ROLE OF VIRTUAL MACHINE IN OPERATING SYSTEM

Size: px
Start display at page:

Download "ROLE OF VIRTUAL MACHINE IN OPERATING SYSTEM"

Transcription

1 ROLE OF VIRTUAL MACHINE IN OPERATING SYSTEM Sweety Sen, Sonali Samanta B.Tech, Information Technology, Dronacharya College of Engineering, Gurgaon, India Abstract- In this paper, we are concentrating about the role of Virtual Machine with Environment. Virtual machine helps us to operate multiple OS on the same hardware. At the same time.virtual machine can support individual processes or complete system. Depending on the abstraction level where virtualization occurs. Virtual Machine Operating System creates illusion of multiple processors each capable of executing independently. Virtual machines are separated into two major categories, based on their use and degree of correspondence to any real machine. The Operating System actually running on the hardware is called host operating system and the operating system running in the simulated environment is called guest operating system. Index Terms- Virtual machine, Host OS, Guest OS. I. INTRODUCTION OF OPERATING SYSTEM (OS) An operating system is a software program that enables the computer hardware to communicate and operate with the computer software. Without a computer operating system, a computer and software programs would be useless. Application programs usually require an operating system to function. The operating system provides two main functions. The first function is managing the basic hardware operations. The control of input and output, storage space, detecting equipment failure, and management of storage are just some of the responsibilities of the Operating System. The second function is managing and interacting with the applications software. It takes over the tasks of printing and saving data. To provide an environment for a computer user to execute programs. Basic Function of OS: Process Management : The Operating System also Treats the Process Management means all the Processes those are given by the user or the Process those are System s own Process are Handled by the Operating System. The Operating System will Create the Priorities for the user and also Start or Stops the Execution of the Process and Also Makes the Child Process after dividing the Large Processes into the Small Processes. Memory Management: Operating System also manages the Memory of the Computer System means provide the Memory to the Process and Also deallocate the Memory from the Process. And also defines that if a Process gets completed then this will deallocate the Memory from the Processes. Device Management: OS manages device communication via their respective drivers. It Allocates and De-allocates the device in the efficient way. It also decides which process gets the device when and for how much time. File Management: A file system is normally organized into directories for easy navigation and usage. These directories may contain files and other directions. OS Keeps track of information, location, uses, status etc. The collective facilities are often known as file system. It Decides who gets the resources and also allocates and de-allocates the resources. II. INTRODUCTION TO VIRTUAL OPERATING SYSTEM The idea of a virtual operating system is to provide standard versions of the following- 1. Operating system primitives accessible through programming languages 2. The utility programs such as compilers, linkers and editors 3. The command language or means by which users access system resources from a terminal based on organizational requirements. VM (operating system) Introduction: VM (often: VM/CMS) is a family of IBM virtual machine operating systems used on IBM mainframes System/370, System/390, zseries, System z and compatible systems, including the Hercules emulator for personal computers. The first version, released in 1972, was VM/370, or officially Virtual Machine Facility/370. This was a System/370 reimplementation of earlier CP/CMS operating system. Milestone versions included VM/SP.The current version, z/vm, is still widely IJIRT INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 217

2 used as one of the main full virtualization solutions for the mainframe market. Overview: The heart of the VM architecture is a control program or hypervisor called VM-CP (usually: CP; sometimes, ambiguously: VM). It runs on the physical hardware, and creates the virtual machine environment. VM-CP provides full virtualization of the physical machine including all I/O and other privileged operations. It performs the system's resource-sharing, including device management, dispatching, virtual storage management, and other traditional operating system tasks. Each VM user is provided with a separate virtual machine having its own address space, virtual devices, etc., and which is capable of running any software that could be run on a standalone machine. A given VM mainframe typically runs hundreds or thousands of virtual machine instances. VM-CP began life as CP-370, a reimplementation of CP-67, itself a reimplementation of CP-40. Running within each virtual machine is another, "guest" operating system. This might be: CMS ("Conversational Monitor System", renamed from the "Cambridge Monitor System" of CP/CMS). Its official name is VM- CMS (confusing, since VM is commonly called VM/CMS). Most virtual machines run CMS, a lightweight, single-user operating system. Its interactive environment is comparable to that of a single-user PC, including a file system, programming services, device access, and command-line processing. A mainstream operating system. IBM's mainstream operating systems (i.e. the MVS or DOS/VSE families) can be loaded and run without modification. The VM hypervisor treats guest operating systems as application programs with exceptional privileges - it prevents them from using privileged instructions but simulates privileged instructions on their behalf. Most mainframe operating systems terminate a normal application which tries to usurp the operating system's privileges. Another copy of VM. A "second level" instance of VM can be fully virtualized inside a virtual machine. This is how VM development and testing is done. (A "secondlevel" VM can potentially implement a different virtualization of the hardware. This technique was used to develop S/370 software before S/370 hardware was available, and it has continued to play a role in new hardware development at IBM. The literature cites practical examples of virtualization five levels deep.levels of VM below the top are also treated as applications but with exceptional privileges. A copy of the mainframe version of AIX or Linux. In the mainframe environment, these operating systems often run under VM, and are handled like other guest operating systems. A specialized VM subsystem. Several non- CMS systems run within VM-CP virtual machines, providing services to CMS users such as spooling, intercrosses communications, and specialized device support. They operate "behind the scenes", extending the services available to CMS without adding to the VM- CP control program. By running in separate virtual machines, they receive the same security and reliability protections as other VM users. Examples include: RSCS ("Remote Spooling and Communication Subsystem", aka VNET) communication and information transfer facilities between virtual machines RACF ("Resource Access Control Facility") a security system GCS ("Group Control System"), which provides a limited simulation of the MVS API. History: The early history of VM is described in the articles CP/CMS and History of CP/CMS. VM/370 was a reimplementation of CP/CMS, and was made available in 1972 as part of IBM's "System/370 Advanced Function" announcement (which added virtual memory hardware and operating systems to the System/370 series). Early releases of VM through VM/370 Release 6 continued in open source, and today are considered to be in the public domain. This policy ended in the late 1970s with the chargeable VM/SE and VM/BSE upgrades and in 1980 with VM/System Product (VM/SP). However, IBM continued providing updates in source form for existing code for many years. VM remained an important platform within IBM, used for operating system development and timesharing use; but for customers it remained IBM's "other operating system". The OS and DOS families remained IBM's strategic products, and customers were not encouraged to run VM. Those that did formed close working relationships, continuing the community-support model of early CP/CMS users. In the meantime, the system struggled with political infighting within IBM over what resources should be available to the project, as compared with other IBM efforts. A basic "problem" with the system was seen at IBM's field sales level: VM/CMS demonstrably reduced the amount of hardware needed to support a given IJIRT INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 218

