How Lucene Powers LinkedIn Segmentation & Targeting Platform
|
|
|
- Grace Rich
- 10 years ago
- Views:
Transcription
1 How Lucene Powers LinkedIn Segmentation & Targeting Platform Lucene/SOLR Revolution EU, November 2013 Hien Luu, Raj Rangaswamy
2 About Us * Hien Luu Rajasekaran Rangaswamy
3 Agenda Little bit about LinkedIn Segmentation & Targeting Platform Overview How Lucene powers Segmentation & Targeting Platform Q&A
4 Our Vision Create economic opportunity for every professional in the world. Our Mission Connect the world s professionals to make them more productive and successful. Members First!
5 The world s largest professional network Over 65% of members are now international >30M >90% Fortune 100 Companies use LinkedIn Talent Soln to hire >3M Company Pages 19 Languages >5.7B Professional searches in 2012
6 Other Company Facts Headquartered in Mountain View, Calif., with offices around the world! LinkedIn has ~4200 full- Kme employees * located around the world Source :
7 SegmentaKon & TargeKng
8 Segmentation & Targeting
9 Segmentation & Targeting Attribute types Bhaskar Ghosh
10 Segmentation & Targeting 1. Create attributes Name State Occupation Etc. 2. Attributes Added to Table Name State OccupaEon John Smith California Engineer Jane Smith Nevada HR Manager Jane Doe California Engineer 3. Create Target Segment: California, Engineer Name State OccupaEon 4. Export List & Send Vendor John Smith California Engineer Jane Doe California Engineer LinkedIn Confidential 2013 All Rights Reserved 10
11 Segmentation & Targeting Business definition Business would like to launch new campaign often Business would like to specify targeting criteria using arbitrary set of attributes Attributes need to be computed to fulfill the targeting criteria The attribute data resides on Hadoop or TD Business is most comfortable with SQL-like language
12 Segmentation & Targeting Attribute Computation Engine Attribute Serving Engine
13 Segmentation & Targeting Self-service Attribute consolidation Attribute Computation Engine Support various data sources Attribute availability
14 PB Segmentation & Targeting Attribute computation TB ~238M TB ~440
15 Segmentation & Targeting Self-service Build segments Attribute Serving Engine Attribute predicate expression Build lists
16 Segmentation & Targeting count filter sum 1234 $ Σ complex expressions Serving Engine ~238M ~440 LinkedIn Member Attribute table
17 LinkedIn Segmentation & Targeting Platform Who are the job seekers? Who are the LinkedIn Talent Solution prospects in Europe? Who are north American recruiters that don t work for a competitor?
18 LinkedIn Segmentation & Targeting Platform Complex tree-like attribute predicate expressions
19 Agenda Architecture Indexer Architecture Serving Architecture Load Balanced Model Next Steps - Distributed Model DocValues Lessons Learnt Why not use an existing solution?
20 Architecture Attribute Serving Engine Attribute Indexing Attribute Serving Engine Attribute Computation Engine Attribute Creation Engine Attribute Materialization Engine Attribute Metastore Data Storage Layer
21 Indexer mysql attribute store Attribute Definitions HDFS Mapper K=> AvroKey<GenericRecord> V=> AvroValue<NullWritable> Avro data in HDFS Hadoop Indexer MR shard 1 shard 2 Reducer K=> NullWritable V=> LuceneDocumentWrapper Index Merger shard n LuceneOutputFormat RecordWriter LuceneDocumentWrapper Document Web Servers Index
22 Serving JSON Predicate Expression JSON Lucene Query Parser Segment & List Inverted Index Inverted Index Inverted Index
23 Agenda Architecture Indexer Architecture Serving Architecture Load Balanced Model Next Steps - Distributed Model DocValues Lessons Learnt Why not use an existing solution?
24 Serving Load Balanced Model HTTP Request Load Balancer Web Server 1 Web Server 2 Web Server n Shard 1 Shard 2 Shard n Shared Drive
25 Serving Load Balanced Model But Wait.. Is load balancing alone good enough? What about distribution and failover?
26 Agenda Architecture Indexer Architecture Serving Architecture Load Balanced Model Next Steps - Distributed Model DocValues Lessons Learnt Why not use an existing solution?
