidated samples (Cu: 2 mass%): (a) R ¼ 65:4, (b) R ¼ 76:7, and (c) R ¼ 84:4. Consolidation was successfully completed without crumbling in all the ranges of R tested. The copper nano-dispersed microstructure of the powder was maintained after consolidation in all of the samples. The primary powder boundaries remained, and pores were observed at the boundaries. Some of the powders had an oxide layer around

3 Effect of Consolidation Process on Tensile Properties of Fe Cu P/M Alloy from Rapidly Solidified Powder 1313 them, which formed during water atomization (indicated by arrows). Applying the concentration histogram imaging (CHI) method 20) to the EPMA data, most of the inclusions were found to be Fe 2 O 3. With the proceeding of the rolling process, the powders were severely deformed and adhered with each other, and the pores at the boundaries decreased. Some of the oxide layers were fractured by the intensive deformation. Figure 3 shows the relation between the pore volume fraction, V p, and the cross-section reduction rate, R. In the sample rolled at R ¼ 87:2, a relative density of 99.8% was obtained. Since the powder packing density in the sheath before consolidation was about 50%, assuming the density of -iron at room temperature 7.8 g/cm 3, the data indicate that good consolidation was achieved though the rolling used in this study. Figure 4 shows the relation between the Vickers microhardness, H v, in the transverse section, and the cross-section reduction rate, R. The hardness increased with the increase of the cross-section reduction rate, i.e., the proceeding of consolidation. The hardness reached 240 at R ¼ 71:6 and then became constant. The high hardness of 240 was attributed to the hard microstructure of the powder where Fig. 3 Relation between pore volume fraction in the consolidated samples and cross-section reduction rate. Fig. 4 Relation between Vickers microhardness and cross-section reduction rate. Fig. 5 Ultimate tensile strength and elongation of the consolidated samples plotted against cross-section reduction rate. copper was precipitated, and the constant hardness in R 71:6 indicated that the cross-section reduction rate of 71.6 was enough to utilize the powder microstructure for hardening. The relation between ultimate tensile strength, u, and the cross-section reduction rate, R, is shown in Fig. 5. The ultimate tensile strength increased as the rolling proceeded. The sample rolled at R ¼ 87:2 had a high strength of 753 MPa while the strength of the sample rolled at R ¼ 71:6 was 688 MPa, though they had the same hardness. The relation between uniform elongation in tensile testing, ", and R is also plotted in Fig. 5. The elongation had significant dependence on the reduction rate. The samples rolled at R ¼ 65:4 and 71.6 fractured on reaching the maximum stress, resulting in a small elongation. The samples rolled at the higher rate had a larger uniform elongation, and after the maximum stress, necking behavior occurred. Both the uniform and total elongation increased with the increase of the reduction rate in this reduction rate range. The longitudinal section of the samples after testing is shown in Fig. 6: (a) R ¼ 65:4 and (b) R ¼ 84:4. The end of the sample is the fracture part. This figure clearly shows that the fracture occurred at the primary powder boundaries in the samples rolled at the low cross-section reduction rates. Weak adhesion with the neighboring powders due to a large number of pores and the oxides caused the fracture at the boundaries, i.e., the samples fractured before exhibiting the full potential expected from the copper nano-dispersed microstructure of the powder. The small elongation is also explained by the boundary fracture. In the samples rolled at R ¼ 87:2%, each powder was well deformed until it reached fracture without boundary breaking. Though small pores of 500 nm grew at the boundaries, these did not lead to the boundary breaking directly. This fracture behavior is attributable to two main reasons, both of which come from the larger deformation of the powders during rolling. One reason is the smaller boundary section concerning the fracture, i.e., the boundary section perpendicular to the loading direction, and the other reason is the breakage of the oxide layer and the creation of fresh surfaces that lead to stronger boundary adhesion, schematically illustrated in Figs. 7(a) and (b). The surface

4 1314 H. Kakisawa, K. Minagawa, S. Takamori, Y. Osawa and K. Halada Fig. 6 SEM observation of the longitudinal sections of the fractured samples: (a) R ¼ 65:4 and (b) R ¼ 84:4. area of the deformed powder, A, was calculated by assuming that the volume of the powder was constant and the sphere powder was deformed to an ellipsoid form, as shown in Fig. 7(c). The surface area increases as the major axis, a, is extended to the rolling direction. From all of these results, it was determined that severer rolling is required to bring out the inherent high strength of the samples than is required to obtain the full hardness, and the optimum rolling condition was determined to be R ¼ 87:2. The ultimate tensile strength and elongation of the samples consolidated in the optimum condition are plotted against the copper content in Fig. 8. The strength increased with the increase of the copper content in the samples, clearly indicating the contribution of copper to strengthening. The elongation decreased as the copper content increased. The sample with 5 mass% had a significantly high strength of 867 MPa. The samples had considerable elongation in all the ranges of copper content: 11.7% total elongation and 3.9% uniform elongation at 0.5 mass% copper; 6.9% total elongation and 2.7% uniform elongation even at 5 mass% copper, exhibiting a very good strength/elongation balance. A high strength material utilizing a copper additive for strengthening has been achieved by the combination of rapidly solidified Fig. 7 Schematic illustrations of boundary in the consolidated samples, showing the smaller boundaries concerning the fracture and the larger fresh surfaces in the samples rolled at a high reduction rate. Fig. 8 Relation between ultimate tensile strength and elongation of the consolidated samples rolled at R ¼ 84:4 and copper content.

5 Effect of Consolidation Process on Tensile Properties of Fe Cu P/M Alloy from Rapidly Solidified Powder 1315 powder and a severe rolling consolidation technique, and the process is applicable up to a copper content of 5 mass%, which is an extremely high amount as a tramp element. This indicates the great possibilities of this method for supplying a new use for scrap iron which includes significant copper. 4. Conclusion (1) Consolidation of the powder proceeds as the reduction rate increases. A higher reduction rate results in a larger powder deformation and smaller pore volume fraction. (2) The larger deformation led to the generation of fresh surface on the powder and resulted in strong adhesion at the boundaries. The strong adhesion of each powder was the key to bringing out the full performance originated by the maintained copper nano-dispersed powder microstructure. More rolling was required to achieve the best tensile properties than hardness. (3) The prospect for supplying a new use for scrap iron which includes significant copper, as has been applied only to casting, was clearly demonstrated. REFERENCES 1) N. Imai, N. Komatsubara and K. Kunishige: ISIJ Int. 37 (1997) ) K. Noro, M. Takeuchi and Y. Mizukami: ISIJ Int. 37 (1997) ) W. D. Kingery and M. D. Narasimhan: J. Appl. Phys. 30 (1959) ) W. A. Kaysser, W. J. Huppmann and G. Petzow: Powder Metall. 23 (1980) ) S. S. Kang and D. N. Yoon: Metall. Trans. 13A (1982) ) G. R. Shaik and W. W. Milligan: Metall. Mater. Trans. 28A (1997) ) J. E. Carsley, A. Fisher, W. W. Milligan and E. C. Aifantis: Metall. Mater. Trans. 29A (1998) ) L. He and E. Ma: Nanostruct. Mater. 7 (1996) ) J. E. Carsley, W. W. Milligan, S. A. Hackney and E. C. Aifantis: Metall. Mater. Trans. 26A (1995) ) E. Hornbogen and R. C. Glemn: Trans. Metall. Soc. AIME 218 (1960) ) K. G. Russel and L. M. Brown: Acta Metall. 20 (1972) ) S. R. Goodman, S. S. Brenner and J. R. Low, Jr.: Metall. Trans. 4 (1973) ) K. Minagawa, H. Kakisawa, H. Okuyama, M. Otaguchi and K. Halada: Proc Powder Metallurgy World Congress, ed. by K. Kosuge and H. Nagai (Jpn. Soc. Powder and Powder Metallurgy, Kyoto, Japan, 2000) pp ) H. Kakisawa, K. Minagawa, M. Otaguchi and K. Halada: Mater. Trans. 43 (2002) ) H. Kakisawa, K. Minagawa and K. Halada: Mater. Sci. Eng. A340 (2003) ) G. M. Worrall, J. T. Buswell, C. A. English, M. G. Hetherington and G. D. W. Smith: J. Nuclear Mater. 48 (1987) ) K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusawa, K. Kishida and F. Kurosawa: Iron Steel Inst. Jpn. Int. 34 (1994) ) Y. Tomita, T. Haze, N. Saito, T. Tsuzaki, Y. Tokunaga and K. Okamoto: ISIJ Int. 34 (1994) ) A. Takahashi and M. Iino: ISIJ Int. 36 (1996) ) D. S. Bright and D. E. Newbury: Anal. Chem. 63 (1991) 243A-250A.

CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden

CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden CHROMIUM STEEL POWDERS FOR COMPONENTS JEANETTE LEWENHAGEN Höganäs AB, Sweden KEYWORDS Pre-alloyed steel powder, chromium, PM ABSTRACT Chromium as an alloying element is of great interest due to its low

More information

Friction stir butt welding of A5052-O aluminum alloy plates

Friction stir butt welding of A5052-O aluminum alloy plates Trans. Nonferrous Met. Soc. China 22(2012) s619 s623 Friction stir butt welding of A5052-O aluminum alloy plates Sung-Ook YOON 1, Myoung-Soo KANG 1, Hyun-Bin NAM 1, Yong-Jai KWON 1, Sung-Tae HONG 2, Jin-Chun

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF GRAY CAST IRON AND AlSi ALLOY AFTER LASER BEAM HARDENING

MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF GRAY CAST IRON AND AlSi ALLOY AFTER LASER BEAM HARDENING Materials Science Forum Vols. 638-642 (2010) pp 769-774 Online available since 2010/Jan/12 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.638-642.769

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient

More information

Full Density Properties of Low Alloy Steels

Full Density Properties of Low Alloy Steels Full Density Properties of Low Alloy Steels Michael L. Marucci & Arthur J. Rawlings Hoeganaes Corporation, Cinnaminson, NJ Presented at PM 2 TEC2005 International Conference on Powder Metallurgy and Particulate

More information

LABORATORY EXPERIMENTS TESTING OF MATERIALS

LABORATORY EXPERIMENTS TESTING OF MATERIALS LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective

More information

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077 SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS W. Brian James Hoeganaes Corporation Cinnaminson, NJ 08077 Leander F. Pease III Powder-Tech Associates Inc. Andover, MA 01845

More information

EFFECT OF HARDNESS VARIATION ON SURFACE INTEGRITY OF CARBURIZED P20 STEEL

EFFECT OF HARDNESS VARIATION ON SURFACE INTEGRITY OF CARBURIZED P20 STEEL Copyright 2013 by ABCM EFFECT OF HARDNESS VARIATION ON SURFACE INTEGRITY OF CARBURIZED P20 STEEL Franciele Litvin franciele-litvin@hotmail.com Larissa França Madeira Manfrinato lari_manfrinato@hotmail.com

More information

2017A ALUMINUM ALLOY IN DIFFERENT HEAT TREATMENT CONDITIONS

2017A ALUMINUM ALLOY IN DIFFERENT HEAT TREATMENT CONDITIONS Acta Metallurgica Slovaca, Vol. 18, 2012, No. 2-3, p. 82-91 82 2017A ALUMINUM ALLOY IN DIFFERENT HEAT TREATMENT CONDITIONS K. Mroczka 1)*, A. Wójcicka 1), P. Kurtyka 1) 1) Department of Technology and

More information

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.35-153.881-412.2=20 RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS M. ŠULER 1, L. KOSEC 1, A. C. KNEISSL 2, M. BIZJAK 1, K. RAIĆ

More information

Interfacial Reaction between Sn Ag Co Solder and Metals

Interfacial Reaction between Sn Ag Co Solder and Metals Materials Transactions, Vol. 46, No. 11 (25) pp. 2394 to 2399 Special Issue on Lead-Free ing in Electronics III #25 The Japan Institute of Metals Interfacial Reaction between Sn Ag Co and Metals Hiroshi

More information

Laser sintering of greens compacts of MoSi 2

Laser sintering of greens compacts of MoSi 2 Laser sintering of greens compacts of MoSi 2 G. de Vasconcelos 1, R. Cesar Maia 2, C.A.A.Cairo 3, R. Riva 2, N.A.S.Rodrigues 2, F.C.L.Mello 3 Instituto de Estudos Avançados 1, Instituto Tecnológico de

More information

THE MICROSTRUCTURE AND PROPERTIES OF HOT PRESSED IRON BRONZE POWDERS. BOROWIECKA-JAMROZEK Joanna

THE MICROSTRUCTURE AND PROPERTIES OF HOT PRESSED IRON BRONZE POWDERS. BOROWIECKA-JAMROZEK Joanna April 29 th 2015 THE MICROSTRUCTURE AND PROPERTIES OF HOT PRESSED IRON BRONZE POWDERS BOROWIECKA-JAMROZEK Joanna Department of Applied Computer Science and Armament Engineering, Faculty of Mechatronics

More information

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS Michael L. Marucci and Francis G. Hanejko Hoeganaes Corporation Cinnaminson, NJ 08077 - USA Abstract Fe-Cu-C

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA Development of a High Performance Nickel-Free P/M Steel Bruce Lindsley Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA Abstract A developmental nickel-free P/M steel containing

More information

A Comparison of FC-0208 to a 0.3% Molybdenum Prealloyed Low-Alloy Powder with 0.8% Graphite

A Comparison of FC-0208 to a 0.3% Molybdenum Prealloyed Low-Alloy Powder with 0.8% Graphite A Comparison of FC-0208 to a 0.3% Molybdenum Prealloyed Low-Alloy Powder with 0.8% Graphite Francis Hanejko Manager, Customer Applications Hoeganaes Corporation Cinnaminson, NJ 08077 Abstract Iron copper

More information

INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS

INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC: 669.15'26'74'28-194 INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS Nenad

More information

FRETTING FATIGUE OF STEELS WITH IFFERENT STRENGTH

FRETTING FATIGUE OF STEELS WITH IFFERENT STRENGTH FRETTING FATIGUE OF STEELS WITH IFFERENT STRENGTH Václav LINHART, Martin ČIPERA, Dagmar MIKULOVÁ SVÚM, a.s., Podnikatelská 565, 190 11 Praha 9- Běchovice,Czech Republic Abstract The investigation of fretting

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels

Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels Michael Marucci *, Alan Lawley **, Robert Causton *, and Suleyman Saritas *** * Hoeganaes Corporation,

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014218 TITLE: Thermal and Residual Stress Modelling of the Selective Laser Sintering Process DISTRIBUTION: Approved for public

More information

EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF SINTERED NdFeB MAGNETS

EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE AND MAGNETIC PROPERTIES OF SINTERED NdFeB MAGNETS Effect Rev. Adv. of particle Mater. Sci. size 28 distribution (2011) 185-189 on the microstructure and magnetic properties of sintered... 185 EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE MICROSTRUCTURE

More information

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Tagung des Arbeitskreises Thermophysik, 4. 5.3.2010 Karlsruhe, Deutschland E. Kaschnitz Österreichisches Gießerei-Institut

More information

Laser beam sintering of coatings and structures

Laser beam sintering of coatings and structures Laser beam sintering of coatings and structures Anne- Maria Reinecke, Peter Regenfuß, Maren Nieher, Sascha Klötzer, Robby Ebert, Horst Exner Laserinstitut Mittelsachsen e.v. an der Hochschule Mittweida,

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL Hossam Halfa Steel Technology Department, Central Metallurgical R&D Institute (CMRDI), Helwan, Egypt, hossamhalfa@cmrdi.sci.eg;

More information

CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER

CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER Sang H. Yoo, T.S. Sudarshan, Krupa Sethuram Materials Modification Inc, 2929-P1 Eskridge Rd, Fairfax, VA, 22031

More information

Dissimilar Friction Stir Welding for Tailor-Welded Blanks of Aluminum and Magnesium Alloys

Dissimilar Friction Stir Welding for Tailor-Welded Blanks of Aluminum and Magnesium Alloys Materials Transactions, Vol. 50, No. 1 (2009) pp. 197 to 203 #2009 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Dissimilar Friction Stir Welding for Tailor-Welded Blanks of Aluminum and Magnesium

More information

Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel

Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel Paper 28-1-434 Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 414 Steel Copyright 28 SAE International Nisha Cyril and Ali Fatemi The University

More information

Improved Powder Performance Through Binder Treatment of Premixes

Improved Powder Performance Through Binder Treatment of Premixes % of Graphite Bonded % of Lubricant Bonded % of Copper Bonded Improved Powder Performance Through Binder Treatment of Premixes C.T. Schade 1 and M. Marucci 1 1 Hoeganaes Corporation, 1001 Taylors Lane,

More information

Thermodynamic database of the phase diagrams in copper base alloy systems

Thermodynamic database of the phase diagrams in copper base alloy systems Journal of Physics and Chemistry of Solids 66 (2005) 256 260 www.elsevier.com/locate/jpcs Thermodynamic database of the phase diagrams in copper base alloy systems C.P. Wang a, X.J. Liu b, M. Jiang b,

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness

Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness Journal of ELECTRONIC MATERIALS, Vol. 36, No. 11, 2007 DOI: 10.1007/s11664-007-0270-x Ó 2007 TMS Special Issue Paper -Cu Intermetallic Grain Morphology Related to Layer Thickness MIN-HSIEN LU 1 and KER-CHANG

More information

, Yong-Min Kwon 1 ) , Ho-Young Son 1 ) , Jeong-Tak Moon 2 ) Byung-Wook Jeong 2 ) , Kyung-In Kang 2 )

, Yong-Min Kwon 1 ) , Ho-Young Son 1 ) , Jeong-Tak Moon 2 ) Byung-Wook Jeong 2 ) , Kyung-In Kang 2 ) Effect of Sb Addition in Sn-Ag-Cu Solder Balls on the Drop Test Reliability of BGA Packages with Electroless Nickel Immersion Gold (ENIG) Surface Finish Yong-Sung Park 1 ), Yong-Min Kwon 1 ), Ho-Young

More information

BIOACTIVE COATINGS ON 316L STAINLESS STEEL IMPLANTS

BIOACTIVE COATINGS ON 316L STAINLESS STEEL IMPLANTS Trends Biomater. Artif. Organs. Vol. 17(2) pp 43-47 (2004) http//www.sbaoi.org BIOACTIVE COATINGS ON 316L STAINLESS STEEL IMPLANTS N. Ramesh Babu*,+, Sushant Manwatkar*, K. Prasada Rao* and T. S. Sampath

More information

How To Study A Japanese Sword

How To Study A Japanese Sword , 07018 (2009) DOI:10.1051/esomat/200907018 Owned by the authors, published by EDP Sciences, 2009 Study of Microstructures on Cross Section of JAPANESE SWORD M. Yaso a, T. Takaiwa, Y. Minagi, K. Kubota

More information

Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated Welding Thermal Cycle Process

Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated Welding Thermal Cycle Process Available online at SciVerse ScienceDirect J. Mater. Sci. Technol., 2013, 29(5), 446e450 Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated

More information

EFFECT OF SINTERING CONDITIONS ON PARTICLE CONTACTS AND MECHANICAL PROPERTIES OF PM STEELS PREPARED FROM 3%Cr PREALLOYED POWDER

EFFECT OF SINTERING CONDITIONS ON PARTICLE CONTACTS AND MECHANICAL PROPERTIES OF PM STEELS PREPARED FROM 3%Cr PREALLOYED POWDER Powder Metallurgy Progress, Vol.2 (2002), No 4 211 EFFECT OF SINTERING CONDITIONS ON PARTICLE CONTACTS AND MECHANICAL PROPERTIES OF PM STEELS PREPARED FROM 3%Cr PREALLOYED POWDER S. Kremel, H. Danninger,

More information

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 57 2012 Issue 3 DOI: 10.2478/v10172-012-0095-3

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 57 2012 Issue 3 DOI: 10.2478/v10172-012-0095-3 A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 57 2012 Issue 3 DOI: 10.2478/v10172-012-0095-3 K. TOPOLSKI, H. GARBACZ, P. WIECIŃSKI, W. PACHLA, K.J. KURZYDŁOWSKI MECHANICAL PROPERTIES

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts

Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts Su-Hai Hsiang, Yi-Wei Lin, and Wen-Hao Chien Department of Mechanical Engineering National

More information

Process Parameters Optimization for Friction Stir Welding of Pure Aluminium to Brass (CuZn30) using Taguchi Technique

Process Parameters Optimization for Friction Stir Welding of Pure Aluminium to Brass (CuZn30) using Taguchi Technique MATEC Web of Conferences43, 03005 ( 016) DOI: 10.1051/ matecconf/ 016 4303005 C Owned by the authors, published by EDP Sciences, 016 Process Parameters Optimization for Friction Stir Welding of Pure Aluminium

More information

METALLURGICAL EVALUATION OF SPRAY DEPOSITED AND RING ROLLED IN718

METALLURGICAL EVALUATION OF SPRAY DEPOSITED AND RING ROLLED IN718 Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 METALLURGICAL EVALUATION OF SPRAY DEPOSITED AND RING ROLLED IN718 Guoqing Zhang,

More information

Chapter Outline: Phase Transformations in Metals

Chapter Outline: Phase Transformations in Metals Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

Development of Metal Injection Molding Process for Aircraft Engine Part Production

Development of Metal Injection Molding Process for Aircraft Engine Part Production Development of Metal Injection Molding Process for Aircraft Engine Part Production IKEDA Shuji : Manager, Engine Technology Department, Research & Engineering Division, Aero-Engine & Space Operations SATOH

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

APPLICATION OF X-RAY COMPUTED TOMOGRAPHY IN SILICON SOLAR CELLS

APPLICATION OF X-RAY COMPUTED TOMOGRAPHY IN SILICON SOLAR CELLS APPLICATION OF X-RAY COMPUTED TOMOGRAPHY IN SILICON SOLAR CELLS V.A. Popovich 1, W. Verwaal 2, M. Janssen 1, I. J. Bennett 3, I.M.Richardson 1, 1. Delft University of Technology, Department of Materials

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Classification

More information

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,

More information

Tensile Testing Laboratory

Tensile Testing Laboratory Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental

More information

SINGLE CRYSTAL PWA 1472 IN HIGH PRESSURE HYDROGEN. D. P. DeLUCA, R. W. HATALA

SINGLE CRYSTAL PWA 1472 IN HIGH PRESSURE HYDROGEN. D. P. DeLUCA, R. W. HATALA SINGLE CRYSTAL PWA 1472 IN HIGH PRESSURE HYDROGEN D. P. DeLUCA, R. W. HATALA UNITED TECHNOLOGIES PRATT & WHITNEY P. 0. Box 109600 West Palm Beach, Florida 3341 O-9600 Abstract y strengthened Ni base single

More information

The Effect of Temperature and Extrusion Speed on The Consolidation of Zirconium-Based Metallic Glass Powder Using Equal-Channel Angular Extrusion

The Effect of Temperature and Extrusion Speed on The Consolidation of Zirconium-Based Metallic Glass Powder Using Equal-Channel Angular Extrusion The Effect of Temperature and Extrusion Speed on The Consolidation of Zirconium-Based Metallic Glass Powder Using Equal-Channel Angular Extrusion I. KARAMAN, J. ROBERTSON, J.-T. IM, S.N. MATHAUDHU, Z.P.

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded. 1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical

More information

CHAPTER 6 WEAR TESTING MEASUREMENT

CHAPTER 6 WEAR TESTING MEASUREMENT 84 CHAPTER 6 WEAR TESTING MEASUREMENT Wear is a process of removal of material from one or both of two solid surfaces in solid state contact. As the wear is a surface removal phenomenon and occurs mostly

More information

EFFECTS OF STRAIN RATE ON WORK HARDENING OF HSLA AND Ti-IF STEELS

EFFECTS OF STRAIN RATE ON WORK HARDENING OF HSLA AND Ti-IF STEELS METALLURGY AND FOUNDRY ENGINEERING Vol. 32, 2006, No. 1 Monika Stefañska-K¹dziela *, Janusz Majta **, Krzysztof Muszka *** EFFECTS OF STRAIN RATE ON WORK HARDENING OF HSLA AND Ti-IF STEELS Notation: A

More information

Interface Reaction and Mechanical Properties of Lead-free Sn Zn Alloy/Cu Joints

Interface Reaction and Mechanical Properties of Lead-free Sn Zn Alloy/Cu Joints Materials Transactions, Vol. 43, No. 8 (2002) pp. 1797 to 1801 Special Issue on Lead-Free Electronics Packaging c 2002 The Japan Institute of Metals Interface Reaction and Mechanical Properties of Lead-free

More information

DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings

DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings I. S. MELAND SINTEF Civil and Environmental Engineering, Cement and Concrete, Trondheim, Norway Durability of Building Materials

More information

Simulation of Residual Stresses in an Induction Hardened Roll

Simulation of Residual Stresses in an Induction Hardened Roll 2.6.4 Simulation of Residual Stresses in an Induction Hardened Roll Ludwig Hellenthal, Clemens Groth Walzen Irle GmbH, Netphen-Deuz, Germany CADFEM GmbH, Burgdorf/Hannover, Germany Summary A heat treatment

More information

EXPERIMENTAL STUDY OF STRUCTURAL ZONE MODEL FOR COMPOSITE THIN FILMS IN MAGNETIC RECORDING MEDIA APPLICATION

EXPERIMENTAL STUDY OF STRUCTURAL ZONE MODEL FOR COMPOSITE THIN FILMS IN MAGNETIC RECORDING MEDIA APPLICATION EXPERIMENTAL STUDY OF STRUCTURAL ZONE MODEL FOR COMPOSITE THIN FILMS IN MAGNETIC RECORDING MEDIA APPLICATION Hua Yuan and David E. Laughlin Department of Materials Science and Engineering, Carnegie Mellon

More information

PROCESSING OF AISI M2 HSS WITH ADDITION OF NbC BY MECHANICAL ALLOYING USING TWO DIFFERENT TYPES OF ATTRITOR MILLS

PROCESSING OF AISI M2 HSS WITH ADDITION OF NbC BY MECHANICAL ALLOYING USING TWO DIFFERENT TYPES OF ATTRITOR MILLS Materials Science Forum Vols. 660-661 (2010) pp 17-22 Online available since 2010/Oct/25 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.660-661.17

More information

TENSILE BEHAVIOUR OF OPEN CELL CERAMIC FOAMS

TENSILE BEHAVIOUR OF OPEN CELL CERAMIC FOAMS Original papers TENSILE BEHAVIOUR OF OPEN CELL CERAMIC FOAMS LUKÁŠ ŘEHOŘEK*, **, IVO DLOUHÝ*,**, ZDENĚK CHLUP* *Institute of Physics of Materials ASCR, Žižkova 22, 616 62 Brno, Czech Republic **Institute

More information

EFFECT OF SEVERE PLASTIC DEFORMATION ON STRUCTURE AND PROPERTIES OF AUSTENITIC AISI 316 GRADE STEEL

EFFECT OF SEVERE PLASTIC DEFORMATION ON STRUCTURE AND PROPERTIES OF AUSTENITIC AISI 316 GRADE STEEL EFFECT OF SEVERE PLASTIC DEFORMATION ON STRUCTURE AND PROPERTIES OF AUSTENITIC AISI 316 GRADE STEEL Ladislav KANDER a, Miroslav GREGER b a MATERIÁLOVÝ A METALURGICKÝ VÝZKUM, s.r.o., Ostrava, Czech Republic,

More information

Lecture 18 Strain Hardening And Recrystallization

Lecture 18 Strain Hardening And Recrystallization -138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Processing and Characterization of a New Composite Metal Foam

Processing and Characterization of a New Composite Metal Foam Materials Transactions, Vol. 47, No. 9 (2006) pp. 2148 to 2153 Special Issue on Porous and Foamed Metals Fabrication, Characterization, Properties and Applications #2006 The Japan Institute of Metals Processing

More information

ATI 2205 ATI 2205. Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

ATI 2205 ATI 2205. Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205) ATI 2205 Duplex Stainless Steel (UNS S31803 and S32205) GENERAL PROPERTIES ATI 2205 alloy (UNS S31803 and/or S32205) is a nitrogen-enhanced duplex stainless steel alloy. The nitrogen serves to significantly

More information

Effect of Hydrogenation Pressure on Microstructure and Mechanical Properties of Ti-13Nb-13Zr Alloy Produced by Powder Metallurgy

Effect of Hydrogenation Pressure on Microstructure and Mechanical Properties of Ti-13Nb-13Zr Alloy Produced by Powder Metallurgy Materials Science Forum Vols. 660-661 (2010) pp 176-181 Online available since 2010/Oct/25 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.660-661.176

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

TITANIUM FABRICATION CORP.

TITANIUM FABRICATION CORP. TITANIUM FABRICATION CORP. Titanium, Zirconium, and Tantalum Clad Construction General Considerations In many applications, particularly for large pressure vessels designed for high temperature and pressure,

More information

Influence of Steel Scrap on Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron

Influence of Steel Scrap on Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron Materials Transactions, Vol. 44, No. 7 (2003) pp. 1419 to 1424 #2003 The Japan Institute of Metals Influence of Scrap on Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron Sadato

More information

Materials Standards for Metal Injection Molded Parts

Materials Standards for Metal Injection Molded Parts MPIF Standard 35 s Standards for Metal Injection Molded Parts Issued 1993 Revised 2000 and 2007 Scope MPIF Standard 35 is issued to provide the design and materials engineer with the information necessary

More information

Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter

Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter Module #17 Work/Strain Hardening READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter D. Kuhlmann-Wilsdorf, Trans. AIME, v. 224 (1962) pp. 1047-1061 Work Hardening RECALL: During plastic deformation,

More information

Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed

Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed , June 30 - July 2, 2010, London, U.K. Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed H. Khalid Rafi, G. D. Janaki Ram, G. Phanikumar and

More information

This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324

This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324 Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited

More information

FATIGUE PROPERTIES OF P/M MATERIALS. Robert C. O'Brien. Hoeganaes Corporation River Road Riverton, New Jersey 08077

FATIGUE PROPERTIES OF P/M MATERIALS. Robert C. O'Brien. Hoeganaes Corporation River Road Riverton, New Jersey 08077 FATIGUE PROPERTIES OF P/M MATERIALS Robert C. O'Brien Hoeganaes Corporation River Road Riverton, New Jersey 08077 Presented at the SAE Congress Detroit, Michigan, February 29-March 4, 1988 Abstract The

More information

Material Failures in Fire Protection Systems

Material Failures in Fire Protection Systems Material Failures in Fire Protection Systems March 4, 2014 University of Central Florida (UCF), Orlando, FL Jeff Pfaendtner Materials/Metallurgical Engineer Crane Engineering Inc., Plymouth, MN Crane Engineering

More information

Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples

Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples C. W. Chang 1, Q. P. Lee 1, C. E. Ho 1 1, 2, *, and C. R. Kao 1 Department of Chemical & Materials Engineering 2 Institute of Materials

More information

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

Effect of Laser Surface Treatment on Mechanical Properties of CK45 Steel

Effect of Laser Surface Treatment on Mechanical Properties of CK45 Steel Mechanical Properties of CK45 Steel Dr. Khansaa Dawood Selman* & Sabah N. mahmood* Received on: 11/1 /2011 Accepted on:5 / 5/2011 Abstract The research aims to study the effect of laser surface treatment

More information

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

Steel production. Furnace linings made from carbon and graphite are applied for the production of primary iron.

Steel production. Furnace linings made from carbon and graphite are applied for the production of primary iron. Steel production Furnace linings made from carbon and graphite are applied for the production of primary iron. Graphite electrodes and nipples (connecting pins) are applied for the production of steel.

More information

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS Kris Vaithinathan and Richard Lanam Engelhard Corporation Introduction There has been a significant increase in the world wide use of platinum for jewelry

More information

Interfacial Properties of Zn Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate

Interfacial Properties of Zn Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate Materials Transactions, Vol. 46, No. 11 (2005) pp. 2413 to 2418 Special Issue on Lead-Free Soldering in Electronics III #2005 The Japan Institute of Metals Interfacial Properties of Zn Sn Alloys as High

More information

Effect of Temperature and Aging Time on 2024 Aluminum Behavior

Effect of Temperature and Aging Time on 2024 Aluminum Behavior Proceedings of the XIth International Congress and Exposition June 2-5, 2008 Orlando, Florida USA 2008 Society for Experimental Mechanics Inc. Effect of Temperature and Aging Time on 2024 Aluminum Behavior

More information

Figure 2.31. CPT Equipment

Figure 2.31. CPT Equipment Soil tests (1) In-situ test In order to sound the strength of the soils in Las Colinas Mountain, portable cone penetration tests (Japan Geotechnical Society, 1995) were performed at three points C1-C3

More information

INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES

INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES CO-MAT-TECH 2005 TRNAVA, 20-21 October 2005 INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES Jiří MALINA 1+2, Hana STANKOVÁ 1+2, Jaroslav DRNEK 3, Zbyšek NOVÝ 3, Bohuslav MAŠEK

More information

Lösungen Übung Verformung

Lösungen Übung Verformung Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main

More information

Development of porous materials for hydrogen storage

Development of porous materials for hydrogen storage Development of porous materials for hydrogen storage Shinji Oshima, Osamu Kato, Takeshi Kataoka, Yoshihiro Kobori, Michiaki Adachi Hydrogen & New Energy Research Laboratory Nippon Oil Corporation 8, Chidoricho,

More information