Preferred citation style for this presentation
|
|
|
- Berenice Harris
- 10 years ago
- Views:
Transcription
1 Preferred citation style for this presentation Waraich, Rashid (2008) Parallel Implementation of DEQSim in Java, MATSim Workshop 2008, Castasegna, September
2 Parallel Implementation of DEQSim in Java Rashid Waraich IVT ETH Zurich September 2008
3 Outline Introduction Discrete Event Simulation Parallel Discrete Event Simulation Java DEQSim Implementation Performance Tests Future Work / Challenges 3
4 Simulation in General - Continuous time model - state variables may change continuously - example: change of water temprature, filling up a glass, etc. - Descrete time model (Descrete Event Simulation - DES) - state changes at discrete points in time - examples: queueing system, simulation of customers in shopping mall, simulation of air traffic,... - How to advance simulation time? - fixed-increment time advance (Java Mobsim) - next-event time advance (DEQSim, JDEQSim) 4
5 Fixed-increment Time Advance - Useful, if events occur at fixed length invervals - Wasteful scanning - Accuracy problem / tradeoff E3 E4 E E3 E4 E
6 Next-event Time Advance - Time advancement from event to event - Simulation skips over periods of inactivity - Called event-driven DES E3 E4 E E3 E4 E
7 Parallel Descret Event Simulation (PDES) Why PDES? - DES slow - slow down factor How to make simulation parallel? - partition system into subsystems (logical processes LP), which can be simulated in parallel example: Berlin arrival at 9:45 Zurich Vienna 7
8 PDES (cont.) How to preserve causal order of events? - optimistic algorithms - e.g. Time Warp algorithm - conservative algorithms (DEQSim, Java DEQSim) - LP executes safe events only (e.g. Chandy-Misra algorithm) 8
9 Chandy-Misra Algorithm - Chandy-Misra algorithm - null messages, to prevent deadlock - problem: lots of null messages - need good/large lookahead 7? 6, ? Chandy-Misra example Deadlock 9
10 Java DEQSim - Partition network into Logical Processes (LPs) - Lookahead - Synchronization - Process Events - Synchronization between LPs 10
11 Partitioning (DEQSim) - Orthogonal recursive bisection (same number of events in each zone) - Number of zones is power of 2 - Split in middle of roads 11
12 Partitioning (Java DEQSim) - Partition network vertically, each has own queue - Partition along nodes - Same number of events per zone - Less neighbour zones - Arbitrary number of zones LP 1 LP 2 LP 1 LP 2 LP 3 12
13 Synchronization / Nullmessages / Lookahead - DEQSim only needs to synchronize at certain predefined points in time - Java DEQSim: Uses Chandy-Misra algorithm - lookahead for reducing number of null messages? - plans file knows the future - Synchronization - How handled locking of event process queue - How handeled locking of queues in each zone 13
14 Process Events initial situation (bottleneck: synchronization) CPU 1 CPU 2... synchronized (processevent) CPU N situation now (bottleneck: consumer thread too slow) CPU 1 consumer thread CPU 2... eventbuffer CPU N processevent 14
15 Synchronization between Zones option 1 (synchronized access on queue) owner LP left LP priority queue right LP option 2 (lock only queue, which needed) owner LP owner LP right LP left LP 15
16 Synchronization between Zones (cont.) option 3 (time splitting) owner LP 3s< t <4s 4s< t <5s 5s< t <6s owner LP right LP left LP other ideas? 16
17 Microsimulation Comparison (for Speed) Java MobSim DEQSim Java DEQSim Speed because of programming language Java C++ Java Integrated with rest of MATSim (e.g. no IOoverhead, immediate event handling) Yes No Yes Support for multithreading No Yes Yes Advancement of simulation time Fixed-increment time advance Next-event time advance Next-event time advance 17
18 Performance Tests I 18
19 Performance Tests II 19
20 Future Work / Challenges - Goal: One iteration in 15min, approx. 1M links, 7.2M agents, 4.6 trips in average (with approx. 100 links per trip) currently we would need around 5 hours+ for this on 8 CPUs (with DEQSim) - How to gain more speed up? - How to dimension the number of threads for microsimulation and event handling? - How to do automated performance regression testing? - Optimistic algorithms? - can potentially utilize higher parallelization - simpler for the end user to program simulations - more difficult to implement than conservative algorithms 20
