Chapter 11. Managing Knowledge
|
|
|
- Ann Pope
- 9 years ago
- Views:
Transcription
1 Chapter 11 Managing Knowledge VIDEO CASES Video Case 1: How IBM s Watson Became a Jeopardy Champion. Video Case 2: Tour: Alfresco: Open Source Document Management System Video Case 3: L'Oréal: Knowledge Management Using Microsoft SharePoint 6.1 Copyright 2014 Pearson Education, Inc. publishing as Prentice Hall The Knowledge Management Landscape Knowledge management systems among fastest growing areas of software investment Information economy 37% U.S. labor force: knowledge and information workers 45% U.S. GDP from knowledge and information sectors Substantial part of a firm s stock market value is related to intangible assets: knowledge, brands, reputations, and unique business processes Well-executed knowledge-based projects can produce extraordinary ROI 11.2 Copyright 2014 Pearson Education, Inc. 1
2 The Knowledge Management Landscape Three major types of knowledge management systems: 1. Enterprise-wide knowledge management systems General-purpose firm-wide efforts to collect, store, distribute, and apply digital content and knowledge 2. Knowledge work systems (KWS) Specialized systems built for engineers, scientists, other knowledge workers charged with discovering and creating new knowledge 3. Intelligent techniques Diverse group of techniques such as data mining used for various goals: discovering knowledge, distilling knowledge, discovering optimal solutions 11.3 Copyright 2014 Pearson Education, Inc. MAJOR TYPES OF KNOWLEDGE MANAGEMENT SYSTEMS FIGURE 11-2 There are three major categories of knowledge management systems, and each can be broken down further into more specialized types of knowledge management systems Copyright 2014 Pearson Education, Inc. 2
3 Enterprise-Wide Knowledge Management Systems Three major types of knowledge in enterprise 1. Structured documents Reports, presentations Formal rules 2. Semistructured documents s, videos 3. Unstructured, tacit knowledge 80% of an organization s business content is semistructured or unstructured 11.5 Copyright 2014 Pearson Education, Inc. Enterprise-Wide Knowledge Management Systems Enterprise content management systems Help capture, store, retrieve, distribute, preserve Documents, reports, best practices Semistructured knowledge ( s) Bring in external sources News feeds, research Tools for communication and collaboration Blogs, wikis, and so on 11.6 Copyright 2014 Pearson Education, Inc. 3
4 Enterprise-Wide Knowledge Management Systems Knowledge network systems Provide online directory of corporate experts in well-defined knowledge domains Search tools enable employees to find appropriate expert in a company Hivemine s AskMe Includes repositories of expert-generated content Some knowledge networking capabilities included in leading enterprise content management and collaboration products 11.7 Copyright 2014 Pearson Education, Inc. Knowledge Work Systems Knowledge work systems Systems for knowledge workers to help create new knowledge and integrate that knowledge into business Knowledge workers Researchers, designers, architects, scientists, engineers who create knowledge for the organization Three key roles: 1. Keeping organization current in knowledge 2. Serving as internal consultants regarding their areas of expertise 3. Acting as change agents, evaluating, initiating, and promoting change projects 11.8 Copyright 2014 Pearson Education, Inc. 4
5 Knowledge Work Systems Requirements of knowledge work systems Sufficient computing power for graphics, complex calculations Powerful graphics and analytical tools Communications and document management Access to external databases User-friendly interfaces Optimized for tasks to be performed (design engineering, financial analysis) 11.9 Copyright 2014 Pearson Education, Inc. Knowledge Work Systems Examples of knowledge work systems CAD (computer-aided design): Creation of engineering or architectural designs 3-D printing Virtual reality systems: Simulate real-life environments 3-D medical modeling for surgeons Augmented reality (AR) systems VRML Investment workstations: Streamline investment process and consolidate internal, external data for brokers, traders, portfolio managers Copyright 2014 Pearson Education, Inc. 5