27 Next Steps - Distributed Model A generic cluster management framework Used to manage partitioned and replicated resources in distributed systems Built on top of Zookeeper that hides the complexity of ZK primitives Provides distributed features such as leader election, twophase commit etc. via a model of state machine
28 Next Steps - Distributed Model HTTP Request Load Balancer Scatter Gather Web Server 1 Web Server 2 Web Server 3 Shard 1 active Shard 2 active Shard 3 active Shard 2 standby Shard 3 standby Shard 1 standby
29 Next Steps - Distributed Model HTTP Request Load Balancer Scatter Gather Web Server 1 Web Server 2 Web Server 3 Shard 1 active Shard 2 active Shard 3 failure Shard 2 standby Shard 3 active Shard 1 failure
30 Agenda Architecture Indexer Architecture Serving Architecture Load Balanced Model Next Steps - Distributed Model DocValues Lessons Learnt Why not use an existing solution?
31 DocValues Use Case Once segments are built, users want to forecast, see a target revenue projection for the campaigns that they want to run. Campaigns can be run on various Revenue Models This involves adding per member Propensity Scores and Dollar Amounts
32 DocValues Why not Stored Fields? Why not use Stored Fields? Stored fields have one indirection per document resulting in two disk seeks per document Performance cost quickly adds up when fetching millions of documents.fdx.fdt Document ID fetch filepointer to field data scan by id until field is found
33 DocValues Why not Field Cache? Why not use Field Cache? Is memory resident Works fine when there is enough memory But keeping millions of un-inverted values in memory is impossible Additional cost to parse values (from String and to String)
34 DocValues Dense column based storage (1 Value per Document and 1 Column per field and segment) Accepts primitives No conversion from/to String needed Loads 80x-100x faster than building a FieldCache All the work is done during Indexing DocValue fields can be indexed and stored too
35 Agenda Architecture Indexer Architecture Serving Architecture Load Balanced Model Next Steps - Distributed Model DocValues Lessons Learnt Why not use an existing solution?
36 Lessons Learnt Indexing Reuse index writers, field and document instances Create many partitions and Merge them in a different process Rebuild (bootstrap) entire index if possible Use partial updates with caution Analyze the index Serving Reuse a single instance of IndexSearcher Limit usage of stored fields and term vectors Plan for load balancing and failover Cache term frequencies Use different machines for Serving and indexing
37 Agenda Architecture Indexer Architecture Serving Architecture Load Balanced Model Next Steps - Distributed Model DocValues Lessons Learnt Why not use an existing solution?
38 Why not use an existing solution? Doesn t allow dynamic schema Difficult to bootstrap indexes built in hadoop Indexing elevates query latency Doesn t allow dynamic schema Difficult to bootstrap indexes built in hadoop Larger memory overhead Comparatively slow
39 Questions? More info: data.linkedin.com
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services
Integration of Apache Hive and HBase
Integration of Apache Hive and HBase Enis Soztutar enis [at] apache [dot] org @enissoz Page 1 About Me User and committer of Hadoop since 2007 Contributor to Apache Hadoop, HBase, Hive and Gora Joined
Search and Real-Time Analytics on Big Data
Search and Real-Time Analytics on Big Data Sewook Wee, Ryan Tabora, Jason Rutherglen Accenture & Think Big Analytics Strata New York October, 2012 Big Data: data becomes your core asset. It realizes its
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
Large Scale Text Analysis Using the Map/Reduce
Large Scale Text Analysis Using the Map/Reduce Hierarchy David Buttler This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected]
Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected] Agenda The rise of Big Data & Hadoop MySQL in the Big Data Lifecycle MySQL Solutions for Big Data Q&A
Real-time Analytics at Facebook: Data Freeway and Puma. Zheng Shao 12/2/2011
Real-time Analytics at Facebook: Data Freeway and Puma Zheng Shao 12/2/2011 Agenda 1 Analytics and Real-time 2 Data Freeway 3 Puma 4 Future Works Analytics and Real-time what and why Facebook Insights
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
The Hadoop Eco System Shanghai Data Science Meetup
The Hadoop Eco System Shanghai Data Science Meetup Karthik Rajasethupathy, Christian Kuka 03.11.2015 @Agora Space Overview What is this talk about? Giving an overview of the Hadoop Ecosystem and related
Complete Java Classes Hadoop Syllabus Contact No: 8888022204
1) Introduction to BigData & Hadoop What is Big Data? Why all industries are talking about Big Data? What are the issues in Big Data? Storage What are the challenges for storing big data? Processing What
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
Building Scalable Big Data Infrastructure Using Open Source Software. Sam William sampd@stumbleupon.