3 number of time-sharing users. IBM was, after all, in the business of selling computer systems. Virtual Memory: A Virtual Memory has the advantage of allowing more processes to run than the allowed memory size. This is achieved by only including parts of processes that are necessary to run in memory and the rest on disk. The absolute minimum part of a process that must always be in memory is called its working set. Usually, a program doesn't need to have its entire binary file in memory to run when it is performing a task that only uses part of its file. What this means is that, say, a 16MB program could happily run on a machine with only 4MB of memory. Virtual Machine: A virtual machine (VM) is a software implementation of a machine (for example, a computer) that executes programs like a physical machine. A virtual machine is a completely isolated guest operating system installation within a normal host operating system. Virtual Machine Operating System creates illusion of multiple processors each capable of executing independently. Virtual machines are separated into two major categories, based on their use and degree of correspondence to any real machine:- System Virtual Machines: A system virtual machine provides a complete system platform which supports the execution of a complete operating system. These usually emulate an existing architecture, and are built with the purpose of either providing a platform to run programs where the real hardware is not available for use or of having multiple instances of virtual machines leading to more efficient use of computing resources, both in terms of energy consumption and cost effectiveness, or both. A virtual machine can provide an instruction set architecture (ISA) that can vary from the host hard drive, such as visual display formatting of adjunct software management tools, font characteristics, and html formatting. Application provisioning, maintenance, high availability and disaster recovery are inherent in the virtual machine software selected. Process Virtual Machines: A process VM, sometimes called an application virtual machine, or Managed Runtime Environment(MRE), runs as a normal application inside a host OS and supports a single process. It is created when that process is started and destroyed when it exits. Its purpose is to provide a platform-independent programming environment that abstracts away details of the underlying hardware or operating system, and allows a program to execute in the same way on any platform. This type of VM has become popular with the Java programming language, which is implemented using the Java virtual machine. Fig.1- Process and system VMs. (a) In a process VM, virtualizing software translates a set of OS and user-level instructions composing one platform to those of another. (b) In a system VM, virtualizing software translates the ISA used by one hardware platform to that of another. Advantages of a virtual machine include: Allows multiple operating system environments on a single physical computer without any intervention Virtual machines are widely available and are easy to manage and maintain. Offers application provisioning and disaster recovery options Drawbacks of virtual machines include: They are not as efficient as a physical computer because the hardware resources are distributed in an indirect way. Multiple VMs running on a single physical machine can deliver unstable performance Working Of Virtual Machine OS: A virtualmachine monitor is a software layer that runs on a host platform and provides an abstraction of a complete computer system to higher-level software. The software running above the virtualmachine abstraction is called guest software (operating system and applications).our goal for this paper is to examine and reduce the performance overhead associated with running a VMM on a host operating system. Building it on a standard Linux host operating system leads to an order of magnitude performance degradation IJIRT INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 219

4 compared to running outside a virtual machine (a standalone system). However, we find that a few simple extensions to the host operating system reduces virtualization overhead to 14-35% overhead, which is comparable to the speed of virtual machines that run directly on the hardware Fig.2- Virtual-machine structures Fig. 3- Guest application system call This picture shows the steps UMLinux takes to transfer control to the guest operating system when a guest application process issues a system call. The mmap call in the SIGUSR1handler must reside in guest user space. For security, the rest of the SIGUSR1 handler should reside in guest kernel space. The current UMLinux implementation includes an extra section of trampoline code to issue the mmap; this trampoline code is started by manipulating the guest machine process s context and finishes by causing a breakpoint to the VMM process; the VMM process then transfers control back to the guest-machine process by sending a SIGUSR1 1. Guest application issues system call; intercepted by VMM process via ptrace 2. VMM process changes system call to no-op (getpid) 3. Getpid returns; intercepted by VMM process 4. VMM process sends SIGUSR1 signal to guest SIGUSR1 handler 5. Guest SIGUSR1 handler calls mmap to allow access to guest kernel data; intercepted by VMM process 6. VMM process allows mmap to pass through 7. mmap returns to VMM process 8. VMM process returns to guest SIGUSR1 handler, which handles the guest application s system call. Architecture of Virtual Machine Despite their incredible complexity, computer systems exist and continue to evolve because they are designed as hierarchies with well-defined interfaces that separate levels of abstraction. Using well-defined interfaces facilitates independent subsystem development by both hardware and software design teams. The simplifying abstractions hide lower-level implementation details, thereby reducing the complexity of the design process. Figure 1a, shows an example of abstraction applied to disk storage. The operating system abstracts hard-disk addressing details for example, that it is comprised of sectors and tracks so that the disk appears to application software as a set of variable-sized files. Application programmer scan then create, write, and read files without knowing the hard disk s construction and physical organization. Unlike abstraction, virtualization does not necessarily aim to simplify or hide details. For example, in Figure1b, virtualization transforms a single large disk into two smaller virtual disks, each of which appears to have its own tracks and sectors. Virtualization software uses the file abstraction as an intermediate step to provide a mapping between the virtual and real disks. A write to a virtual disk is converted to a file write (and therefore to a real disk write). Note that the level of detail provided at the virtual disk interface the sector/track addressing is no different from that for a real disk; no abstraction takes place. Fig.4- Abstraction and virtualization applied to disk storage.(a) Abstraction provides a simplified interface to underlying resources. (b) Virtualization provides a different interface or different resources at the same abstraction level. III. ARCHITECTED INTERFACES Fig. 5 shows some important interfaces and implementation layers in a typical computer system. Three of these interfaces at or near the HW/SW boundary the instruction set architecture, the application binary interface, and IJIRT INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 220

5 the application programming interface are especially important for VM construction. Fig.5- Computer system architecture. Key implementation layers communicate vertically via the instruction set architecture (ISA), application binary interface (ABI), and application programming interface (API). Instruction set architecture: The ISA marks the division between hardware and software, and consists of interfaces 3 and 4 in Fig. 2 Interface 4 represents the user ISA and includes those aspects visible to an application program. Interface 3, the system ISA, is a superset of the user ISA and includes those aspects visible only to operating system software responsible for managing hardware resources. Application binary interface: Program access to the hardware resources and services available in a system through the user ISA (interface 4) and the system call interface (interface 2). The ABI does not include system instructions; rather, all application programs interact with the hardware resources indirectly by invoking the operating system s services via the system call interface. System calls provide a way for an operating system to perform operations on behalf of a user program after validating their authenticity and safety. Application programming interface: The API gives a program access to the hardware resources and services available in a system through the user ISA (interface 4) supplemented with high-level language (HLL) library calls (interface 1). Any system calls are usually performed through libraries. Using an API enables application software to be ported easily, through recompilation, to other systems that support the same API. Advantages: 1. Multiple OS environments can exist simultaneously on the same machine, isolated from each other. 2. Virtual machine can offer an instruction set architecture that differs from real computer's. 3. Easy maintenance, application provisioning, availability and convenient recovery. Disadvantages: 1. Virtual machine is not that efficient as a real one when accessing the hardware. 2. When multiple virtual machines are simultaneously running on a host computer, each virtual machine may introduce an unstable performance, which depends on the workload on the system by other running virtual machines. 3. The host OS required a separate host user process to control the main guest-machine process, and this generated a large number of host context switches. Applications: Try new operating systems- If you want to try a new OS on same hardware. Put together a VM and build Ubuntu on it. Suddenly, you can launch and try dozens of operating systems without much hassle. Test your software- When we create new software like web application, application program etc. we can test that software on different OS by using the VMware. Weather the software run efficiently on different OS or not. Small Biz disaster recovery- This isn t highly recommended, but it d work if you re bootstrapping. Say you re hosting a few web servers with your amazing app on them. Your house gets hit by lightning. Your site is off the air. Now, imagine that scenario but you ve got virtual backups of the latest build and configuration ready to install and deploy wherever else you ve got a point of presence. Poof. You re online again. Build kid boxes- Build Edubuntu (a kid flavored Ubuntu) on a virtual machine for the kids (the specs I mention above are for \heavy users, but you could get away with a lot less if you only ran ONE VM). If (when) things go sour from one too many tweaks, just drop the VM and restore from your pristine copy. Talk about easy. You can get them back on the net in less than 10 minutes. Backup your system- When you get ready to move from XP to Vista, you can use VMware to make a backup of your old system. If things go horribly sour, you could have the VM version up and running in short order. By the way, you can have TWO servers and have a copy of the VM on both. This would give you even more business continuity, should something happen to the server. IJIRT INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 221

6 Save Legacy Systems- Offices and data centers often have an old box around that just can t be mucked with. There s additional software you can use to do what s called a P2V switch, a physicaltovirtual conversion, where the old box s image gets copied onto the virtual machine files, and thus, gives you a hopefullyoperational clone of the old grandpa box in the corner. Conclusion and Future Work: In the future, there can be reduction in the size of the host operating system used to support a VMM. Much of the code in the host OS can be eliminated, because the VMM uses only a small number of system calls and abstractions in the host OS. Reducing the code size of the host OS will help make VM a fast and trusted base for future virtualmachine services. In this presentation we examine Virtual Machine on the basis of operating system. We study how there is actual working between Operating system and virtual machine and how we can access multiple operating system on same hardware. Virtual Machine in Technology: Operating System (VM) An IBM pseudo- operating system hypervisor running on IBM 370, ESA and IBM 390 architecture computers. VM comprises CP( Control Program ) and CMS ( Conversational Monitor System ) providing Hypervisor and personal computing environments respectively. VM became most used in the early 1980s as a Hypervisor for multiple DOS/VS and DOS/VSE systems and as IBM's internal operating system of choice. It declined rapidly following widespread adoption of the IBM PC and hardware partitioning in microcode on IBM mainframes after the IBM VM has been known as VM/SP (System Product, the successor to CP/67), VM/XA, and currently as VM/ESA (Enterprise Systems Architecture). VM/ESA is still in used in 1999, featuring a web interface, Java, and DB2. It is still a major IBM operating system. 2. A software emulation of a physical computing environment. The term gave rise to the name of IBM's VM operating system whose task is to provide one or more simultaneous execution environments in which operating systems or other programs may execute as though they were running "on the bare iron", that is, without an eveloping Control Program. A major use of VM is the running of both outdated and current versions of the same operating system on a single CPU complex for the purpose of system migration, thereby obviating the need for a second processor. REFERENCES [1] tem) [2] machine [3] tem). [4] Brinch Hansen P. (1973) Operating System Principles. [5] Kernighan. Software Practice and Experience, 5 (4), [6] =667&q=virtual+machine+architecture+operating+ system&revid= &sa=x&ei=73qevkw 4B9OA8gXy_IL4Ag&ved=0CHsQ1QIo [7] ual-machine-vm [8] "VM/SP Announced 1980/02/11, GA 1980/12/12" Elliott, Jim ( ). "The Evolution of IBM Mainframes and VM" (PDF). SHARE Session Retrieved [9] release history 1. An abstract machine for which an interpreter exists. Virtual machines are often used in the implementation of portable executors for high-level languages. The HLL is compiled into code for the virtual machine (an intermediate language) which is then executed by an interpreter written in assembly language or some other portable language like C. Examples are Core War, Java Virtual Machine, OCODE, OS/2, POPLOG, Portable Scheme Interpreter, Portable Standard Lisp, Parallel Virtual Machine, Sequential Parlog Machine, SNOBOL Implementation Language, SODA, Smalltalk. IJIRT INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 222

Virtual Machines. www.viplavkambli.com

Virtual Machines. www.viplavkambli.com 1 Virtual Machines A virtual machine (VM) is a "completely isolated guest operating system installation within a normal host operating system". Modern virtual machines are implemented with either software

More information

Introduction to Virtual Machines

Introduction to Virtual Machines Introduction to Virtual Machines Introduction Abstraction and interfaces Virtualization Computer system architecture Process virtual machines System virtual machines 1 Abstraction Mechanism to manage complexity

More information

Virtualization Technology. Zhiming Shen

Virtualization Technology. Zhiming Shen Virtualization Technology Zhiming Shen Virtualization: rejuvenation 1960 s: first track of virtualization Time and resource sharing on expensive mainframes IBM VM/370 Late 1970 s and early 1980 s: became

More information

Virtualization. Jukka K. Nurminen 23.9.2015

Virtualization. Jukka K. Nurminen 23.9.2015 Virtualization Jukka K. Nurminen 23.9.2015 Virtualization Virtualization refers to the act of creating a virtual (rather than actual) version of something, including virtual computer hardware platforms,

More information

Virtualization. Introduction to Virtualization Virtual Appliances Benefits to Virtualization Example Virtualization Products

Virtualization. Introduction to Virtualization Virtual Appliances Benefits to Virtualization Example Virtualization Products Virtualization Originally prepared by Greg Bosch; last modified April 2012 by B. Davison I. Introduction to Virtualization II. Virtual Appliances III. Benefits to Virtualization IV. Example Virtualization

More information

Virtualization. Pradipta De pradipta.de@sunykorea.ac.kr

Virtualization. Pradipta De pradipta.de@sunykorea.ac.kr Virtualization Pradipta De pradipta.de@sunykorea.ac.kr Today s Topic Virtualization Basics System Virtualization Techniques CSE506: Ext Filesystem 2 Virtualization? A virtual machine (VM) is an emulation

More information

VMware Server 2.0 Essentials. Virtualization Deployment and Management

VMware Server 2.0 Essentials. Virtualization Deployment and Management VMware Server 2.0 Essentials Virtualization Deployment and Management . This PDF is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved.

More information

COS 318: Operating Systems. Virtual Machine Monitors

COS 318: Operating Systems. Virtual Machine Monitors COS 318: Operating Systems Virtual Machine Monitors Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Introduction u Have

More information

How do Users and Processes interact with the Operating System? Services for Processes. OS Structure with Services. Services for the OS Itself

How do Users and Processes interact with the Operating System? Services for Processes. OS Structure with Services. Services for the OS Itself How do Users and Processes interact with the Operating System? Users interact indirectly through a collection of system programs that make up the operating system interface. The interface could be: A GUI,

More information

A Unified View of Virtual Machines

A Unified View of Virtual Machines A Unified View of Virtual Machines First ACM/USENIX Conference on Virtual Execution Environments J. E. Smith June 2005 Introduction Why are virtual machines interesting? They allow transcending of interfaces

More information

Virtualization. Dr. Yingwu Zhu

Virtualization. Dr. Yingwu Zhu Virtualization Dr. Yingwu Zhu What is virtualization? Virtualization allows one computer to do the job of multiple computers. Virtual environments let one computer host multiple operating systems at the

More information

Anh Quach, Matthew Rajman, Bienvenido Rodriguez, Brian Rodriguez, Michael Roefs, Ahmed Shaikh

Anh Quach, Matthew Rajman, Bienvenido Rodriguez, Brian Rodriguez, Michael Roefs, Ahmed Shaikh Anh Quach, Matthew Rajman, Bienvenido Rodriguez, Brian Rodriguez, Michael Roefs, Ahmed Shaikh Introduction History, Advantages, Common Uses OS-Level Virtualization Hypervisors Type 1 vs. type 2 hypervisors

More information

Cloud Computing #6 - Virtualization

Cloud Computing #6 - Virtualization Cloud Computing #6 - Virtualization Main source: Smith & Nair, Virtual Machines, Morgan Kaufmann, 2005 Today What do we mean by virtualization? Why is it important to cloud? What is the penalty? Current

More information

COM 444 Cloud Computing

COM 444 Cloud Computing COM 444 Cloud Computing Lec 3: Virtual Machines and Virtualization of Clusters and Datacenters Prof. Dr. Halûk Gümüşkaya haluk.gumuskaya@gediz.edu.tr haluk@gumuskaya.com http://www.gumuskaya.com Virtual

More information

Basics in Energy Information (& Communication) Systems Virtualization / Virtual Machines

Basics in Energy Information (& Communication) Systems Virtualization / Virtual Machines Basics in Energy Information (& Communication) Systems Virtualization / Virtual Machines Dr. Johann Pohany, Virtualization Virtualization deals with extending or replacing an existing interface so as to

More information

Chapter 5 Cloud Resource Virtualization

Chapter 5 Cloud Resource Virtualization Chapter 5 Cloud Resource Virtualization Contents Virtualization. Layering and virtualization. Virtual machine monitor. Virtual machine. Performance and security isolation. Architectural support for virtualization.

More information

Chapter 3: Operating-System Structures. Common System Components

Chapter 3: Operating-System Structures. Common System Components Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1

More information

Chapter 3: Operating-System Structures. System Components Operating System Services System Calls System Programs System Structure Virtual Machines

Chapter 3: Operating-System Structures. System Components Operating System Services System Calls System Programs System Structure Virtual Machines Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines Operating System Concepts 3.1 Common System Components

More information

Virtualization. Types of Interfaces

Virtualization. Types of Interfaces Virtualization Virtualization: extend or replace an existing interface to mimic the behavior of another system. Introduced in 1970s: run legacy software on newer mainframe hardware Handle platform diversity

More information

An Overview of Virtual Machine Architectures

An Overview of Virtual Machine Architectures An Overview of Virtual Machine Architectures J. E. Smith October 27, 2001 1 Introduction When early computer systems were being developed, hardware was designed first, and machine-level software followed.

More information

The XenServer Product Family:

The XenServer Product Family: The XenServer Product Family: A XenSource TM White Paper Virtualization Choice for Every Server: The Next Generation of Server Virtualization The business case for virtualization is based on an industry-wide

More information

Full and Para Virtualization

Full and Para Virtualization Full and Para Virtualization Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF x86 Hardware Virtualization The x86 architecture offers four levels

More information

The Reincarnation of Virtual Machines

The Reincarnation of Virtual Machines The Reincarnation of Virtual Machines By Mendel Rosenblum Co-Founder of VMware Associate Professor, Computer Science Stanford University Abstract:VMware, Inc. has grown to be the industry leader in x86-based

More information

Objectives. Chapter 2: Operating-System Structures. Operating System Services (Cont.) Operating System Services. Operating System Services (Cont.

Objectives. Chapter 2: Operating-System Structures. Operating System Services (Cont.) Operating System Services. Operating System Services (Cont. Objectives To describe the services an operating system provides to users, processes, and other systems To discuss the various ways of structuring an operating system Chapter 2: Operating-System Structures

More information

CPS221 Lecture: Operating System Structure; Virtual Machines

CPS221 Lecture: Operating System Structure; Virtual Machines Objectives CPS221 Lecture: Operating System Structure; Virtual Machines 1. To discuss various ways of structuring the operating system proper 2. To discuss virtual machines Materials: 1. Projectable of

More information

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University

Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University Virtual Machine Monitors Dr. Marc E. Fiuczynski Research Scholar Princeton University Introduction Have been around since 1960 s on mainframes used for multitasking Good example VM/370 Have resurfaced

More information

Arwed Tschoeke, Systems Architect tschoeke@de.ibm.com IBM Systems and Technology Group

Arwed Tschoeke, Systems Architect tschoeke@de.ibm.com IBM Systems and Technology Group Virtualization in a Nutshell Arwed Tschoeke, Systems Architect tschoeke@de.ibm.com and Technology Group Virtualization Say What? Virtual Resources Proxies for real resources: same interfaces/functions,

More information

Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines:

Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines: Virtual Machines Uses for Virtual Machines Virtual machine technology, often just called virtualization, makes one computer behave as several computers by sharing the resources of a single computer between

More information

Virtual. The term virtual machine initially described a 1960s. The Reincarnation of FOCUS. Virtual. Machines

Virtual. The term virtual machine initially described a 1960s. The Reincarnation of FOCUS. Virtual. Machines The term virtual machine initially described a 1960s operating system concept: a software abstraction with the looks of a computer system s hardware (real machine). Forty years later, the term encompasses

More information

x86 ISA Modifications to support Virtual Machines

x86 ISA Modifications to support Virtual Machines x86 ISA Modifications to support Virtual Machines Douglas Beal Ashish Kumar Gupta CSE 548 Project Outline of the talk Review of Virtual Machines What complicates Virtualization Technique for Virtualization

More information

Distributed and Cloud Computing

Distributed and Cloud Computing Distributed and Cloud Computing K. Hwang, G. Fox and J. Dongarra Chapter 3: Virtual Machines and Virtualization of Clusters and datacenters Adapted from Kai Hwang University of Southern California March

More information

Virtual Machines and Their Architecture

Virtual Machines and Their Architecture COVER FEATURE The Architecture of Virtual Machines A virtual machine can support individual processes or a complete system depending on the abstraction level where virtualization occurs. Some support flexible

More information

The Art of Virtualization with Free Software

The Art of Virtualization with Free Software Master on Free Software 2009/2010 {mvidal,jfcastro}@libresoft.es GSyC/Libresoft URJC April 24th, 2010 (cc) 2010. Some rights reserved. This work is licensed under a Creative Commons Attribution-Share Alike

More information

Operating System Components

Operating System Components Lecture Overview Operating system software introduction OS components OS services OS structure Operating Systems - April 24, 2001 Operating System Components Process management Memory management Secondary

More information

Distributed Systems. Virtualization. Paul Krzyzanowski pxk@cs.rutgers.edu

Distributed Systems. Virtualization. Paul Krzyzanowski pxk@cs.rutgers.edu Distributed Systems Virtualization Paul Krzyzanowski pxk@cs.rutgers.edu Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License. Virtualization

More information

Multi-core Programming System Overview

Multi-core Programming System Overview Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

CS 695 Topics in Virtualization and Cloud Computing and Storage Systems. Introduction

CS 695 Topics in Virtualization and Cloud Computing and Storage Systems. Introduction CS 695 Topics in Virtualization and Cloud Computing and Storage Systems Introduction Hot or not? source: Gartner Hype Cycle for Emerging Technologies, 2014 2 Source: http://geekandpoke.typepad.com/ 3 Cloud

More information

Virtual Computing and VMWare. Module 4

Virtual Computing and VMWare. Module 4 Virtual Computing and VMWare Module 4 Virtual Computing Cyber Defense program depends on virtual computing We will use it for hands-on learning Cyber defense competition will be hosted on a virtual computing

More information

OS Concepts and structure

OS Concepts and structure OS Concepts and structure Today OS services OS interface to programmers/users OS components & interconnects Structuring OSs Next time Processes Between hardware and your apps User processes Thunderbird

More information

Example of Standard API

Example of Standard API 16 Example of Standard API System Call Implementation Typically, a number associated with each system call System call interface maintains a table indexed according to these numbers The system call interface

More information

Hypervisors. Introduction. Introduction. Introduction. Introduction. Introduction. Credits:

Hypervisors. Introduction. Introduction. Introduction. Introduction. Introduction. Credits: Hypervisors Credits: P. Chaganti Xen Virtualization A practical handbook D. Chisnall The definitive guide to Xen Hypervisor G. Kesden Lect. 25 CS 15-440 G. Heiser UNSW/NICTA/OKL Virtualization is a technique

More information

CS 695 Topics in Virtualization and Cloud Computing. Introduction

CS 695 Topics in Virtualization and Cloud Computing. Introduction CS 695 Topics in Virtualization and Cloud Computing Introduction This class What does virtualization and cloud computing mean? 2 Cloud Computing The in-vogue term Everyone including his/her dog want something

More information

Virtualization: an old concept in a new approach

Virtualization: an old concept in a new approach MPRA Munich Personal RePEc Archive Virtualization: an old concept in a new approach Logica Banica and Doina Rosca and Cristian Stefan University of Pitesti, Faculty of Economics, University of Craiova,