21 How to Gain Speedup? Java MobSim DEQSim Java DEQSim Future? simulation + event handling read + event handling simulation event handling 21
Load Balance Strategies for DEVS Approximated Parallel and Distributed Discrete-Event Simulations
Load Balance Strategies for DEVS Approximated Parallel and Distributed Discrete-Event Simulations Alonso Inostrosa-Psijas, Roberto Solar, Verónica Gil-Costa and Mauricio Marín Universidad de Santiago,
EXPERIENCES PARALLELIZING A COMMERCIAL NETWORK SIMULATOR
EXPERIENCES PARALLELIZING A COMMERCIAL NETWORK SIMULATOR Hao Wu Richard M. Fujimoto George Riley College Of Computing Georgia Institute of Technology Atlanta, GA 30332-0280 {wh, fujimoto, riley}@cc.gatech.edu
15-418 Final Project Report. Trading Platform Server
15-418 Final Project Report Yinghao Wang [email protected] May 8, 214 Trading Platform Server Executive Summary The final project will implement a trading platform server that provides back-end support
An Optimistic Parallel Simulation Protocol for Cloud Computing Environments
An Optimistic Parallel Simulation Protocol for Cloud Computing Environments 3 Asad Waqar Malik 1, Alfred J. Park 2, Richard M. Fujimoto 3 1 National University of Science and Technology, Pakistan 2 IBM
1: B asic S imu lati on Modeling
Network Simulation Chapter 1: Basic Simulation Modeling Prof. Dr. Jürgen Jasperneite 1 Contents The Nature of Simulation Systems, Models and Simulation Discrete Event Simulation Simulation of a Single-Server
E) Modeling Insights: Patterns and Anti-patterns
Murray Woodside, July 2002 Techniques for Deriving Performance Models from Software Designs Murray Woodside Second Part Outline ) Conceptual framework and scenarios ) Layered systems and models C) uilding
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Roy D. Williams, 1990 Presented by Chris Eldred Outline Summary Finite Element Solver Load Balancing Results Types Conclusions
Chapter 18: Database System Architectures. Centralized Systems
Chapter 18: Database System Architectures! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types 18.1 Centralized Systems! Run on a single computer system and
Technical Challenges for Big Health Care Data. Donald Kossmann Systems Group Department of Computer Science ETH Zurich
Technical Challenges for Big Health Care Data Donald Kossmann Systems Group Department of Computer Science ETH Zurich What is Big Data? technologies to automate experience Purpose answer difficult questions
Time Management in the High Level Architecture"
Time Management in the High Level Architecture" Richard M. Fujimoto! Professor!! Computational Science and Engineering Division! College of Computing! Georgia Institute of Technology! Atlanta, GA 30332-0765,
SQL Server 2012 Optimization, Performance Tuning and Troubleshooting
1 SQL Server 2012 Optimization, Performance Tuning and Troubleshooting 5 Days (SQ-OPT2012-301-EN) Description During this five-day intensive course, students will learn the internal architecture of SQL
Optimizing Performance. Training Division New Delhi
Optimizing Performance Training Division New Delhi Performance tuning : Goals Minimize the response time for each query Maximize the throughput of the entire database server by minimizing network traffic,
Clonecloud: Elastic execution between mobile device and cloud [1]
Clonecloud: Elastic execution between mobile device and cloud [1] ACM, Intel, Berkeley, Princeton 2011 Cloud Systems Utility Computing Resources As A Service Distributed Internet VPN Reliable and Secure
The Advantages of AvNMP (Active Network Management Prediction)
Active Virtual Network Management Prediction Stephen F. Bush General Electric Corporate Research and Development KWC-512, One Research Circle, Niskayuna, NY 12309 [email protected] (http://www.crd.ge.com/~bushsf)
Deadlock Detection and Recovery!
Deadlock Detection and Recovery! Richard M. Fujimoto! Professor!! Computational Science and Engineering Division! College of Computing! Georgia Institute of Technology! Atlanta, GA 30332-0765, USA!! http://www.cc.gatech.edu/~fujimoto/!