Building Scalable Big Data Infrastructure Using Open Source Software Sam William sampd@stumbleupon. What is StumbleUpon? Help users find content they did not expect to find The best way to discover new
Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation
Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election
Big Data Analytics in LinkedIn. Danielle Aring & William Merritt
Big Data Analytics in LinkedIn by Danielle Aring & William Merritt 2 Brief History of LinkedIn - Launched in 2003 by Reid Hoffman (https://ourstory.linkedin.com/) - 2005: Introduced first business lines
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
What s New with Search in Alfresco 5. Mike Farman Alfresco Product Manager Andy Hind Alfresco Senior Engineer
What s New with Search in Alfresco 5 Mike Farman Alfresco Product Manager Andy Hind Alfresco Senior Engineer Agenda Server-Side Changes Solr 4 Background Solr Schema Changes Performance New Capabilities
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
Building Scalable Applications Using Microsoft Technologies
Building Scalable Applications Using Microsoft Technologies Padma Krishnan Senior Manager Introduction CIOs lay great emphasis on application scalability and performance and rightly so. As business grows,
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
A Performance Analysis of Distributed Indexing using Terrier
A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search
HBase Schema Design. NoSQL Ma4ers, Cologne, April 2013. Lars George Director EMEA Services
HBase Schema Design NoSQL Ma4ers, Cologne, April 2013 Lars George Director EMEA Services About Me Director EMEA Services @ Cloudera ConsulFng on Hadoop projects (everywhere) Apache Commi4er HBase and Whirr
Mark Bennett. Search and the Virtual Machine
Mark Bennett Search and the Virtual Machine Agenda Intro / Business Drivers What to do with Search + Virtual What Makes Search Fast (or Slow!) Virtual Platforms Test Results Trends / Wrap Up / Q & A Business
Finding the Needle in a Big Data Haystack. Wolfgang Hoschek (@whoschek) JAX 2014
Finding the Needle in a Big Data Haystack Wolfgang Hoschek (@whoschek) JAX 2014 1 About Wolfgang Software Engineer @ Cloudera Search Platform Team Previously CERN, Lawrence Berkeley National Laboratory,
IBM BigInsights Has Potential If It Lives Up To Its Promise. InfoSphere BigInsights A Closer Look
IBM BigInsights Has Potential If It Lives Up To Its Promise By Prakash Sukumar, Principal Consultant at iolap, Inc. IBM released Hadoop-based InfoSphere BigInsights in May 2013. There are already Hadoop-based
Extending Hadoop beyond MapReduce
Extending Hadoop beyond MapReduce Mahadev Konar Co-Founder @mahadevkonar (@hortonworks) Page 1 Bio Apache Hadoop since 2006 - committer and PMC member Developed and supported Map Reduce @Yahoo! - Core
Hadoop and its Usage at Facebook. Dhruba Borthakur [email protected], June 22 rd, 2009
Hadoop and its Usage at Facebook Dhruba Borthakur [email protected], June 22 rd, 2009 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed on Hadoop Distributed File System Facebook
Certified Big Data and Apache Hadoop Developer VS-1221
Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer Certification Code VS-1221 Vskills certification for Big Data and Apache Hadoop Developer Certification