6 Intelligent techniques: Used to capture individual and collective knowledge and to extend knowledge base To capture tacit knowledge: Expert systems, case-based reasoning, fuzzy logic Knowledge discovery: Neural networks and data mining Generating solutions to complex problems: Genetic algorithms Automating tasks: Intelligent agents Artificial intelligence (AI) technology: Computer-based systems that emulate human behavior Copyright 2014 Pearson Education, Inc. Expert systems: Capture tacit knowledge in very specific and limited domain of human expertise Capture knowledge of skilled employees as set of rules in software system that can be used by others in organization Typically perform limited tasks that may take a few minutes or hours, for example: Diagnosing malfunctioning machine Determining whether to grant credit for loan Used for discrete, highly structured decision making Copyright 2014 Pearson Education, Inc. 6
7 RULES IN AN EXPERT SYSTEM An expert system contains a number of rules to be followed. The rules are interconnected; the number of outcomes is known in advance and is limited; there are multiple paths to the same outcome; and the system can consider multiple rules at a single time. The rules illustrated are for simple credit-granting expert systems. FIGURE Copyright 2014 Pearson Education, Inc. How expert systems work Knowledge base: Set of hundreds or thousands of rules Inference engine: Strategy used to search knowledge base Forward chaining: Inference engine begins with information entered by user and searches knowledge base to arrive at conclusion Backward chaining: Begins with hypothesis and asks user questions until hypothesis is confirmed or disproved Copyright 2014 Pearson Education, Inc. 7
8 INFERENCE ENGINES IN EXPERT SYSTEMS FIGURE 11-6 An inference engine works by searching through the rules and firing those rules that are triggered by facts gathered and entered by the user. Basically, a collection of rules is similar to a series of nested IF statements in a traditional software program; however, the magnitude of the statements and degree of nesting are much greater in an expert system Copyright 2014 Pearson Education, Inc. Successful expert systems: Con-Way Transportation built expert system to automate and optimize planning of overnight shipment routes for nationwide freight-trucking business Most expert systems deal with problems of classification. Have relatively few alternative outcomes Possible outcomes are known in advance Many expert systems require large, lengthy, and expensive development and maintenance efforts. Hiring or training more experts may be less expensive Copyright 2014 Pearson Education, Inc. 8
9 Case-based reasoning (CBR) Descriptions of past experiences of human specialists (cases), stored in knowledge base System searches for cases with characteristics similar to new one and applies solutions of old case to new case Successful and unsuccessful applications are grouped with case Stores organizational intelligence: Knowledge base is continuously expanded and refined by users CBR found in Medical diagnostic systems Customer support Copyright 2014 Pearson Education, Inc. HOW CASE-BASED REASONING WORKS Case-based reasoning represents knowledge as a database of past cases and their solutions. The system uses a six-step process to generate solutions to new problems encountered by the user. FIGURE Copyright 2014 Pearson Education, Inc. 9
10 Fuzzy logic systems Rule-based technology that represents imprecision used in linguistic categories (e.g., cold, cool ) that represent range of values Describe a particular phenomenon or process linguistically and then represent that description in a small number of flexible rules Provides solutions to problems requiring expertise that is difficult to represent with IF-THEN rules Autofocus in cameras Detecting possible medical fraud Sendai s subway system acceleration controls Copyright 2014 Pearson Education, Inc. Machine learning How computer programs improve performance without explicit programming Recognizing patterns Experience Prior learnings (database) Contemporary examples Google searches Recommender systems on Amazon, Netflix Copyright 2014 Pearson Education, Inc. 10
11 Neural networks Find patterns and relationships in massive amounts of data too complicated for humans to analyze Learn patterns by searching for relationships, building models, and correcting over and over again Humans train network by feeding it data inputs for which outputs are known, to help neural network learn solution by example Used in medicine, science, and business for problems in pattern classification, prediction, financial analysis, and control and optimization Copyright 2014 Pearson Education, Inc. HOW A NEURAL NETWORK WORKS FIGURE 11-9 A neural network uses rules it learns from patterns in data to construct a hidden layer of logic. The hidden layer then processes inputs, classifying them based on the experience of the model. In this example, the neural network has been trained to distinguish between valid and fraudulent credit card purchases Copyright 2014 Pearson Education, Inc. 11