Java Environment for Parallel Realtime Development Platform Independent Software Development for Multicore Systems
Java Environment for Parallel Realtime Development Platform Independent Software Development for Multicore Systems Ingo Prötel, aicas GmbH Computing Frontiers 6 th of May 2008, Ischia, Italy Jeopard-Project:
Centralized Systems. A Centralized Computer System. Chapter 18: Database System Architectures
Chapter 18: Database System Architectures Centralized Systems! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types! Run on a single computer system and do
Real-Time Scheduling 1 / 39
Real-Time Scheduling 1 / 39 Multiple Real-Time Processes A runs every 30 msec; each time it needs 10 msec of CPU time B runs 25 times/sec for 15 msec C runs 20 times/sec for 5 msec For our equation, A
Explicit Spatial Scattering for Load Balancing in Conservatively Synchronized Parallel Discrete-Event Simulations
Explicit Spatial ing for Load Balancing in Conservatively Synchronized Parallel Discrete-Event Simulations Sunil Thulasidasan Shiva Prasad Kasiviswanathan Stephan Eidenbenz Phillip Romero Los Alamos National
CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014)
CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014) CSTA Website Oracle Website Oracle Contact http://csta.acm.org/curriculum/sub/k12standards.html https://academy.oracle.com/oa-web-introcs-curriculum.html
The Complete Performance Solution for Microsoft SQL Server
The Complete Performance Solution for Microsoft SQL Server Powerful SSAS Performance Dashboard Innovative Workload and Bottleneck Profiling Capture of all Heavy MDX, XMLA and DMX Aggregation, Partition,
matsimj An Overview of the new MATSim Implementation in Java Marcel Rieser VSP, TU Berlin 2.10.2006 [email protected]
matsimj An Overview of the new MATSim Implementation in Java Marcel Rieser VSP, TU Berlin [email protected] 2.10.2006 MATSim Seminar 2006 Villa Garbald 1. 6.10.2006 What we will talk about 2 Overview
A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster
Acta Technica Jaurinensis Vol. 3. No. 1. 010 A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster G. Molnárka, N. Varjasi Széchenyi István University Győr, Hungary, H-906
Running a Workflow on a PowerCenter Grid
Running a Workflow on a PowerCenter Grid 2010-2014 Informatica Corporation. No part of this document may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise)
Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note:
Chapter 7 OBJECTIVES Operating Systems Define the purpose and functions of an operating system. Understand the components of an operating system. Understand the concept of virtual memory. Understand the
Distributed Data Management
Introduction Distributed Data Management Involves the distribution of data and work among more than one machine in the network. Distributed computing is more broad than canonical client/server, in that
Machine Learning over Big Data
Machine Learning over Big Presented by Fuhao Zou [email protected] Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed
In-Memory Computing for Iterative CPU-intensive Calculations in Financial Industry In-Memory Computing Summit 2015
In-Memory Computing for Iterative CPU-intensive Calculations in Financial Industry In-Memory Computing Summit 2015 June 29-30, 2015 Contacts Alexandre Boudnik Senior Solution Architect, EPAM Systems [email protected]
Multi-core Curriculum Development at Georgia Tech: Experience and Future Steps
Multi-core Curriculum Development at Georgia Tech: Experience and Future Steps Ada Gavrilovska, Hsien-Hsin-Lee, Karsten Schwan, Sudha Yalamanchili, Matt Wolf CERCS Georgia Institute of Technology Background
Forensic Clusters: Advanced Processing with Open Source Software. Jon Stewart Geoff Black
Forensic Clusters: Advanced Processing with Open Source Software Jon Stewart Geoff Black Who We Are Mac Lightbox Guidance alum Mr. EnScript C++ & Java Developer Fortune 100 Financial NCIS (DDK/ManTech)
Investigating accessibility indicators for feedback from MATSim to UrbanSim
Thomas W. Nicolai Transport Systems Planning and Transport Telematics, Berlin Institute of Technology (TU Berlin) 1 Investigating accessibility indicators for feedback from MATSim to UrbanSim Annual User
Incorporating Peak Spreading into a WebTAG Based Demand Model
Incorporating Peak Spreading into a WebTAG Based Demand Model Presented by: Philip Clarke Modelling Director [email protected] Contents 1. Introduction and History of the Model 2. The Full Model
Expanding the CASEsim Framework to Facilitate Load Balancing of Social Network Simulations
Expanding the CASEsim Framework to Facilitate Load Balancing of Social Network Simulations Amara Keller, Martin Kelly, Aaron Todd 4 June 2010 Abstract This research has two components, both involving the
Optimization of Supply Chain Networks
Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal
Top 10 reasons your ecommerce site will fail during peak periods
An AppDynamics Business White Paper Top 10 reasons your ecommerce site will fail during peak periods For U.S.-based ecommerce organizations, the last weekend of November is the most important time of the
Objectives. Distributed Databases and Client/Server Architecture. Distributed Database. Data Fragmentation
Objectives Distributed Databases and Client/Server Architecture IT354 @ Peter Lo 2005 1 Understand the advantages and disadvantages of distributed databases Know the design issues involved in distributed
ISSUES IN PARALLEL DISCRETE EVENT SIMULATION FOR AN INTERNET TELEPHONY CALL SIGNALING PROTOCOL
ISSUES IN PARALLEL DISCRETE EVENT SIMULATION FOR AN INTERNET TELEPHONY CALL SIGNALING PROTOCOL Phillip M. Dickens Vijay K. Gurbani Paper code: S262 Department of Computer Science and Applied Mathematics
Demand Attach / Fast-Restart Fileserver
. p.1/28 Demand Attach / Fast-Restart Fileserver Tom Keiser Sine Nomine Associates . p.2/28 Introduction Project was commissioned by an SNA client Main requirement was to reduce fileserver restart time
Using MATSim for Public Transport Analysis
February 13, 2014, Hasselt. ORDERin F Seminar 3 Using MATSim for Public Transport Analysis Marcel Rieser Senozon AG [email protected] Agenda 2 MATSim The Berlin Model Public Transport in Berlin Analyzing
White Paper. Optimizing the Performance Of MySQL Cluster
White Paper Optimizing the Performance Of MySQL Cluster Table of Contents Introduction and Background Information... 2 Optimal Applications for MySQL Cluster... 3 Identifying the Performance Issues.....
Performance Modeling in Industry A Case Study on Storage Virtualization
Performance Modeling in Industry A Case Study on Storage Virtualization SOFTWARE DESIGN AND QUALITY GROUP - DESCARTES RESEARCH GROUP INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS
Chapter 6 Concurrent Programming
Chapter 6 Concurrent Programming Outline 6.1 Introduction 6.2 Monitors 6.2.1 Condition Variables 6.2.2 Simple Resource Allocation with Monitors 6.2.3 Monitor Example: Circular Buffer 6.2.4 Monitor Example:
SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013
SAP HANA SAP s In-Memory Database Dr. Martin Kittel, SAP HANA Development January 16, 2013 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase
Experimental Evaluation of Horizontal and Vertical Scalability of Cluster-Based Application Servers for Transactional Workloads
8th WSEAS International Conference on APPLIED INFORMATICS AND MUNICATIONS (AIC 8) Rhodes, Greece, August 2-22, 28 Experimental Evaluation of Horizontal and Vertical Scalability of Cluster-Based Application
Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d
Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling
There are a number of factors that increase the risk of performance problems in complex computer and software systems, such as e-commerce systems.
ASSURING PERFORMANCE IN E-COMMERCE SYSTEMS Dr. John Murphy Abstract Performance Assurance is a methodology that, when applied during the design and development cycle, will greatly increase the chances
Predictable response times in event-driven real-time systems
Predictable response times in event-driven real-time systems Automotive 2006 - Security and Reliability in Automotive Systems Stuttgart, October 2006. Presented by: Michael González Harbour [email protected]
SQL Server 2005 Features Comparison
Page 1 of 10 Quick Links Home Worldwide Search Microsoft.com for: Go : Home Product Information How to Buy Editions Learning Downloads Support Partners Technologies Solutions Community Previous Versions
AFDX networks. Computers and Real-Time Group, University of Cantabria
AFDX networks By: J. Javier Gutiérrez ([email protected]) Computers and Real-Time Group, University of Cantabria ArtistDesign Workshop on Real-Time System Models for Schedulability Analysis Santander,
RUP Design. Purpose of Analysis & Design. Analysis & Design Workflow. Define Candidate Architecture. Create Initial Architecture Sketch
RUP Design RUP Artifacts and Deliverables RUP Purpose of Analysis & Design To transform the requirements into a design of the system to-be. To evolve a robust architecture for the system. To adapt the
Keywords: Architecture, Interoperability, Simulation Time, Synchronization
Time Management in the High Level Architecture Richard M. Fujimoto College of Computing Georgia Institute of Technology Atlanta, GA 30332-0280 [email protected] Keywords: Architecture, Interoperability,
On the Scalability and Dynamic Load-Balancing of Time Warp
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1 On the Scalability and Dynamic Load-Balancing of Time Warp Sina Meraji, Wei Zhang, Member, IEEE, and Carl Tropper, Member,
Tasks Schedule Analysis in RTAI/Linux-GPL
Tasks Schedule Analysis in RTAI/Linux-GPL Claudio Aciti and Nelson Acosta INTIA - Depto de Computación y Sistemas - Facultad de Ciencias Exactas Universidad Nacional del Centro de la Provincia de Buenos
MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research
MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With
Java - gently. Originaux. Prérequis. Objectifs
Java - gently java-gently Java - gently Code: java-gently Originaux url: http://tecfa.unige.ch/guides/tie/html/java-gently/java-gently.html url: http://tecfa.unige.ch/guides/tie/pdf/files/java-gently.pdf
Hadoop Fair Scheduler Design Document
Hadoop Fair Scheduler Design Document October 18, 2010 Contents 1 Introduction 2 2 Fair Scheduler Goals 2 3 Scheduler Features 2 3.1 Pools........................................ 2 3.2 Minimum Shares.................................
Rethinking SIMD Vectorization for In-Memory Databases
SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest
DYNAMIC LOAD BALANCING IN CLIENT SERVER ARCHITECTURE
DYNAMIC LOAD BALANCING IN CLIENT SERVER ARCHITECTURE PROJECT OF COEN233 SUBMITTED BY Aparna R Lalita V Sanjeev C 12/10/2013 INSTRUCTOR Dr. Prof Ming-Hwa Wang Santa Clara University 1 TABLE OF CONTENTS
STRC. Enhancement of the carsharing fleet utilization. 15th Swiss Transport Research Conference. Milos Balac Francesco Ciari
Enhancement of the carsharing fleet utilization Milos Balac Francesco Ciari Institute for transport planning and systems April 2015 STRC 15th Swiss Transport Research Conference Monte Verità / Ascona,
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
Oracle Database In-Memory The Next Big Thing
Oracle Database In-Memory The Next Big Thing Maria Colgan Master Product Manager #DBIM12c Why is Oracle do this Oracle Database In-Memory Goals Real Time Analytics Accelerate Mixed Workload OLTP No Changes
Systems Modelling and Simulation (Lab session 3)
Systems Modelling and Simulation (Lab session 3) After this session you should understand. How to model resource failures. 2. How to schedule resources. 3. How to add animations Resource pictures Entity
Testing and Inspecting to Ensure High Quality
Testing and Inspecting to Ensure High Quality Basic definitions A failure is an unacceptable behaviour exhibited by a system The frequency of failures measures the reliability An important design objective
Load Balancing Techniques
Load Balancing Techniques 1 Lecture Outline Following Topics will be discussed Static Load Balancing Dynamic Load Balancing Mapping for load balancing Minimizing Interaction 2 1 Load Balancing Techniques
Clustering & Visualization
Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.
Application of Predictive Analytics for Better Alignment of Business and IT
Application of Predictive Analytics for Better Alignment of Business and IT Boris Zibitsker, PhD [email protected] July 25, 2014 Big Data Summit - Riga, Latvia About the Presenter Boris Zibitsker
Stream Processing on GPUs Using Distributed Multimedia Middleware
Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research
Case study: d60 Raptor smartadvisor. Jan Neerbek Alexandra Institute
Case study: d60 Raptor smartadvisor Jan Neerbek Alexandra Institute Agenda d60: A cloud/data mining case Cloud Data Mining Market Basket Analysis Large data sets Our solution 2 Alexandra Institute The
Datacenter Operating Systems
Datacenter Operating Systems CSE451 Simon Peter With thanks to Timothy Roscoe (ETH Zurich) Autumn 2015 This Lecture What s a datacenter Why datacenters Types of datacenters Hyperscale datacenters Major
Supporting Interactive Application Requirements in a Grid Environment
Supporting Interactive Application Requirements in a Grid Environment Antonella Di Stefano, Giuseppe Pappalardo, Corrado Santoro, Emiliano Tramontana University of Catania, Italy 2 nd International Workshop
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
Learning at scale on Hadoop
Learning at scale on Hadoop Olivier Toromanoff, Software engineer Berlin Buzzwords, 2015-06-01 Copyright 2014 Criteo Prediction @ Criteo Learning on Hadoop Limits are lower than the sky From Experimentation
ParFUM: A Parallel Framework for Unstructured Meshes. Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008
ParFUM: A Parallel Framework for Unstructured Meshes Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008 What is ParFUM? A framework for writing parallel finite element
Studying the accuracy of demand generation from mobile phone trajectories with synthetic data
Available online at www.sciencedirect.com Procedia Computer Science 00 (2014) 000 000 www.elsevier.com/locate/procedia The 3rd International Workshop on Agent-based Mobility, Traffic and Transportation
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV February 28, 2005 Research Objective Objective: Electronic design automation
Accelerating Time to Market:
Accelerating Time to Market: Application Development and Test in the Cloud Paul Speciale, Savvis Symphony Product Marketing June 2010 HOS-20100608-GL-Accelerating-Time-to-Market-Dev-Test-Cloud 1 Software
Scheduling Algorithms in MapReduce Distributed Mind
Scheduling Algorithms in MapReduce Distributed Mind Karthik Kotian, Jason A Smith, Ye Zhang Schedule Overview of topic (review) Hypothesis Research paper 1 Research paper 2 Research paper 3 Project software
HFM Consolidation Demystified
Powering I.T. Empowering Business. HFM Consolidation Demystified Jonathan Berry President & CEO [email protected] 203.331.2267 Copyright 2014, Accelatis. All rights reserved. http://www.accelatis.com
Performance Testing. Configuration Parameters for Performance Testing
Optimizing an ecommerce site for performance on a global scale requires additional oversight, budget, dedicated technical resources, local expertise, and specialized vendor solutions to ensure that international
The ConTract Model. Helmut Wächter, Andreas Reuter. November 9, 1999
The ConTract Model Helmut Wächter, Andreas Reuter November 9, 1999 Overview In Ahmed K. Elmagarmid: Database Transaction Models for Advanced Applications First in Andreas Reuter: ConTracts: A Means for
Topics. Producing Production Quality Software. Concurrent Environments. Why Use Concurrency? Models of concurrency Concurrency in Java
Topics Producing Production Quality Software Models of concurrency Concurrency in Java Lecture 12: Concurrent and Distributed Programming Prof. Arthur P. Goldberg Fall, 2005 2 Why Use Concurrency? Concurrent
Praktikum Wissenschaftliches Rechnen (Performance-optimized optimized Programming)
Praktikum Wissenschaftliches Rechnen (Performance-optimized optimized Programming) Dynamic Load Balancing Dr. Ralf-Peter Mundani Center for Simulation Technology in Engineering Technische Universität München
SIGMOD RWE Review Towards Proximity Pattern Mining in Large Graphs
SIGMOD RWE Review Towards Proximity Pattern Mining in Large Graphs Fabian Hueske, TU Berlin June 26, 21 1 Review This document is a review report on the paper Towards Proximity Pattern Mining in Large
Spring 2011 Prof. Hyesoon Kim
Spring 2011 Prof. Hyesoon Kim Today, we will study typical patterns of parallel programming This is just one of the ways. Materials are based on a book by Timothy. Decompose Into tasks Original Problem
A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms
A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms Matthias Korch Thomas Rauber Universität Bayreuth Fakultät für Mathematik, Physik und Informatik Fachgruppe Informatik {matthias.korch,
LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2015. Hermann Härtig
LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2015 Hermann Härtig ISSUES starting points independent Unix processes and block synchronous execution who does it load migration mechanism