Sharding with postgres_fdw
Sharding with postgres_fdw Postgres Open 2013 Chicago Stephen Frost [email protected] Resonate, Inc. Digital Media PostgreSQL Hadoop [email protected] http://www.resonateinsights.com Stephen
Data Pipeline with Kafka
Data Pipeline with Kafka Peerapat Asoktummarungsri AGODA Senior Software Engineer Agoda.com Contributor Thai Java User Group (THJUG.com) Contributor Agile66 AGENDA Big Data & Data Pipeline Kafka Introduction
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
MS SQL Performance (Tuning) Best Practices:
MS SQL Performance (Tuning) Best Practices: 1. Don t share the SQL server hardware with other services If other workloads are running on the same server where SQL Server is running, memory and other hardware
Real-time Streaming Analysis for Hadoop and Flume. Aaron Kimball odiago, inc. OSCON Data 2011
Real-time Streaming Analysis for Hadoop and Flume Aaron Kimball odiago, inc. OSCON Data 2011 The plan Background: Flume introduction The need for online analytics Introducing FlumeBase Demo! FlumeBase
MySQL and Hadoop. Percona Live 2014 Chris Schneider
MySQL and Hadoop Percona Live 2014 Chris Schneider About Me Chris Schneider, Database Architect @ Groupon Spent the last 10 years building MySQL architecture for multiple companies Worked with Hadoop for
HDFS Federation. Sanjay Radia Founder and Architect @ Hortonworks. Page 1
HDFS Federation Sanjay Radia Founder and Architect @ Hortonworks Page 1 About Me Apache Hadoop Committer and Member of Hadoop PMC Architect of core-hadoop @ Yahoo - Focusing on HDFS, MapReduce scheduler,
Apache Sentry. Prasad Mujumdar [email protected] [email protected]
Apache Sentry Prasad Mujumdar [email protected] [email protected] Agenda Various aspects of data security Apache Sentry for authorization Key concepts of Apache Sentry Sentry features Sentry architecture
OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni
OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni Agenda Database trends for the past 10 years Era of Big Data and Cloud Challenges and Options Upcoming database trends Q&A Scope
HADOOP MOCK TEST HADOOP MOCK TEST I
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
Operations and Big Data: Hadoop, Hive and Scribe. Zheng Shao @ 铮 9 12/7/2011 Velocity China 2011
Operations and Big Data: Hadoop, Hive and Scribe Zheng Shao @ 铮 9 12/7/2011 Velocity China 2011 Agenda 1 Operations: Challenges and Opportunities 2 Big Data Overview 3 Operations with Big Data 4 Big Data
Non-Stop for Apache HBase: Active-active region server clusters TECHNICAL BRIEF
Non-Stop for Apache HBase: -active region server clusters TECHNICAL BRIEF Technical Brief: -active region server clusters -active region server clusters HBase is a non-relational database that provides
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
Database Scalability and Oracle 12c
Database Scalability and Oracle 12c Marcelle Kratochvil CTO Piction ACE Director All Data/Any Data [email protected] Warning I will be covering topics and saying things that will cause a rethink in
Cluster Computing. ! Fault tolerance. ! Stateless. ! Throughput. ! Stateful. ! Response time. Architectures. Stateless vs. Stateful.
Architectures Cluster Computing Job Parallelism Request Parallelism 2 2010 VMware Inc. All rights reserved Replication Stateless vs. Stateful! Fault tolerance High availability despite failures If one
Using Apache Solr for Ecommerce Search Applications
Using Apache Solr for Ecommerce Search Applications Rajani Maski Happiest Minds, IT Services SHARING. MINDFUL. INTEGRITY. LEARNING. EXCELLENCE. SOCIAL RESPONSIBILITY. 2 Copyright Information This document
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Hadoop and Hive Development at Facebook. Dhruba Borthakur Zheng Shao {dhruba, zshao}@facebook.com Presented at Hadoop World, New York October 2, 2009
Hadoop and Hive Development at Facebook Dhruba Borthakur Zheng Shao {dhruba, zshao}@facebook.com Presented at Hadoop World, New York October 2, 2009 Hadoop @ Facebook Who generates this data? Lots of data
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Why MySQL beats MongoDB
SEARCH MARKETING EVOLVED Why MySQL beats MongoDB Searchmetrics in one big data scenario Suite Stephan Sommer-Schulz (Director Research) Searchmetrics Inc. 2011 The Challenge Backlink Database: Build a
HADOOP PERFORMANCE TUNING
PERFORMANCE TUNING Abstract This paper explains tuning of Hadoop configuration parameters which directly affects Map-Reduce job performance under various conditions, to achieve maximum performance. The
Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB
Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what
Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option
Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option Kai Yu, Senior Principal Architect Dell Oracle Solutions Engineering Dell, Inc. Abstract: By adding the In-Memory
The Revival of Direct Attached Storage for Oracle Databases
The Revival of Direct Attached Storage for Oracle Databases Revival of DAS in the IT Infrastructure Introduction Why is it that the industry needed SANs to get more than a few hundred disks attached to
Big Data and Scripting Systems beyond Hadoop
Big Data and Scripting Systems beyond Hadoop 1, 2, ZooKeeper distributed coordination service many problems are shared among distributed systems ZooKeeper provides an implementation that solves these avoid
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
Some quick definitions regarding the Tablet states in this state machine:
HBase Terminology Translation Legend: tablet == region Accumulo Master == HBase HMaster Metadata table == META TabletServer (or tserver) == RegionServer Assignment is driven solely by the Master process.
Time series IoT data ingestion into Cassandra using Kaa
Time series IoT data ingestion into Cassandra using Kaa Andrew Shvayka [email protected] Agenda Data ingestion challenges Why Kaa? Why Cassandra? Reference architecture overview Hands-on Sandbox
Integrating Apache Spark with an Enterprise Data Warehouse
Integrating Apache Spark with an Enterprise Warehouse Dr. Michael Wurst, IBM Corporation Architect Spark/R/Python base Integration, In-base Analytics Dr. Toni Bollinger, IBM Corporation Senior Software
Leveraging the Power of SOLR with SPARK. Johannes Weigend QAware GmbH Germany pache Big Data Europe September 2015
Leveraging the Power of SOLR with SPARK Johannes Weigend QAware GmbH Germany pache Big Data Europe September 2015 Welcome Johannes Weigend - CTO QAware GmbH - Software architect / developer - 25 years
SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011
SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011 Why In-Memory? Information at the Speed of Thought Imagine access to business data,
LARGE-SCALE DATA STORAGE APPLICATIONS
BENCHMARKING AVAILABILITY AND FAILOVER PERFORMANCE OF LARGE-SCALE DATA STORAGE APPLICATIONS Wei Sun and Alexander Pokluda December 2, 2013 Outline Goal and Motivation Overview of Cassandra and Voldemort
Jun Liu, Senior Software Engineer Bianny Bian, Engineering Manager SSG/STO/PAC
Jun Liu, Senior Software Engineer Bianny Bian, Engineering Manager SSG/STO/PAC Agenda Quick Overview of Impala Design Challenges of an Impala Deployment Case Study: Use Simulation-Based Approach to Design
the missing log collector Treasure Data, Inc. Muga Nishizawa
the missing log collector Treasure Data, Inc. Muga Nishizawa Muga Nishizawa (@muga_nishizawa) Chief Software Architect, Treasure Data Treasure Data Overview Founded to deliver big data analytics in days
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Hadoop. History and Introduction. Explained By Vaibhav Agarwal
Hadoop History and Introduction Explained By Vaibhav Agarwal Agenda Architecture HDFS Data Flow Map Reduce Data Flow Hadoop Versions History Hadoop version 2 Hadoop Architecture HADOOP (HDFS) Data Flow
Accessing Your Database with JMP 10 JMP Discovery Conference 2012 Brian Corcoran SAS Institute
Accessing Your Database with JMP 10 JMP Discovery Conference 2012 Brian Corcoran SAS Institute JMP provides a variety of mechanisms for interfacing to other products and getting data into JMP. The connection
Performance Optimization For Operational Risk Management Application On Azure Platform
Performance Optimization For Operational Risk Management Application On Azure Platform Ashutosh Sabde, TCS www.cmgindia.org 1 Contents Introduction Functional Requirements Non Functional Requirements Business
Building a Flash Fabric
Introduction Storage Area Networks dominate today s enterprise data centers. These specialized networks use fibre channel switches and Host Bus Adapters (HBAs) to connect to storage arrays. With software,
Apache Hadoop FileSystem and its Usage in Facebook
Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...
Hypertable Goes Realtime at Baidu. Yang Dong [email protected] Sherlock Yang(http://weibo.com/u/2624357843)
Hypertable Goes Realtime at Baidu Yang Dong [email protected] Sherlock Yang(http://weibo.com/u/2624357843) Agenda Motivation Related Work Model Design Evaluation Conclusion 2 Agenda Motivation Related
A Scalable Data Transformation Framework using the Hadoop Ecosystem
A Scalable Data Transformation Framework using the Hadoop Ecosystem Raj Nair Director Data Platform Kiru Pakkirisamy CTO AGENDA About Penton and Serendio Inc Data Processing at Penton PoC Use Case Functional
Big Data with Component Based Software
Big Data with Component Based Software Who am I Erik who? Erik Forsberg Linköping University, 1998-2003. Computer Science programme + lot's of time at Lysator ACS At Opera Software
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
COSC 6397 Big Data Analytics. 2 nd homework assignment Pig and Hive. Edgar Gabriel Spring 2015
COSC 6397 Big Data Analytics 2 nd homework assignment Pig and Hive Edgar Gabriel Spring 2015 2 nd Homework Rules Each student should deliver Source code (.java files) Documentation (.pdf,.doc,.tex or.txt
Integrating Big Data into the Computing Curricula
Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big
Hadoop Big Data for Processing Data and Performing Workload
Hadoop Big Data for Processing Data and Performing Workload Girish T B 1, Shadik Mohammed Ghouse 2, Dr. B. R. Prasad Babu 3 1 M Tech Student, 2 Assosiate professor, 3 Professor & Head (PG), of Computer
Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations
Beyond Lambda - how to get from logical to physical Artur Borycki, Director International Technology & Innovations Simplification & Efficiency Teradata believe in the principles of self-service, automation
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Big Data: Using ArcGIS with Apache Hadoop. Erik Hoel and Mike Park
Big Data: Using ArcGIS with Apache Hadoop Erik Hoel and Mike Park Outline Overview of Hadoop Adding GIS capabilities to Hadoop Integrating Hadoop with ArcGIS Apache Hadoop What is Hadoop? Hadoop is a scalable
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
Impala: A Modern, Open-Source SQL Engine for Hadoop. Marcel Kornacker Cloudera, Inc.
Impala: A Modern, Open-Source SQL Engine for Hadoop Marcel Kornacker Cloudera, Inc. Agenda Goals; user view of Impala Impala performance Impala internals Comparing Impala to other systems Impala Overview:
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
Distributed Storage Systems
Distributed Storage Systems John Leach [email protected] twitter @johnleach Brightbox Cloud http://brightbox.com Our requirements Bright box has multiple zones (data centres) Should tolerate a zone failure
Data Warehousing and Analytics Infrastructure at Facebook. Ashish Thusoo & Dhruba Borthakur athusoo,[email protected]
Data Warehousing and Analytics Infrastructure at Facebook Ashish Thusoo & Dhruba Borthakur athusoo,[email protected] Overview Challenges in a Fast Growing & Dynamic Environment Data Flow Architecture,
Introduction to Hbase Gkavresis Giorgos 1470
Introduction to Hbase Gkavresis Giorgos 1470 Agenda What is Hbase Installation About RDBMS Overview of Hbase Why Hbase instead of RDBMS Architecture of Hbase Hbase interface Summarise What is Hbase Hbase