12 Genetic algorithms Useful for finding optimal solution for specific problem by examining very large number of possible solutions for that problem Conceptually based on process of evolution Search among solution variables by changing and reorganizing component parts using processes such as inheritance, mutation, and selection Used in optimization problems (minimization of costs, efficient scheduling, optimal jet engine design) in which hundreds or thousands of variables exist Able to evaluate many solution alternatives quickly Copyright 2014 Pearson Education, Inc. THE COMPONENTS OF A GENETIC ALGORITHM FIGURE This example illustrates an initial population of chromosomes, each representing a different solution. The genetic algorithm uses an iterative process to refine the initial solutions so that the better ones, those with the higher fitness, are more likely to emerge as the best solution Copyright 2014 Pearson Education, Inc. 12
13 Intelligent agents Work without direct human intervention to carry out specific, repetitive, and predictable tasks for user, process, or application Deleting junk Finding cheapest airfare Use limited built-in or learned knowledge base Some are capable of self-adjustment, for example: Siri Agent-based modeling applications: Systems of autonomous agents Model behavior of consumers, stock markets, and supply chains; used to predict spread of epidemics Copyright 2014 Pearson Education, Inc. INTELLIGENT AGENTS IN P&G S SUPPLY CHAIN NETWORK Intelligent agents are helping P&G shorten the replenishment cycles for products such as a box of Tide. FIGURE Copyright 2014 Pearson Education, Inc. 13
14 Hybrid AI systems Genetic algorithms, fuzzy logic, neural networks, and expert systems integrated into single application to take advantage of best features of each For example: Matsushita neurofuzzy washing machine that combines fuzzy logic with neural networks Copyright 2014 Pearson Education, Inc. 14
Managing Knowledge. Chapter 11 8/12/2015
Chapter 11 Managing Knowledge VIDEO CASES Video Case 1: How IBM s Watson Became a Jeopardy Champion Video Case 2: Tour: Alfresco: Open Source Document Management System Instructional Video 1: Analyzing
Managing Knowledge and Collaboration
Chapter 11 Managing Knowledge and Collaboration 11.1 2010 by Prentice Hall LEARNING OBJECTIVES Assess the role of knowledge management and knowledge management programs in business. Describe the types
Exam Chapter 11 - Managing Knowledge. No Talking No Cheating Review after exam Back at 7pm
"Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information on it." - Samuel Johnson (1709-1784) Information Systems in Organizations Topics Exam Chapter 11 - Managing
Chapter 11 MANAGING KNOWLEDGE
MANAGING THE DIGITAL FIRM, 12 TH EDITION Learning Objectives Chapter 11 MANAGING KNOWLEDGE VIDEO CASES Case 1: L'Oréal: Knowledge Management Using Microsoft SharePoint Case 2: IdeaScale Crowdsourcing:
Important dimensions of knowledge Knowledge is a firm asset: Knowledge has different forms Knowledge has a location Knowledge is situational Wisdom:
Southern Company Electricity Generators uses Content Management System (CMS). Important dimensions of knowledge: Knowledge is a firm asset: Intangible. Creation of knowledge from data, information, requires
Improving Decision Making and Managing Knowledge
Improving Decision Making and Managing Knowledge Decision Making and Information Systems Information Requirements of Key Decision-Making Groups in a Firm Senior managers, middle managers, operational managers,
Improving Decision Making and Managing Knowledge
Improving Decision Making and Managing Knowledge Reading: Laudon & Laudon chapter 10 Additional Reading: Brien & Marakas chapter 9 COMP 5131 1 Outline Decision Making and Information Systems Systems for
Chapter Managing Knowledge in the Digital Firm
Chapter Managing Knowledge in the Digital Firm Essay Questions: 1. What is knowledge management? Briefly outline the knowledge management chain. 2. Identify the three major types of knowledge management
INFO 1400. Koffka Khan. Tutorial 10
