|
|
|
- Winifred Mitchell
- 10 years ago
- Views:
Transcription
1 DSP First Laboratory Exercise #9 Sampling and Zooming of Images In this lab we study the application of FIR ltering to the image zooming problem, where lowpass lters are used to do the interpolation needed for high quality zooming. The zooming problem is basically the same as the D-to-A reconstruction problem treated in Chapter 4. 1 Overview If you have not already done Lab 8, please read the introduction of that lab for important information on the display and printing of images. 2 Warm-up: Linear Interpolation In Section 3.2, we will be interest in image zooming which is an interpolation problem. Before processing images, however, we consider the following one-dimensional interpolation problem. (a) Generate a sequence of data samples with two zeros between each non-zero sample: xss = zeros(1,19) samp = [ ] xss(1:3:19) = samp (b) Now process this sequence through an FIR lter with \triangular" coecients. coeffs = [1/3, 2/3, 1, 2/3, 1/3] output = firfilt(xss,coeffs) What observations can you make regarding the similarities between the sequence output and the nonzero samples of the original sequence (xss)? Do you notice a relative shift between these two sequences? Measure the length of this time shift in samples. Explain why the output of the triangle FIR lter is a linearly interpolated version of the input sequence. (c) Write the dierence equation for the \triangular" lter dened by coeffs in part (b). Now calculate, by hand, the output of the lter to the input sequence x[n] = [n]+0:5[n ; 3]: (1) = 8 < : 1 when n =0 0:5 when n =3 0 else Do not use Matlab to complete this exercise. The purpose is to understand exactly how the linearly interpolated output is generated when you implement the dierence equation. Instructor Verication (separate page) In summary, we notice that linear interpolation involves two steps. The rst step is zero lling, where the number of zeros inserted between each sample determines the degree of interpolation. The second step is FIR ltering with the appropriate triangle coecients. 1 (2)
2 3 Lab: Sampling of Images The images that are stored on the computer have to be sampled images because they are stored in an M N array. The sampling rate in the two spatial dimensions was chosen at the time the image was digitized (in units of samples per inch if the original was a photograph). However, we can simulate a lower sampling rate by simply throwing away samples in a periodic way. If every other sample is removed, the sampling rate will be halved. Sometimes this is called sub-sampling or down-sampling. So, for example, if you have a vector x1 representing a signal such as arow of an image, we canreduce the sampling rate by a factor of 4 by simply taking every 4 th sample. In Matlab this is easy with the colon operator, i.e., xs = x1(1:4:length(x1)). The vector xs is one fourth the length of x1. An alternative sampling strategy is to take every 4 th sample, but place zeros in between. The M-le below called imsample( ) will perform this type of sampling on an image, e.g., xs = imsample(xx,4):. (a) Explain how the function imsample.m works: function yy = imsample(xx, P) %IMSAMPLE Function for sub-sampling an image % usage: yy = imsample(xx, P) % xx = input image to be sampled % P = sub-sampling period (an integer like 2,3,etc) % yy = output image % [M,N] = size(xx) S = zeros(m,n) S(1:P:M,1:P:N) = ones(length(1:p:m), length(1:p:n)) yy = xx.* S (b) Execute the statement xs = imsample(xx,4) and use show img( ) to plot the images xs and xx. From the plot you should see that imsample( ) throws away samples by setting them to zero. The samples that it keeps remain in their original spatial locations. With the zero samples included, the \sampled image" has the same spatial dimensions as the original when displayed on the screen. (c) Down-sampling throws away samples, so it will shrink the size of the image. This is what is done by the following scheme: xp = xx(1:p:m,1:p:n) One potential problem with down-sampling is that aliasing might occur. This can be illustrated in a dramatic fashion with zone plate image, or the lenna image. Now down-sample the zone plate image by a factor of 2. Notice the aliasing in the downsampled image, which is surprising since no new values are being created by the downsampling process. Describe how the aliasing appears visually. 1 1 One diculty withshowing aliasing is that we must display the pixels of the image exactly. This almost never happens because most monitors and printers will perform some sort of interpolation to adjust the size of the image to match the resolution of the device. In Matlab we can override these size changes by using the function truesize which is part of the Image Processing Toolbox. 2
3 Down-sample the lenna image by a factor of 2. Notice that this image seems to be relatively unaected by the down-sampling by 2 process, what can you say about the frequency content of the lenna image as opposed to the zone plate image? 3.1 Reconstruction of Images When an image has been sampled, we can ll in the missing samples by doing interpolation. For images, this would be analogous to the examples shown in Chapter 4 for sine-wave interpolation which is part of the reconstruction process in a D-to-A converter. We could use a \square pulse" or a \triangular pulse" or other pulse shapes. For these reconstruction experiments, use either the tools image or the lenna image. It would be wise to put the original image and all the ltered reconstructions on the screen in dierent gure windows for easy comparison. (a) The simplest interpolation would be the square pulse which produces a \zero-order hold." We could ll in the gaps between samples in each row with the following statement: xs = imsample(xx,4) bs = ones(1,4) yhold = conv2(xs,bs) Try this and plot the result yhold. %--- Length-4 square pulse %--- 2-D FIR filtering (horizontally) (b) Now lter the columns of yhold to ll in the missing points in each column and compare the result to the original image xx. (c) Linear interpolation: Now use what you learned about linear interpolation in the warm-up section to determine an FIR lter that will perform linear interpolation on the rows and columns of the sub-sampled (by 4)signal. This lter must have coecients fb k g that follow a triangle shape, and the order must be M =6. (d) Carry out the linear interpolation operations using Matlab's conv2 function. Call the interpolated output ylin. Compare ylin to the original image xx and to the square pulse interpolated image. Comment on the visual appearance of the two \reconstructed" images. (e) Compute the frequency response of your linear interpolator used in the previous part. Only the 1-D FIR lter that acts on the rows must be analyzed. Plot its magnitude (frequency) response for ; ^!. (f) Smoothing via Lowpass Filtering: At this point, you should be thinking that interpolation is very similar to lowpass ltering. To test this hypothesis, create a lowpass ltered version xs_filt of the sampled image by ltering the rows and columns with a 23-point FIR lter, whose coecients are given by a modied \sinc" formula: b k = sin((k ; 11)=4) w k (k ; 11)=4 k =0 1 2 ::: 22 where w k is given by: 2k 0:54 ; 0:46 cos k =0 1 2 ::: Remember that Matlab will have problems evaluating b 11 because the sinc function is an indeterminate form when k =11. You will have to compute b 11 yourself and include it at the proper location in the vector b k. Compare xs_filt to the original image. In addition, plot the magnitude of the frequency response for this FIR lter. 3
4 3.2 Zooming for an Image Zooming in on a section of an image is very similar to the D-to-A reconstruction process because it also requires interpolation. The three interpolation systems (zero-order hold, linear interpolation, and lowpass ltering) developed in the previous section, can be applied to do zooming by a factor of four. (a) Take a small patch of an image (about 50 50) where there is some interesting detail (e.g., the eye or feather of lenna). There are several ways to produce a larger image that appears zoomed. One way is to simply repeat pixel values. So in order to zoom a section up to , you would repeat each pixel four times in each direction. Display a zoomed portion of an image by repeating pixel values. (b) Another way to produce a larger image is to insert zeros between the existing samples. In other words, you must produce an image that is with data values only in rows or columns whose index is a multiple of four. Consider the following code that does this for a 1-D vector. L = length(xx) yy = zeros(1,4*l) yy(4:4:4*l) = xx Generalize this idea to write a function that will insert zeros in the rows and columns of a 2-D image. (c) Now lter the image from part (b) to do the interpolation. Use both the linear and the \sinc" function interpolators. (d) Comment on the ability of all three zooming operators to preserve detail and edges in the image while expanding the size of details. Try to explain your observations by considering the frequency content of the \zoomed" image. (e) Matlab has a zoom command in the Image Processing Toolbox. The function is called imzoom. If this is available on your system, try to determine what sort of interpolation scheme it is using. 4
5 Lab 9 Instructor Verication Sheet Staple this page to the end of your Lab Report. Name: Date: Part 2 Perform linear interpolation by hand: Veried: 5
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
Sachin Patel HOD I.T Department PCST, Indore, India. Parth Bhatt I.T Department, PCST, Indore, India. Ankit Shah CSE Department, KITE, Jaipur, India
Image Enhancement Using Various Interpolation Methods Parth Bhatt I.T Department, PCST, Indore, India Ankit Shah CSE Department, KITE, Jaipur, India Sachin Patel HOD I.T Department PCST, Indore, India
521466S Machine Vision Assignment #7 Hough transform
521466S Machine Vision Assignment #7 Hough transform Spring 2014 In this assignment we use the hough transform to extract lines from images. We use the standard (r, θ) parametrization of lines, lter the
Signal Processing First Lab 01: Introduction to MATLAB. 3. Learn a little about advanced programming techniques for MATLAB, i.e., vectorization.
Signal Processing First Lab 01: Introduction to MATLAB Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section
Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object
Time series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
Introduction to Matlab
Introduction to Matlab Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. [email protected] Course Objective This course provides
Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering
Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/
Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
To determine vertical angular frequency, we need to express vertical viewing angle in terms of and. 2tan. (degree). (1 pt)
Polytechnic University, Dept. Electrical and Computer Engineering EL6123 --- Video Processing, S12 (Prof. Yao Wang) Solution to Midterm Exam Closed Book, 1 sheet of notes (double sided) allowed 1. (5 pt)
Linear Filtering Part II
Linear Filtering Part II Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Fourier theory Jean Baptiste Joseph Fourier had a crazy idea: Any periodic function can
WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics
WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics Visualization of Matrices Good visuals anchor any presentation. MATLAB has a wide variety of ways to display data and calculation results that can be
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
Otis Photo Lab Inkjet Printing Demo
Otis Photo Lab Inkjet Printing Demo Otis Photography Lab Adam Ferriss Lab Manager [email protected] 310.665.6971 Soft Proofing and Pre press Before you begin printing, it is a good idea to set the proof
Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis
Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?
Superresolution images reconstructed from aliased images
Superresolution images reconstructed from aliased images Patrick Vandewalle, Sabine Süsstrunk and Martin Vetterli LCAV - School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials
3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines
CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
PHOTO RESIZING & QUALITY MAINTENANCE
GRC 101 INTRODUCTION TO GRAPHIC COMMUNICATIONS PHOTO RESIZING & QUALITY MAINTENANCE Information Sheet No. 510 How to resize images and maintain quality If you re confused about getting your digital photos
Understanding CIC Compensation Filters
Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response
COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies
COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su ([email protected]) TA: Matt Menke
Introduction to MATLAB (Basics) Reference from: Azernikov Sergei [email protected]
Introduction to MATLAB (Basics) Reference from: Azernikov Sergei [email protected] MATLAB Basics Where to get help? 1) In MATLAB s prompt type: help, lookfor,helpwin, helpdesk, demos. 2) On the
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
MassArt Studio Foundation: Visual Language Digital Media Cookbook, Fall 2013
INPUT OUTPUT 08 / IMAGE QUALITY & VIEWING In this section we will cover common image file formats you are likely to come across and examine image quality in terms of resolution and bit depth. We will cover
Finite cloud method: a true meshless technique based on a xed reproducing kernel approximation
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2001; 50:2373 2410 Finite cloud method: a true meshless technique based on a xed reproducing kernel approximation N.
Introduction to Logistic Regression
OpenStax-CNX module: m42090 1 Introduction to Logistic Regression Dan Calderon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Gives introduction
Microsoft Excel 2010 Training. Use Excel tables to manage information
Microsoft Excel 2010 Training Use Excel tables to manage information Overview: Help with data management In this course, you ll learn how to manage information by using tables in Excel. Tables make it
AC 2012-4561: MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT
AC 2012-4561: MATHEMATICAL MODELING AND SIMULATION US- ING LABVIEW AND LABVIEW MATHSCRIPT Dr. Nikunja Swain, South Carolina State University Nikunja Swain is a professor in the College of Science, Mathematics,
Fireworks CS4 Tutorial Part 1: Intro
Fireworks CS4 Tutorial Part 1: Intro This Adobe Fireworks CS4 Tutorial will help you familiarize yourself with this image editing software and help you create a layout for a website. Fireworks CS4 is the
VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University
VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
IMPROVEMENT OF DIGITAL IMAGE RESOLUTION BY OVERSAMPLING
ABSTRACT: IMPROVEMENT OF DIGITAL IMAGE RESOLUTION BY OVERSAMPLING Hakan Wiman Department of Photogrammetry, Royal Institute of Technology S - 100 44 Stockholm, Sweden (e-mail [email protected]) ISPRS Commission
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
Lab 1. The Fourier Transform
Lab 1. The Fourier Transform Introduction In the Communication Labs you will be given the opportunity to apply the theory learned in Communication Systems. Since this is your first time to work in the
Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored.
In this lesson you will create a Digital Elevation Model (DEM). A DEM is a gridded array of elevations. In its raw form it is an ASCII, or text, file. First, you will interpolate elevations on a topographic
0 Introduction to Data Analysis Using an Excel Spreadsheet
Experiment 0 Introduction to Data Analysis Using an Excel Spreadsheet I. Purpose The purpose of this introductory lab is to teach you a few basic things about how to use an EXCEL 2010 spreadsheet to do
Video-Conferencing System
Video-Conferencing System Evan Broder and C. Christoher Post Introductory Digital Systems Laboratory November 2, 2007 Abstract The goal of this project is to create a video/audio conferencing system. Video
CHOOSING A COLLEGE. Teacher s Guide Getting Started. Nathan N. Alexander Charlotte, NC
Teacher s Guide Getting Started Nathan N. Alexander Charlotte, NC Purpose In this two-day lesson, students determine their best-matched college. They use decision-making strategies based on their preferences
WEBFOCUS QUICK DATA FOR EXCEL
WEBFOCUS QUICK DATA FOR EXCEL BRIAN CARTER INFORMATION BUILDERS SUMMIT 2008 USERS CONFERENCE JUNE 2008 Presentation Abstract: Even with the growing popularity and evolvement of Business Intelligence products
Exercise 0. Although Python(x,y) comes already with a great variety of scientic Python packages, we might have to install additional dependencies:
Exercise 0 Deadline: None Computer Setup Windows Download Python(x,y) via http://code.google.com/p/pythonxy/wiki/downloads and install it. Make sure that before installation the installer does not complain
Tactile and Advanced Computer Graphics Module 5. Graphic Design Fundamentals
Tactile and Advanced Computer Graphics Module 5 Graphic Design Fundamentals Tactile and Advanced Computer Graphics Module 5 Graphic Design Fundamentals Summary Goal(s): Transcribers-in-training will understand
6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson
Let s go back briefly to lecture 1, and look at where ADC s and DAC s fit into our overall picture. I m going in a little extra detail now since this is our eighth lecture on electronics and we are more
Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)
Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include
Vi, fi input. Vphi output VCO. Vosc, fosc. voltage-controlled oscillator
Experiment #4 CMOS 446 Phase-Locked Loop c 1997 Dragan Maksimovic Department of Electrical and Computer Engineering University of Colorado, Boulder The purpose of this lab assignment is to introduce operating
Computational Foundations of Cognitive Science
Computational Foundations of Cognitive Science Lecture 15: Convolutions and Kernels Frank Keller School of Informatics University of Edinburgh [email protected] February 23, 2010 Frank Keller Computational
Manifold Learning Examples PCA, LLE and ISOMAP
Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition
(Refer Slide Time: 01:11-01:27)
Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,
Lecture 1-6: Noise and Filters
Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat
Appendix 4 Simulation software for neuronal network models
Appendix 4 Simulation software for neuronal network models D.1 Introduction This Appendix describes the Matlab software that has been made available with Cerebral Cortex: Principles of Operation (Rolls
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
6 Scalar, Stochastic, Discrete Dynamic Systems
47 6 Scalar, Stochastic, Discrete Dynamic Systems Consider modeling a population of sand-hill cranes in year n by the first-order, deterministic recurrence equation y(n + 1) = Ry(n) where R = 1 + r = 1
Preparing Images for PowerPoint, the Web, and Publication
What is Resolution?... 2 How Resolution Affects File Memory Size... 2 Physical Size vs. Memory Size... 3 Thinking Digitally... 4 What Resolution is Best For Printing?... 5 Professional Publications...