More information

Virtualization and the U2 Databases

Virtualization and the U2 Databases Virtualization and the U2 Databases Brian Kupzyk Senior Technical Support Engineer for Rocket U2 Nik Kesic Lead Technical Support for Rocket U2 Opening Procedure Orange arrow allows you to manipulate the

More information

Cloud Computing. Up until now

Cloud Computing. Up until now Cloud Computing Lecture 11 Virtualization 2011-2012 Up until now Introduction. Definition of Cloud Computing Grid Computing Content Distribution Networks Map Reduce Cycle-Sharing 1 Process Virtual Machines

More information

Virtual Machines. Virtual Machines

Virtual Machines. Virtual Machines Virtual Machines Virtual Machines What is a virtual machine? Examples? Benefits? 1 Virtualization Creation of an isomorphism that maps a virtual guest system to a real host: Maps guest state S to host

More information

Chapter 3 Operating-System Structures

Chapter 3 Operating-System Structures Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Implementing and Managing Windows Server 2008 Hyper-V

Implementing and Managing Windows Server 2008 Hyper-V Course 6422A: Implementing and Managing Windows Server 2008 Hyper-V Length: 3 Days Language(s): English Audience(s): IT Professionals Level: 300 Technology: Windows Server 2008 Type: Course Delivery Method:

More information

Chapter 2 System Structures

Chapter 2 System Structures Chapter 2 System Structures Operating-System Structures Goals: Provide a way to understand an operating systems Services Interface System Components The type of system desired is the basis for choices

More information

Virtualization for Cloud Computing

Virtualization for Cloud Computing Virtualization for Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF CLOUD COMPUTING On demand provision of computational resources

More information

Virtual Machines. Adapted from J.S. Smith and R. Nair, VIRTUAL MACHINES, Morgan-Kaufmann 2005. Teodor Rus. rus@cs.uiowa.edu

Virtual Machines. Adapted from J.S. Smith and R. Nair, VIRTUAL MACHINES, Morgan-Kaufmann 2005. Teodor Rus. rus@cs.uiowa.edu Virtual Machines Adapted from J.S. Smith and R. Nair, VIRTUAL MACHINES, Morgan-Kaufmann 2005 Teodor Rus rus@cs.uiowa.edu The University of Iowa, Department of Computer Science Introduction to System Software

More information

Review from last time. CS 537 Lecture 3 OS Structure. OS structure. What you should learn from this lecture

Review from last time. CS 537 Lecture 3 OS Structure. OS structure. What you should learn from this lecture Review from last time CS 537 Lecture 3 OS Structure What HW structures are used by the OS? What is a system call? Michael Swift Remzi Arpaci-Dussea, Michael Swift 1 Remzi Arpaci-Dussea, Michael Swift 2

More information

Virtualization and Other Tricks.

Virtualization and Other Tricks. Virtualization and Other Tricks. Pavel Parízek, Tomáš Kalibera, Peter Libič DEPARTMENT OF DISTRIBUTED AND DEPENDABLE SYSTEMS http://d3s.mff.cuni.cz CHARLES UNIVERSITY PRAGUE Faculty of Mathematics and

More information

Intro to Virtualization

Intro to Virtualization Cloud@Ceid Seminars Intro to Virtualization Christos Alexakos Computer Engineer, MSc, PhD C. Sysadmin at Pattern Recognition Lab 1 st Seminar 19/3/2014 Contents What is virtualization How it works Hypervisor

More information

Virtualization. Michael Tsai 2015/06/08

Virtualization. Michael Tsai 2015/06/08 Virtualization Michael Tsai 2015/06/08 What is virtualization? Let s first look at a video from VMware http://bcove.me/x9zhalcl Problems? Low utilization Different needs DNS DHCP Web mail 5% 5% 15% 8%

More information

System Virtual Machines

System Virtual Machines System Virtual Machines Introduction Key concepts Resource virtualization processors memory I/O devices Performance issues Applications 1 Introduction System virtual machine capable of supporting multiple

More information

6422: Implementing and Managing Windows Server 2008 Hyper-V (3 Days)

6422: Implementing and Managing Windows Server 2008 Hyper-V (3 Days) www.peaklearningllc.com 6422: Implementing and Managing Windows Server 2008 Hyper-V (3 Days) Introduction This three-day instructor-led course teaches students how to implement and manage Windows Server

More information

Chapter 14 Virtual Machines

Chapter 14 Virtual Machines Operating Systems: Internals and Design Principles Chapter 14 Virtual Machines Eighth Edition By William Stallings Virtual Machines (VM) Virtualization technology enables a single PC or server to simultaneously

More information

9/26/2011. What is Virtualization? What are the different types of virtualization.

9/26/2011. What is Virtualization? What are the different types of virtualization. CSE 501 Monday, September 26, 2011 Kevin Cleary kpcleary@buffalo.edu What is Virtualization? What are the different types of virtualization. Practical Uses Popular virtualization products Demo Question,

More information

IOS110. Virtualization 5/27/2014 1

IOS110. Virtualization 5/27/2014 1 IOS110 Virtualization 5/27/2014 1 Agenda What is Virtualization? Types of Virtualization. Advantages and Disadvantages. Virtualization software Hyper V What is Virtualization? Virtualization Refers to

More information

Kernel comparison of OpenSolaris, Windows Vista and. Linux 2.6

Kernel comparison of OpenSolaris, Windows Vista and. Linux 2.6 Kernel comparison of OpenSolaris, Windows Vista and Linux 2.6 The idea of writing this paper is evoked by Max Bruning's view on Solaris, BSD and Linux. The comparison of advantages and disadvantages among

More information

Outline SSS6422 - Microsoft Windows Server 2008 Hyper-V Virtualization

Outline SSS6422 - Microsoft Windows Server 2008 Hyper-V Virtualization Outline SSS6422 - Microsoft Windows Server 2008 Hyper-V Virtualization Duration: Three consecutive Saturdays About this Course This instructor led course teaches students how to implement and manage Windows

More information

PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE

PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE PERFORMANCE ANALYSIS OF KERNEL-BASED VIRTUAL MACHINE Sudha M 1, Harish G M 2, Nandan A 3, Usha J 4 1 Department of MCA, R V College of Engineering, Bangalore : 560059, India sudha.mooki@gmail.com 2 Department

More information

Origins of Operating Systems OS/360. Martin Grund HPI

Origins of Operating Systems OS/360. Martin Grund HPI Origins of Operating Systems OS/360 HPI Table of Contents IBM System 360 Functional Structure of OS/360 Virtual Machine Time Sharing 2 Welcome to Big Blue 3 IBM System 360 In 1964 IBM announced the IBM-360

More information

WHITE PAPER Mainstreaming Server Virtualization: The Intel Approach

WHITE PAPER Mainstreaming Server Virtualization: The Intel Approach WHITE PAPER Mainstreaming Server Virtualization: The Intel Approach Sponsored by: Intel John Humphreys June 2006 Tim Grieser IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200

More information

Virtualization. Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/

Virtualization. Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/ Virtualization Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/ What is Virtualization? Virtualization is the simulation of the software and/ or hardware upon which other software runs. This

More information

An Overview of Virtual Machine Architectures

An Overview of Virtual Machine Architectures An Overview of Virtual Machine Architectures J. E. Smith and Ravi Nair Excerpt from Virtual Machines: Architectures, Implementations and Applications, to be published by Morgan Kaufmann Publishers, 2004.

More information

Virtualization. Explain how today s virtualization movement is actually a reinvention

Virtualization. Explain how today s virtualization movement is actually a reinvention Virtualization Learning Objectives Explain how today s virtualization movement is actually a reinvention of the past. Explain how virtualization works. Discuss the technical challenges to virtualization.

More information

nanohub.org An Overview of Virtualization Techniques

nanohub.org An Overview of Virtualization Techniques An Overview of Virtualization Techniques Renato Figueiredo Advanced Computing and Information Systems (ACIS) Electrical and Computer Engineering University of Florida NCN/NMI Team 2/3/2006 1 Outline Resource

More information

Building Applications Using Micro Focus COBOL

Building Applications Using Micro Focus COBOL Building Applications Using Micro Focus COBOL Abstract If you look through the Micro Focus COBOL documentation, you will see many different executable file types referenced: int, gnt, exe, dll and others.

More information

Nitin V. Choudhari National Informatics Centre, District Unit, Collector Office, Akola, Maharashtra, India nv.choudhari@nic.in,nitinvc@gmail.

Nitin V. Choudhari National Informatics Centre, District Unit, Collector Office, Akola, Maharashtra, India nv.choudhari@nic.in,nitinvc@gmail. Virtualization using Virtual Machines: for Improved Service Delivery, increased throughput, technical and financial resource optimization in e-governance Nitin V. Choudhari National Informatics Centre,

More information

CHAPTER 15: Operating Systems: An Overview

CHAPTER 15: Operating Systems: An Overview CHAPTER 15: Operating Systems: An Overview The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint

More information

Virtual Machines and Security Paola Stone Martinez East Carolina University November, 2013.

Virtual Machines and Security Paola Stone Martinez East Carolina University November, 2013. Virtual Machines and Security Paola Stone Martinez East Carolina University November, 2013. Keywords: virtualization, virtual machine, security. 1. Virtualization The rapid growth of technologies, nowadays,

More information

Operating System Structures

Operating System Structures COP 4610: Introduction to Operating Systems (Spring 2015) Operating System Structures Zhi Wang Florida State University Content Operating system services User interface System calls System programs Operating

More information

Networking for Caribbean Development

Networking for Caribbean Development Networking for Caribbean Development BELIZE NOV 2 NOV 6, 2015 w w w. c a r i b n o g. o r g Virtualization: Architectural Considerations and Implementation Options Virtualization Virtualization is the

More information

International Journal of Advancements in Research & Technology, Volume 1, Issue6, November-2012 1 ISSN 2278-7763

International Journal of Advancements in Research & Technology, Volume 1, Issue6, November-2012 1 ISSN 2278-7763 International Journal of Advancements in Research & Technology, Volume 1, Issue6, November-2012 1 VIRTUALIZATION Vikas Garg Abstract: The main aim of the research was to get the knowledge of present trends

More information

Parallels Virtuozzo Containers

Parallels Virtuozzo Containers Parallels Virtuozzo Containers White Paper Top Ten Considerations For Choosing A Server Virtualization Technology www.parallels.com Version 1.0 Table of Contents Introduction... 3 Technology Overview...

More information

International Engineering Journal For Research & Development

International Engineering Journal For Research & Development Evolution Of Operating System And Open Source Android Application Nilesh T.Gole 1, Amit Manikrao 2, Niraj Kanot 3,Mohan Pande 4 1,M.tech(CSE)JNTU, 2 M.tech(CSE)SGBAU, 3 M.tech(CSE),JNTU, Hyderabad 1 sheyanilu@gmail.com,

More information

SUSE Linux Enterprise 10 SP2: Virtualization Technology Support

SUSE Linux Enterprise 10 SP2: Virtualization Technology Support Technical White Paper LINUX OPERATING SYSTEMS www.novell.com SUSE Linux Enterprise 10 SP2: Virtualization Technology Support Content and modifications. The contents of this document are not part of the

More information

System Structures. Services Interface Structure

System Structures. Services Interface Structure System Structures Services Interface Structure Operating system services (1) Operating system services (2) Functions that are helpful to the user User interface Command line interpreter Batch interface

More information

Chapter 16: Virtual Machines. Operating System Concepts 9 th Edition

Chapter 16: Virtual Machines. Operating System Concepts 9 th Edition Chapter 16: Virtual Machines Silberschatz, Galvin and Gagne 2013 Chapter 16: Virtual Machines Overview History Benefits and Features Building Blocks Types of Virtual Machines and Their Implementations

More information

SCO Virtualization Presentation to Customers

SCO Virtualization Presentation to Customers SCO Virtualization Presentation to Customers 1 Content Virtualization An Overview Short introduction including key benefits Additional virtualization information from SCO Additional information about Virtualization

More information

12. Introduction to Virtual Machines

12. Introduction to Virtual Machines 12. Introduction to Virtual Machines 12. Introduction to Virtual Machines Modern Applications Challenges of Virtual Machine Monitors Historical Perspective Classification 332 / 352 12. Introduction to

More information

Proposal for Virtual Private Server Provisioning

Proposal for Virtual Private Server Provisioning Interpole Solutions 1050, Sadguru Darshan, New Prabhadevi Road, Mumbai - 400 025 Tel: 91-22-24364111, 24364112 Email : response@interpole.net Website: www.interpole.net Proposal for Virtual Private Server

More information

evm Virtualization Platform for Windows

evm Virtualization Platform for Windows B A C K G R O U N D E R evm Virtualization Platform for Windows Host your Embedded OS and Windows on a Single Hardware Platform using Intel Virtualization Technology April, 2008 TenAsys Corporation 1400

More information

Virtualizing Exchange

Virtualizing Exchange Virtualizing Exchange Simplifying and Optimizing Management of Microsoft Exchange Server Using Virtualization Technologies By Anil Desai Microsoft MVP September, 2008 An Alternative to Hosted Exchange

More information

The Microsoft Windows Hypervisor High Level Architecture

The Microsoft Windows Hypervisor High Level Architecture The Microsoft Windows Hypervisor High Level Architecture September 21, 2007 Abstract The Microsoft Windows hypervisor brings new virtualization capabilities to the Windows Server operating system. Its

More information

ELEC 377. Operating Systems. Week 1 Class 3

ELEC 377. Operating Systems. Week 1 Class 3 Operating Systems Week 1 Class 3 Last Class! Computer System Structure, Controllers! Interrupts & Traps! I/O structure and device queues.! Storage Structure & Caching! Hardware Protection! Dual Mode Operation

More information

Virtual Servers. Virtual machines. Virtualization. Design of IBM s VM. Virtual machine systems can give everyone the OS (and hardware) that they want.

Virtual Servers. Virtual machines. Virtualization. Design of IBM s VM. Virtual machine systems can give everyone the OS (and hardware) that they want. Virtual machines Virtual machine systems can give everyone the OS (and hardware) that they want. IBM s VM provided an exact copy of the hardware to the user. Virtual Servers Virtual machines are very widespread.

More information

PARALLELS CLOUD SERVER

PARALLELS CLOUD SERVER PARALLELS CLOUD SERVER An Introduction to Operating System Virtualization and Parallels Cloud Server 1 Table of Contents Introduction... 3 Hardware Virtualization... 3 Operating System Virtualization...

More information

VMware and CPU Virtualization Technology. Jack Lo Sr. Director, R&D

VMware and CPU Virtualization Technology. Jack Lo Sr. Director, R&D ware and CPU Virtualization Technology Jack Lo Sr. Director, R&D This presentation may contain ware confidential information. Copyright 2005 ware, Inc. All rights reserved. All other marks and names mentioned

More information

Building Docker Cloud Services with Virtuozzo

Building Docker Cloud Services with Virtuozzo Building Docker Cloud Services with Virtuozzo Improving security and performance of application containers services in the cloud EXECUTIVE SUMMARY Application containers, and Docker in particular, are

More information

Linstantiation of applications. Docker accelerate

Linstantiation of applications. Docker accelerate Industrial Science Impact Factor : 1.5015(UIF) ISSN 2347-5420 Volume - 1 Issue - 12 Aug - 2015 DOCKER CONTAINER 1 2 3 Sawale Bharati Shankar, Dhoble Manoj Ramchandra and Sawale Nitin Shankar images. ABSTRACT

More information

Migration and Building of Data Centers in IBM SoftLayer with the RackWare Management Module

Migration and Building of Data Centers in IBM SoftLayer with the RackWare Management Module Migration and Building of Data Centers in IBM SoftLayer with the RackWare Management Module June, 2015 WHITE PAPER Contents Advantages of IBM SoftLayer and RackWare Together... 4 Relationship between

More information

Handling Hyper-V. In this series of articles, learn how to manage Hyper-V, from ensuring high availability to upgrading to Windows Server 2012 R2

Handling Hyper-V. In this series of articles, learn how to manage Hyper-V, from ensuring high availability to upgrading to Windows Server 2012 R2 White Paper Handling Hyper-V In this series of articles, learn how to manage Hyper-V, from ensuring high availability to upgrading to Windows Server 2012 R2 White Paper How to Make Hyper-V Virtual Machines

More information

Microkernels, virtualization, exokernels. Tutorial 1 CSC469

Microkernels, virtualization, exokernels. Tutorial 1 CSC469 Microkernels, virtualization, exokernels Tutorial 1 CSC469 Monolithic kernel vs Microkernel Monolithic OS kernel Application VFS System call User mode What was the main idea? What were the problems? IPC,

More information

CSE 120 Principles of Operating Systems. Modules, Interfaces, Structure

CSE 120 Principles of Operating Systems. Modules, Interfaces, Structure CSE 120 Principles of Operating Systems Fall 2000 Lecture 3: Operating System Modules, Interfaces, and Structure Geoffrey M. Voelker Modules, Interfaces, Structure We roughly defined an OS as the layer

More information

Windows Server Virtualization An Overview

Windows Server Virtualization An Overview Microsoft Corporation Published: May 2006 Abstract Today s business climate is more challenging than ever and businesses are under constant pressure to lower costs while improving overall operational efficiency.

More information

www.see-grid-sci.eu Regional SEE-GRID-SCI Training for Site Administrators Institute of Physics Belgrade March 5-6, 2009

www.see-grid-sci.eu Regional SEE-GRID-SCI Training for Site Administrators Institute of Physics Belgrade March 5-6, 2009 SEE-GRID-SCI Virtualization and Grid Computing with XEN www.see-grid-sci.eu Regional SEE-GRID-SCI Training for Site Administrators Institute of Physics Belgrade March 5-6, 2009 Milan Potocnik University

More information

Basics of Virtualisation

Basics of Virtualisation Basics of Virtualisation Volker Büge Institut für Experimentelle Kernphysik Universität Karlsruhe Die Kooperation von The x86 Architecture Why do we need virtualisation? x86 based operating systems are

More information