INFO 1400 Koffka Khan Tutorial 10 Review Questions : Ch 10 1. What are the unique features of e-commerce, digital markets, and digital goods? 1.1 Name and describe four business trends and three technology
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Problem: HP s numerous systems unable to deliver the information needed for a complete picture of business operations, lack of
EXECUTIVE SUPPORT SYSTEMS (ESS) STRATEGIC INFORMATION SYSTEM DESIGNED FOR UNSTRUCTURED DECISION MAKING THROUGH ADVANCED GRAPHICS AND COMMUNICATIONS *
EXECUTIVE SUPPORT SYSTEMS (ESS) STRATEGIC INFORMATION SYSTEM DESIGNED FOR UNSTRUCTURED DECISION MAKING THROUGH ADVANCED GRAPHICS AND COMMUNICATIONS * EXECUTIVE SUPPORT SYSTEMS DRILL DOWN: ability to move
Managing Knowledge. Chapter 11 CHAPTER OUTLINE LEARNING OBJECTIVESS. After reading this chapter, you will be able to answer the following questions:
Chapter 11 Managing Knowledge LEARNING OBJECTIVESS After reading this chapter, you will be able to answer the following questions: 1. What is the role of knowledge management and knowledge management programs
Technology WHITE PAPER
Technology WHITE PAPER What We Do Neota Logic builds software with which the knowledge of experts can be delivered in an operationally useful form as applications embedded in business systems or consulted
Business Intelligence and Decision Support Systems
Chapter 12 Business Intelligence and Decision Support Systems Information Technology For Management 7 th Edition Turban & Volonino Based on lecture slides by L. Beaubien, Providence College John Wiley
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
Information Systems and Technologies in Organizations
Information Systems and Technologies in Organizations Information System One that collects, processes, stores, analyzes, and disseminates information for a specific purpose Is school register an information
Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 6.1 2010 by Prentice Hall LEARNING OBJECTIVES Describe how the problems of managing data resources in a traditional
Fundamentals of Information Systems, Seventh Edition
Chapter 1 An Introduction to Information Systems in Organizations 1 Principles and Learning Objectives The value of information is directly linked to how it helps decision makers achieve the organization
Business Intelligence through Hybrid Intelligent System Approach: Application to Retail Banking
Business Intelligence through Hybrid Intelligent System Approach: Application to Retail Banking Rajendra M Sonar, Asst Professor (IT), SJM School of Management, Indian Institute of Technology Bombay Powai,
Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin
Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)
Neural Networks and Back Propagation Algorithm
Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland [email protected] Abstract Neural Networks (NN) are important
KEY KNOWLEDGE MANAGEMENT TECHNOLOGIES IN THE INTELLIGENCE ENTERPRISE
KEY KNOWLEDGE MANAGEMENT TECHNOLOGIES IN THE INTELLIGENCE ENTERPRISE RAMONA-MIHAELA MATEI Ph.D. student, Academy of Economic Studies, Bucharest, Romania [email protected] Abstract In this rapidly
MEDICAL DATA MINING. Timothy Hays, PhD. Health IT Strategy Executive Dynamics Research Corporation (DRC) December 13, 2012
MEDICAL DATA MINING Timothy Hays, PhD Health IT Strategy Executive Dynamics Research Corporation (DRC) December 13, 2012 2 Healthcare in America Is a VERY Large Domain with Enormous Opportunities for Data
Answers to Top BRMS Questions
November 2009 Answers to Top BRMS Questions Answers to ten frequently asked questions about what business rule management systems are and how they are used Brett Stineman Product Marketing, Business Rules
Chapter 6. Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
Course Syllabus For Operations Management. Management Information Systems
For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third
Chapter 6 - Enhancing Business Intelligence Using Information Systems
Chapter 6 - Enhancing Business Intelligence Using Information Systems Managers need high-quality and timely information to support decision making Copyright 2014 Pearson Education, Inc. 1 Chapter 6 Learning
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
Decision Support and Business Intelligence Systems. Chapter 1: Decision Support Systems and Business Intelligence
Decision Support and Business Intelligence Systems Chapter 1: Decision Support Systems and Business Intelligence Types of DSS Two major types: Model-oriented DSS Data-oriented DSS Evolution of DSS into
IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS!