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire
AMATH 352 Lecture 3 MATLAB Tutorial Starting MATLAB Entering Variables
AMATH 352 Lecture 3 MATLAB Tutorial MATLAB (short for MATrix LABoratory) is a very useful piece of software for numerical analysis. It provides an environment for computation and the visualization. Learning
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
High Quality Image Magnification using Cross-Scale Self-Similarity
High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg
6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
The Image Deblurring Problem
page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
Polynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs
Using Excel Jeffrey L. Rummel Emory University Goizueta Business School BBA Seminar Jeffrey L. Rummel BBA Seminar 1 / 54 Excel Calculations of Descriptive Statistics Single Variable Graphs Relationships
Project 3: Image Enhancement - Spatial vs. Frequency Domain Filters. Steven Young: ECE 572
Project 3: Image Enhancement - Spatial vs. Frequency Domain Filters Steven Young: ECE 572 Due: October 3, 20 Abstract The purpose of this project is to explore some simple image enhancement algorithms.
A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION
A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION Zeshen Wang ESRI 380 NewYork Street Redlands CA 92373 [email protected] ABSTRACT Automated area aggregation, which is widely needed for mapping both natural
Lab 5 Getting started with analog-digital conversion
Lab 5 Getting started with analog-digital conversion Achievements in this experiment Practical knowledge of coding of an analog signal into a train of digital codewords in binary format using pulse code
Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW
Qiang Lu Chapter 3. System Scanning Hardware Overview 79 Chapter 3 SYSTEM SCANNING HARDWARE OVERVIEW Since all the image data need in this research were collected from the highly modified AS&E 101ZZ system,
CATIA V5 Tutorials. Mechanism Design & Animation. Release 18. Nader G. Zamani. University of Windsor. Jonathan M. Weaver. University of Detroit Mercy
CATIA V5 Tutorials Mechanism Design & Animation Release 18 Nader G. Zamani University of Windsor Jonathan M. Weaver University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com
Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones
Final Year Project Progress Report Frequency-Domain Adaptive Filtering Myles Friel 01510401 Supervisor: Dr.Edward Jones Abstract The Final Year Project is an important part of the final year of the Electronic
OPTOFORCE DATA VISUALIZATION 3D
U S E R G U I D E - O D V 3 D D o c u m e n t V e r s i o n : 1. 1 B E N E F I T S S Y S T E M R E Q U I R E M E N T S Analog data visualization Force vector representation 2D and 3D plot Data Logging
Making TIFF and EPS files from Drawing, Word Processing, PowerPoint and Graphing Programs
Making TIFF and EPS files from Drawing, Word Processing, PowerPoint and Graphing Programs In the worlds of electronic publishing and video production programs, the need for TIFF or EPS formatted files
CS3220 Lecture Notes: QR factorization and orthogonal transformations
CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss
Getting started in Excel
Getting started in Excel Disclaimer: This guide is not complete. It is rather a chronicle of my attempts to start using Excel for data analysis. As I use a Mac with OS X, these directions may need to be
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
Scientific Graphing in Excel 2010
Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
2+2 Just type and press enter and the answer comes up ans = 4
Demonstration Red text = commands entered in the command window Black text = Matlab responses Blue text = comments 2+2 Just type and press enter and the answer comes up 4 sin(4)^2.5728 The elementary functions
EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS
1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides
A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles
A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...
A System for Capturing High Resolution Images
A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: [email protected]
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0
Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook
Lezione 6 Communications Blockset
Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive
TTT4110 Information and Signal Theory Solution to exam
Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT4 Information and Signal Theory Solution to exam Problem I (a The frequency response is found by taking
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Assessment of Camera Phone Distortion and Implications for Watermarking
Assessment of Camera Phone Distortion and Implications for Watermarking Aparna Gurijala, Alastair Reed and Eric Evans Digimarc Corporation, 9405 SW Gemini Drive, Beaverton, OR 97008, USA 1. INTRODUCTION
Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES
Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES 1.0 SCOPE AND PURPOSE These specifications apply to fingerprint capture devices which scan and capture
Transition Bandwidth Analysis of Infinite Impulse Response Filters
Transition Bandwidth Analysis of Infinite Impulse Response Filters Sujata Prabhakar Department of Electronics and Communication UCOE Punjabi University, Patiala Dr. Amandeep Singh Sappal Associate Professor