The Bloor Group IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS VENDOR PROFILE The IBM Big Data Landscape IBM can legitimately claim to have been involved in Big Data and to have a much broader
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 Copyright 2011 Pearson Education, Inc. Student Learning Objectives How does a relational database organize data,
Management Information Systems
Faculty of Foundry Engineering Virtotechnology Management Information Systems Classification, elements, and evolution Agenda Information Systems (IS) IS introduction Classification Integrated IS 2 Information
Knowledge Management
Knowledge Management Management Information Code: 164292-02 Course: Management Information Period: Autumn 2013 Professor: Sync Sangwon Lee, Ph. D D. of Information & Electronic Commerce 1 00. Contents
KM road map. Technology Components of KM. Chapter 5- The Technology Infrastructure. Knowledge Management Systems
Knowledge Management Systems Chapter 5- The Technology Infrastructure Dr. Mohammad S. Owlia Associate Professor, Industrial Engineering Department, Yazd University E-mail :[email protected], Website :
5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2
Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
INFO1400. 1. What are business processes? How are they related to information systems?
Chapter 2 INFO1400 Review Questions 1. What are business processes? How are they related to information systems? Define business processes and describe the role they play in organizations. A business process
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Contents of This Paper
Contents of This Paper Overview Key Functional Areas of SharePoint Where Varonis Helps And How A Project Plan for SharePoint with Varonis Overview The purpose of this document is to explain the complementary
THE e-knowledge BASED INNOVATION SEMINAR
The Kaieteur Institute For Knowledge Management THE e-knowledge BASED INNOVATION SEMINAR OVERVIEW! Introduction Knowledge is a new form of renewable and intangible energy that is transforming many organizations.
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
D A T A M I N I N G C L A S S I F I C A T I O N
D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.
Enterprise Information Systems
Enterprise Information Systems Dr Sherif Kamel Department of Management School of Business, Economics and Communication Enterprise Information Systems DSS to provide enterprise-wide support Support to
01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.
(International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models
Introduction to Management Information Systems
IntroductiontoManagementInformationSystems Summary 1. Explain why information systems are so essential in business today. Information systems are a foundation for conducting business today. In many industries,
The Future of Business Analytics is Now! 2013 IBM Corporation
The Future of Business Analytics is Now! 1 The pressures on organizations are at a point where analytics has evolved from a business initiative to a BUSINESS IMPERATIVE More organization are using analytics
Electronic Performance Support Systems (EPSS): An Effective System for Improving the Performance of Libraries
Electronic Performance Support Systems (EPSS): An Effective System for Improving the Performance of Libraries Madhuresh Singhal & T S Prasanna National Centre for Science Information Indian Institute of
Day 7 Business Information Systems-- the portfolio. Today s Learning Objectives
Day 7 Business Information Systems-- the portfolio MBA 8125 Information technology Management Professor Duane Truex III Today s Learning Objectives 1. Define and describe the repository components of business
Chapter 13: Knowledge Management In Nutshell. Information Technology For Management Turban, McLean, Wetherbe John Wiley & Sons, Inc.
Chapter 13: Knowledge Management In Nutshell Information Technology For Management Turban, McLean, Wetherbe John Wiley & Sons, Inc. Objectives Define knowledge and describe the different types of knowledge.
NEURAL NETWORKS IN DATA MINING
NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
one Introduction chapter OVERVIEW CHAPTER
one Introduction CHAPTER chapter OVERVIEW 1.1 Introduction to Decision Support Systems 1.2 Defining a Decision Support System 1.3 Decision Support Systems Applications 1.4 Textbook Overview 1.5 Summary
Autonomy Consolidated Archive
Autonomy Consolidated Archive Dennis Wild Director SME, Information Governance and Archiving POWER PROTECT PROMOTE Meaning-Based Governance Files IM Audio Email Social Video SharePoint Archiving = Gain
BCS HIGHER EDUCATION QUALIFICATIONS Level 6 Professional Graduate Diploma in IT. March 2013 EXAMINERS REPORT. Knowledge Based Systems
BCS HIGHER EDUCATION QUALIFICATIONS Level 6 Professional Graduate Diploma in IT March 2013 EXAMINERS REPORT Knowledge Based Systems Overall Comments Compared to last year, the pass rate is significantly
A HOLISTIC FRAMEWORK FOR KNOWLEDGE MANAGEMENT
A HOLISTIC FRAMEWORK FOR KNOWLEDGE MANAGEMENT Dr. Shamsul Chowdhury, Roosevelt University, [email protected] ABSTRACT Knowledge management refers to the set of processes developed in an organization
Turban and Volonino. Enterprise Systems: Supply Chains, ERP, CRM & KM
Turban and Volonino Chapter 10 Enterprise Systems: Supply Chains, ERP, CRM & KM Information Technology for Management Improving Performance in the Digital Economy 7 th edition John Wiley & Sons, Inc. Slides
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Chapter 6 8/12/2015. Foundations of Business Intelligence: Databases and Information Management. Problem:
Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Chapter 6 Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
How To Teach Knowledge Management
STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK MINS/CITA 430 Data and Knowledge Management Prepared by: Charles Fenner Revised by: Eric Cheng CANINO SCHOOL OF ENGINEERING TECHNOLOGY
Predictive time series analysis of stock prices using neural network classifier
Predictive time series analysis of stock prices using neural network classifier Abhinav Pathak, National Institute of Technology, Karnataka, Surathkal, India [email protected] Abstract The work pertains
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
Information Systems in the Enterprise
Chapter 2 Information Systems in the Enterprise 2.1 2006 by Prentice Hall OBJECTIVES Evaluate the role played by the major types of systems in a business and their relationship to each other Describe the
Certified Identity Management Professional (CIMP) Overview & Curriculum
Overview There are many factors contributing to the growing need for identity management professionals and technologies. First, the number of devices and their users are growing. These devices are increasingly
Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer
Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next
Tapping the benefits of business analytics and optimization
IBM Sales and Distribution Chemicals and Petroleum White Paper Tapping the benefits of business analytics and optimization A rich source of intelligence for the chemicals and petroleum industries 2 Tapping
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model
Reaping the rewards of your serviceoriented architecture infrastructure
IBM Global Services September 2008 Reaping the rewards of your serviceoriented architecture infrastructure How real-life organizations are adding up the cost savings and benefits Executive summary Growing
Chapter 13 BUILDING INFORMATION SYSTEMS. How does building new systems produce organizational change?
MANAGING THE DIGITAL FIRM, 12 TH EDITION Learning Objectives Chapter 13 BUILDING INFORMATION SYSTEMS VIDEO CASES Case 1: IBM: Business Process Management in a Service Oriented Architecture and Managing
DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate
Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016
Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00
WHITE PAPER Practical Information Governance: Balancing Cost, Risk, and Productivity
WHITE PAPER Practical Information Governance: Balancing Cost, Risk, and Productivity Sponsored by: EMC Corporation Laura DuBois August 2010 Vivian Tero EXECUTIVE SUMMARY Global Headquarters: 5 Speen Street
TIM 50 - Business Information Systems
TIM 50 - Business Information Systems Lecture 15 UC Santa Cruz March 1, 2015 The Database Approach to Data Management Database: Collection of related files containing records on people, places, or things.
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
HELPDESK EXPERT. Abstract
HELPDESK EXPERT Pradit Songsangyos Rajamangala University of Technology Suvarnabhumi Title Lecturer Postal Address 19 Ou-tong road, Pranakhon Si Ayutthaya 13000, Thailand E-mail: [email protected] Wararat
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
Big Data Integration: A Buyer's Guide
SEPTEMBER 2013 Buyer s Guide to Big Data Integration Sponsored by Contents Introduction 1 Challenges of Big Data Integration: New and Old 1 What You Need for Big Data Integration 3 Preferred Technology
AVEPOINT CLIENT SERVICES
Services Catalog AVEPOINT CLIENT SERVICES AvePoint s Client Services teams provide world-class business and technical experts required to fully maximize your enterprise-wide collaboration technology investments.
IBM Analytical Decision Management
IBM Analytical Decision Management Deliver better outcomes in real time, every time Highlights Organizations of all types can maximize outcomes with IBM Analytical Decision Management, which enables you
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
IBM Tivoli Endpoint Manager for Lifecycle Management
IBM Endpoint Manager for Lifecycle Management A single-agent, single-console approach for endpoint management across the enterprise Highlights Manage hundreds of thousands of endpoints regardless of location,
Solve Your Toughest Challenges with Data Mining
IBM Software Business Analytics IBM SPSS Modeler Solve Your Toughest Challenges with Data Mining Use predictive intelligence to make good decisions faster Solve Your Toughest Challenges with Data Mining
Course Outline Department of Computing Science Faculty of Science. COMP 3710-3 Applied Artificial Intelligence (3,1,0) Fall 2015
Course Outline Department of Computing Science Faculty of Science COMP 710 - Applied Artificial Intelligence (,1,0) Fall 2015 Instructor: Office: Phone/Voice Mail: E-Mail: Course Description : Students
Data Mining System, Functionalities and Applications: A Radical Review
Data Mining System, Functionalities and Applications: A Radical Review Dr. Poonam Chaudhary System Programmer, Kurukshetra University, Kurukshetra Abstract: Data Mining is the process of locating potentially
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
Chapter 9 Knowledge Management
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 9 Knowledge Management 9-1 Learning Objectives Define knowledge. Learn the characteristics of knowledge
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
INTELLIGENT DECISION SUPPORT SYSTEMS FOR ADMISSION MANAGEMENT IN HIGHER EDUCATION INSTITUTES
INTELLIGENT DECISION SUPPORT SYSTEMS FOR ADMISSION MANAGEMENT IN HIGHER EDUCATION INSTITUTES Rajan Vohra 1 & Nripendra Narayan Das 2 1. Prosessor, Department of Computer Science & Engineering, Bahra University,
ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION
1 ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION B. Mikó PhD, Z-Form Tool Manufacturing and Application Ltd H-1082. Budapest, Asztalos S. u 4. Tel: (1) 477 1016, e-mail: [email protected]
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired
Challenges of Analytics
Challenges of Analytics Setting-up a Data Science Team BA4ALL Eindhoven November 2015 Laurent FAYET CEO @lbfayet www.artycs.eu 1 Agenda 1 About ARTYCS 2 Definitions 3 Data Value Creation 4 An Approach
DATA MINING IN FINANCE
DATA MINING IN FINANCE Advances in Relational and Hybrid Methods by BORIS KOVALERCHUK Central Washington University, USA and EVGENII VITYAEV Institute of Mathematics Russian Academy of Sciences, Russia
Industry models for insurance. The IBM Insurance Application Architecture: A blueprint for success
Industry models for insurance The IBM Insurance Application Architecture: A blueprint for success Executive summary An ongoing transfer of financial responsibility to end customers has created a whole
Evolution of Information System
Information Systems Classification Evolution of Information System The first business application of computers (in the mid- 1950s) performed repetitive, high-volume, transaction-computing tasks. The computers
Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence
Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Data Mining for Successful Healthcare Organizations
Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge
