Equations for Inventory Management
|
|
|
- Janice Wilson
- 10 years ago
- Views:
Transcription
1 Equations for Inventory Management Chapter 1 Stocks and inventories Empirical observation for the amount of stock held in a number of locations: N 2 AS(N 2 ) = AS(N 1 ) N 1 where: N 2 = number of planned future facilities N 1 = number of existing facilities AS(N i ) = aggregate stock with N i facilities Chapter 3 Economic order quantity The variables used here, and throughout the book, are: Q = order quantity D = demand UC = unit cost RC = reorder cost HC = holding cost T = cycle length VC = variable cost per unit time TC = total cost per unit time ROL = reorder level LT = lead time Qo = optimal order quantity To = optimal cycle length VCo = optimal variable cost per unit time TCo = optimal total cost per unit time ž Economic order quantity: 2 RC D Qo = HC ž Optimal stock cycle length: 2 RC To = Qo/D = D HC
2 230 Equations for Inventory Management ž Variable cost per unit time: VC = RC D Q ž Optimal value of variable cost per unit time: VCo = HC Qo = 2 RC D Qo + HC Q 2 = 2 RC HC D ž Total cost per unit time: TC = UC D + VC ž Optimal cost per unit time: TCo = UC D + VCo ž Change of variable cost moving away from the EOQ: VC VCo = 1 [ Qo 2 Q + Q ] Qo ž Reorder level: Reorder level = lead time demand stock on order ROL = LT D n Qo Chapter 4 Models for known demand Model for finite replenishment rate, P ž Optimal order quantity: 2 RC D P Qo = HC P D ž Optimal time cycle time: 2 RC P To = HC D P D ž Optimal variable cost: ž Optimal total cost: VCo = P D 2 RC HC D P TCo = UC D + VCo
3 Model for planned shortages and backorders ž Optimal order quantity: Equations for Inventory Management 231 SC = shortage cost per unit per unit time Qo = 2 RC D (HC + SC) HC SC ž Optimal amount to be backordered: 2 RC HC D So = SC (HC + SC) ž Time during which demand is met: T 1 = (Qo So)/D ž Time during which demand is backordered: T 2 = So/D ž Cycle time; T = T 1 + T 2 Model for shortages with lost orders R = revenue Z = proportion of demand met ž Cost of each unit of lost sales including loss of profits: LC = DC + SP UC ž Optimal revenue: Ro = Z [D LC 2 RC HC D] Model for constraints on space AC = additional cost related to the storage area (or volume) used by each unit of the item. S i = amount of space occupied by one unit of item i. ž The total holding cost per unit per unit time: HC + AC S i
4 232 Equations for Inventory Management ž Optimal order quantities: 2 RC i D i Q i = HC i + AC S i Model for constraint on investment ž Optimal order quantities: UL = upper limit on the total average investment Model for discrete variable demand 2 UL HC Q i = Qo i N UC VCo i ž Test for the point where it is more expensive to order for N + 1 periods than to order for N periods: N (N + 1) D N+1 > 2 RC HC ž Confirming that it is more expensive to order for N + 2 periods than to order for N periods: N (N + 2) [D N+1 + D N+2 ] > 4 RC HC ž Variable cost per period: i=1 VC N = RC N + HC Chapter 5 Models for uncertain demand Model for the newsboy problem ž Test for the optimal order size: Prob(D Qo) > 2 SP = selling price SV = scrap value UC SV SP SV ž Expected profit with buying Q units: Q EP(Q) = SP D Prob(D) + Q D=0 N i=1 D i > Prob(D Qo + 1) D=Q+1 Prob(D) Q UC
5 Model for discrete demand with shortages ž Test for the optimal stock level: Equations for Inventory Management 233 A = Actual stock level SC Prob(D Ao) Prob(D Ao 1) HC + SC Approach to intermittent demand ž Service level = 1 Prob(shortage) = 1 [Prob(there is a demand) Prob(demand > A)] Joint calculation of order quantity and reorder level with shortages ž Calculation for order quantity: Q = 2 D [ ] HC RC + SC (D ROL) Prob(D) ž Calculation for reorder level: HC Q SC D = Model for order quantity with shortages ž Order quantity: [ Q = 2 D HC RC + SC Model for uncertain lead time demand ž Safety stock: ž Reorder level: D=ROL D=ROL D=ROL Prob(D) (D ROL) Prob(D) SS = Z standard deviation of lead time = Z σ LT ROL = lead time demand + safety stock = LT D + Z σ LT Model for service level with uncertain lead time ž Service level = Prob (LT D < ROL) = Prob(LT < ROL/D) ]
6 234 Equations for Inventory Management Model for periodic review method ž Target stock level: TSL = D (T + LT) + Z σ (T + LT) Chapter 6 Sources of information Accounting information ž Cost of products sold = opening stock + net purchases closing stock ž Value of stock = number of units in stock unit value ž Average cost = Total cost of units Number of units bought ž Closing stock = opening stock + purchases sales ž Gross profit = sales revenue cost of units sold Chapter 7 Forecasting demand Value of demand in a time series Linear relationship Actual demand = underlying pattern + random noise dependent variable = a + b independent variable y = a + bx x = value of the independent variable y = value of the dependent variable a = intercept, where the line crosses the y axis b = gradient of the line. ž Equations for linear regression: b = n (x y) x y n ( ) 2 x 2 x a = y x n b n ž coefficient of determination = (coefficient of correlation) 2
7 Equations for Inventory Management 235 Multiple regression y = a + b 1 variable 1 + b 2 variable 2 + b 3 variable 3 + b 4 variable 4... Exponential smoothing ž New Forecast = α latest demand + (1 α) previous forecast ž α is the smoothing constant (usually between 0.1 and 0.2) ž Tracking signal = sum of forecast errors mean absolute deviation seasonal value ž Seasonal index = deseasonalized value ž Demand = (underlying value + trend) seasonal index + noise Chapter 8 Planning and stocks Stock and planning Stock at end Stock at Production Demand Backorders Backorders of this = end of last + during met during from earlier + met in later period period this period this period periods periods Chapter 9 Material requirements planning ž Basic calculation Gross requirements = number of units made amount of material for each unit Net requirements = gross requirements current stock stock on order ž Batching rule to find N Where: N (N + 1) D N+1 > 2 RC HC N = the period number in a cycle D N+1 = demand in period N + 1 of a cycle
8 236 Equations for Inventory Management Chapter 10 Just-in-time ž Number of kanbans to maintain smooth operations demand in the cycle Number of kanbans = size of each container D (TP + TD) K = C Where: C = number of units held in each container TP = time container spends in production part of a cycle (waiting, being filled and moving to the store of work in progress) TD = time container spends in demand part of a cycle (waiting, being emptied and moving to the store of work in progress). Totalcyclelength = TP + TD ž Number of kanbans with safety factor SF = safety factor (generally less than 0.1) K < ž Maximum stock of work in progress D (TP + TD) (1 + SF) C Maximum stock level = K C = D (TP + TD) (1 + SF)
Glossary of Inventory Management Terms
Glossary of Inventory Management Terms ABC analysis also called Pareto analysis or the rule of 80/20, is a way of categorizing inventory items into different types depending on value and use Aggregate
Reorder level = demand during lead time = lead time x demand per unit time ROL = LT x D
Reorder Level Additional assumption: Lead time is known and constant No need to carrying stock from one cycle to the next So each order should be scheduled to arrive as existing stock runs out Reorder
Inventory Management - A Teaching Note
Inventory Management - A Teaching Note Sundaravalli Narayanaswami W.P. No.2014-09-01 September 2014 INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD-380 015 INDIA Inventory Management - A Teaching Note Sundaravalli
Theory at a Glance (For IES, GATE, PSU)
1. Forecasting Theory at a Glance (For IES, GATE, PSU) Forecasting means estimation of type, quantity and quality of future works e.g. sales etc. It is a calculated economic analysis. 1. Basic elements
Package SCperf. February 19, 2015
Package SCperf February 19, 2015 Type Package Title Supply Chain Perform Version 1.0 Date 2012-01-22 Author Marlene Silva Marchena Maintainer The package implements different inventory models, the bullwhip
Inventory Management and Risk Pooling. Xiaohong Pang Automation Department Shanghai Jiaotong University
Inventory Management and Risk Pooling Xiaohong Pang Automation Department Shanghai Jiaotong University Key Insights from this Model The optimal order quantity is not necessarily equal to average forecast
Materials Management and Inventory Systems
Materials Management and Inventory Systems Richard J.Tersine Old Dominion University 'C & North-Holland PUBLISHING COMPANY NEW YORK AMSTERDAM Contents Preface Chapter 1 INTRODUCTION 1 Inventory 4 Types
Objectives of Chapters 7,8
Objectives of Chapters 7,8 Planning Demand and Supply in a SC: (Ch7, 8, 9) Ch7 Describes methodologies that can be used to forecast future demand based on historical data. Ch8 Describes the aggregate planning
GESTION DE LA PRODUCTION ET DES OPERATIONS PICASSO EXERCICE INTEGRE
ECAP 21 / PROD2100 GESTION DE LA PRODUCTION ET DES OPERATIONS PICASSO EXERCICE INTEGRE 2004-2005 Prof : Pierre Semal : [email protected] Assistants : Eléonore de le Court : [email protected]
Agenda. Managing Uncertainty in the Supply Chain. The Economic Order Quantity. Classic inventory theory
Agenda Managing Uncertainty in the Supply Chain TIØ485 Produkjons- og nettverksøkonomi Lecture 3 Classic Inventory models Economic Order Quantity (aka Economic Lot Size) The (s,s) Inventory Policy Managing
INVENTORY MANAGEMENT. 1. Raw Materials (including component parts) 2. Work-In-Process 3. Maintenance/Repair/Operating Supply (MRO) 4.
INVENTORY MANAGEMENT Inventory is a stock of materials and products used to facilitate production or to satisfy customer demand. Types of inventory include: 1. Raw Materials (including component parts)
MGT 3110 - Exam 2 Formulas. Item $ Usage % of $ usage Cumulative % of $ Cumulative % of no. of items Class
Chapter 12 Inventory Management MGT 3110 - Exam 2 Formulas ABC Classification rule: Class A: ~15% of items, 70-80% annual $ usage Class B: ~30% of items, 15-25% annual $ usage Class C: ~55% of items, 5%
MATERIALS MANAGEMENT. Module 9 July 22, 2014
MATERIALS MANAGEMENT Module 9 July 22, 2014 Inventories and their Management Inventories =? New Car Inventory Sitting in Parking Lots Types of Inventory 1. Materials A. Raw material B. WIP C. Finished
Inventory Control. Contents 1. FRAMEWORK OF PLANNING DECISIONS...1
Inventory Control When to order? How many to order? Contents 1. FRAMEWORK OF PLANNING DECISIONS...1 2. INVENTORY CONTROL...2 2.1 CONTROL SYSTEMS...3 2.2 PARAMETERS...4 2.3 COSTS...5 3. INVENTORY CONTROL:
Chapter 6. Inventory Control Models
Chapter 6 Inventory Control Models Learning Objectives After completing this chapter, students will be able to: 1. Understand the importance of inventory control and ABC analysis. 2. Use the economic order
Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480
1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500
Logistics Management Inventory Cycle Inventory. Özgür Kabak, Ph.D.
Logistics Management Inventory Cycle Inventory Özgür Kabak, Ph.D. Role of Inventory in the Supply Chain Improve Matching of Supply and Demand Improved Forecasting Reduce Material Flow Time Reduce Waiting
Production Planning. Chapter 4 Forecasting. Overview. Overview. Chapter 04 Forecasting 1. 7 Steps to a Forecast. What is forecasting?
Chapter 4 Forecasting Production Planning MRP Purchasing Sales Forecast Aggregate Planning Master Production Schedule Production Scheduling Production What is forecasting? Types of forecasts 7 steps of
Mario Guarracino. Regression
Regression Introduction In the last lesson, we saw how to aggregate data from different sources, identify measures and dimensions, to build data marts for business analysis. Some techniques were introduced
Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
PRODUCTION PLANNING AND CONTROL CHAPTER 2: FORECASTING Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
Analysis of Various Forecasting Approaches for Linear Supply Chains based on Different Demand Data Transformations
Institute of Information Systems University of Bern Working Paper No 196 source: https://doi.org/10.7892/boris.58047 downloaded: 16.11.2015 Analysis of Various Forecasting Approaches for Linear Supply
Principles of Inventory and Materials Management
Principles of Inventory and Materials Management Second Edition Richard J. Tersine The University of Oklahoma m North Holland New York Amsterdam Oxford TECHNISCHE HOCHSCHULE DARMSTADT Fochbereich 1 Gesamthiblio-thek
THE INTEGRATION OF SUPPLY CHAIN MANAGEMENT AND SIMULATION SYSTEM WITH APPLICATION TO RETAILING MODEL. Pei-Chann Chang, Chen-Hao Liu and Chih-Yuan Wang
THE INTEGRATION OF SUPPLY CHAIN MANAGEMENT AND SIMULATION SYSTEM WITH APPLICATION TO RETAILING MODEL Pei-Chann Chang, Chen-Hao Liu and Chih-Yuan Wang Institute of Industrial Engineering and Management,
Supply Chain Management: Inventory Management
Supply Chain Management: Inventory Management Donglei Du Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2 ([email protected]) Du (UNB) SCM 1 / 83 Table of contents
Course Supply Chain Management: Inventory Management. Inventories cost money: Reasons for inventory. Types of inventory
Inventories cost money: Inventories are to be avoided at all cost? Course Supply Chain Management: Or Inventory Management Inventories can be useful? Chapter 10 Marjan van den Akker What are reasons for
Operations Management
11-1 Inventory Management 11-2 Inventory Management Operations Management William J. Stevenson CHAPTER 11 Inventory Management 8 th edition McGraw-Hill/Irwin Operations Management, Eighth Edition, by William
Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1. Page 1 of 11. EduPristine CMA - Part I
Index Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1 EduPristine CMA - Part I Page 1 of 11 Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting
PRINCIPLES OF INVENTORY AND MATERIALS MANAGEMENT
PRINCIPLES OF INVENTORY AND MATERIALS MANAGEMENT Fourth Edition Richard J. Tersine The University of Oklahoma TEGHNISCHE HOCHSCHULE DARMSTADT Fochbereich 1 Gesonr> 11-. ib I iothek Betiier >wi rtschottsiehre
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
Agenda. Real System, Transactional IT, Analytic IT. What s the Supply Chain. Levels of Decision Making. Supply Chain Optimization
Agenda Supply Chain Optimization KUBO Mikio Definition of the Supply Chain (SC) and Logistics Decision Levels of the SC Classification of Basic Models in the SC Logistics Network Design Production Planning
Universidad del Turabo MANA 705 DL Workshop Eight W8_8_3 Aggregate Planning, Material Requirement Planning, and Capacity Planning
Aggregate, Material Requirement, and Capacity Topic: Aggregate, Material Requirement, and Capacity Slide 1 Welcome to Workshop Eight presentation: Aggregate planning, material requirement planning, and
Inventory Theory. 25.1 Inventory Models. Chapter 25 Page 1
Chapter 25 Page 1 Inventory Theory Inventories are materials stored, waiting for processing, or experiencing processing. They are ubiquitous throughout all sectors of the economy. Observation of almost
Forecasting in supply chains
1 Forecasting in supply chains Role of demand forecasting Effective transportation system or supply chain design is predicated on the availability of accurate inputs to the modeling process. One of the
Part 1 : 07/27/10 21:30:31
Question 1 - CIA 593 III-64 - Forecasting Techniques What coefficient of correlation results from the following data? X Y 1 10 2 8 3 6 4 4 5 2 A. 0 B. 1 C. Cannot be determined from the data given. D.
INDUSTRIAL STATISTICS AND OPERATIONAL MANAGEMENT. 7. Inventory Management
INDUSTRIAL STATISTICS AND OPERATIONAL MANAGEMENT 7. Inventory Management Dr. Ravi Mahendra Gor Associate Dean ICFAI Business School ICFAI HOuse, Nr. GNFC INFO Tower S. G. Road Bodakdev Ahmedabad-380054
Outline. Role of Forecasting. Characteristics of Forecasts. Logistics and Supply Chain Management. Demand Forecasting
Logistics and Supply Chain Management Demand Forecasting 1 Outline The role of forecasting in a supply chain Characteristics ti of forecasts Components of forecasts and forecasting methods Basic approach
Supply Chain Inventory Management Chapter 9. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall 09-01
Supply Chain Inventory Management Chapter 9 09-01 What is a Inventory Management? Inventory Management The planning and controlling of inventories in order to meet the competitive priorities of the organization.
Small Lot Production. Chapter 5
Small Lot Production Chapter 5 1 Lot Size Basics Intuition leads many to believe we should manufacture products in large lots. - Save on setup time - Save on production costs Costs associated with Lots
Outline: Demand Forecasting
Outline: Demand Forecasting Given the limited background from the surveys and that Chapter 7 in the book is complex, we will cover less material. The role of forecasting in the chain Characteristics of
A Programme Implementation of Several Inventory Control Algorithms
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume, No Sofia 20 A Programme Implementation of Several Inventory Control Algorithms Vladimir Monov, Tasho Tashev Institute of Information
A Cross-Functional View of Inventory Management, Why Collaboration among Marketing, Finance/Accounting and Operations Management is Necessary
A Cross-Functional View of Inventory Management, Why Collaboration among Marketing, Finance/Accounting and Operations Management is Necessary Richard E. Crandall, Appalachian State University, John A.
1 The EOQ and Extensions
IEOR4000: Production Management Lecture 2 Professor Guillermo Gallego September 9, 2004 Lecture Plan 1. The EOQ and Extensions 2. Multi-Item EOQ Model 1 The EOQ and Extensions This section is devoted to
Simple Methods and Procedures Used in Forecasting
Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria Jadamus-Hacura What Is Forecasting? Prediction of future events
Time series Forecasting using Holt-Winters Exponential Smoothing
Time series Forecasting using Holt-Winters Exponential Smoothing Prajakta S. Kalekar(04329008) Kanwal Rekhi School of Information Technology Under the guidance of Prof. Bernard December 6, 2004 Abstract
INVENTORY Systems & Models
INVENTORY Systems & Models OPERATIONS MANAGEMENT Lecture 13 Prepared by: A.H.M Fazle Elahi, Lecturer, Dept. of ME, KUET Elements of an Inventory System: Specification of an Inventory System (Cont d) I.
Agenda. TPPE37 Manufacturing Control. A typical production process. The Planning Hierarchy. Primary material flow
TPPE37 Manufacturing Control Agenda Lecture 2 Inventory Management 1. Inventory System Defined 2. Inventory Costs 3. Inventory classification 4. Economic order quantity model 5. Newsboy problem 6. Reorder
Encyclopedia of Operations Management
Encyclopedia of Operations Management For many years, a free electronic copy of an early version of this encyclopedia was made available on the Production and Operations Management Society (POMS) webpage
Demand Forecasting LEARNING OBJECTIVES IEEM 517. 1. Understand commonly used forecasting techniques. 2. Learn to evaluate forecasts
IEEM 57 Demand Forecasting LEARNING OBJECTIVES. Understand commonly used forecasting techniques. Learn to evaluate forecasts 3. Learn to choose appropriate forecasting techniques CONTENTS Motivation Forecast
Inventory Management. Topics on inventory management
Inventory Management ISyE 3104 Fall 2013 Topics on inventory management Objective An introduction to the fundamental concepts, tradeoffs and methods in inventory management Topics Deterministic inventory
Effect of Forecasting on Bullwhip Effect in Supply Chain Management
Effect of Forecasting on Bullwhip Effect in Supply Chain Management Saroj Kumar Patel and Priyanka Jena Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha-769008, India
TIME SERIES ANALYSIS & FORECASTING
CHAPTER 19 TIME SERIES ANALYSIS & FORECASTING Basic Concepts 1. Time Series Analysis BASIC CONCEPTS AND FORMULA The term Time Series means a set of observations concurring any activity against different
Forecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?
Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod - Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....
INTEGRATED OPTIMIZATION OF SAFETY STOCK
INTEGRATED OPTIMIZATION OF SAFETY STOCK AND TRANSPORTATION CAPACITY Horst Tempelmeier Department of Production Management University of Cologne Albertus-Magnus-Platz D-50932 Koeln, Germany http://www.spw.uni-koeln.de/
EXPONENTIAL DEPENDENT DEMAND RATE ECONOMIC PRODUCTION QUANTITY (EPQ) MODEL WITH FOR REDUCTION DELIVERY POLICY
SRJHSEL/BIMONHLY/ NEERAJ AGARWAL (248-2415) EXPONENIAL DEPENDEN DEMAND RAE ECONOMIC PRODUCION QUANIY (EPQ) MODEL WIH FOR REDUCION DELIVERY POLICY Neeraj Agarwal Department of Hotel Management, Graphic
E217 Inventory Management (4 Modular Credits)
E17 Inventory Management ( Modular Credits) This document addresses the content related abilities, with reference to the module. Abilities of learning, thinking, problem solving, teamwork, communication,
Teaching Manual-Operation Management. Gunadarma University. Week : 9 Subject : INVENTORY MANAGEMENT Content :
Week : 9 Subject : INVENTORY MANAGEMENT Content : WHY INVENTORY a. One of the most expensive assets of many companies representing as much as 50% of total invested capital b. Operations managers must balance
Demand forecasting & Aggregate planning in a Supply chain. Session Speaker Prof.P.S.Satish
Demand forecasting & Aggregate planning in a Supply chain Session Speaker Prof.P.S.Satish 1 Introduction PEMP-EMM2506 Forecasting provides an estimate of future demand Factors that influence demand and
SPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION
SPARE PARS INVENORY SYSEMS UNDER AN INCREASING FAILURE RAE DEMAND INERVAL DISRIBUION Safa Saidane 1, M. Zied Babai 2, M. Salah Aguir 3, Ouajdi Korbaa 4 1 National School of Computer Sciences (unisia),
Financial Market Microstructure Theory
The Microstructure of Financial Markets, de Jong and Rindi (2009) Financial Market Microstructure Theory Based on de Jong and Rindi, Chapters 2 5 Frank de Jong Tilburg University 1 Determinants of the
Demand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless
Demand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless the volume of the demand known. The success of the business
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
Applying Actual Usage Inventory Management Best Practice in a Health Care Supply Chain
Applying Actual Usage Inventory Management Best Practice in a Health Care Supply Chain Vijith Varghese #1, Manuel Rossetti #2, Edward Pohl #3, Server Apras *4, Douglas Marek #5 # Department of Industrial
Economic Production Quantity (EPQ) Model with Time- Dependent Demand and Reduction Delivery Policy
ISSN NO:: 348 537X Economic Production Quantity (EPQ) Model with Time- Dependent Demand and Reduction Delivery Policy Dr. Neeraj Agarwal Professor & Head, Department of Hotel Management, Graphic Era University,
Supply Chain Analysis Tools
Supply Chain Analysis Tools MS&E 262 Supply Chain Management April 14, 2004 Inventory/Service Trade-off Curve Motivation High Inventory Low Poor Service Good Analytical tools help lower the curve! 1 Outline
Operations Research in Production Planning, Scheduling, and Inventory Control
TECHNISCHE HOCHSCHULE DARMSTADT Fachbereich 1 Ges am t b i bj_[o_t he_k Bet ri eb? wi rtscha\ \ si eh re Inventar-Nr. : Abstell-Nr. : Sachgebiete:.^~ Operations Research in Production Planning, Scheduling,
The Newsvendor Model
The Newsvendor Model Exerpted form The Operations Quadrangle: Business Process Fundamentals Dan Adelman Dawn Barnes-Schuster Don Eisenstein The University of Chicago Graduate School of Business Version
Slides Prepared by JOHN S. LOUCKS St. Edward s University
s Prepared by JOHN S. LOUCKS St. Edward s University 2002 South-Western/Thomson Learning 1 Chapter 18 Forecasting Time Series and Time Series Methods Components of a Time Series Smoothing Methods Trend
Antti Salonen KPP227 - HT 2015 KPP227
- HT 2015 1 Inventory management Inventory management concerns short-range decisions about supplies, inventories, production levels, staffing patterns, schedules and distribution. The decisions are often
Chapter 9. Inventory management
Chapter 9 Inventory management Slack et al s model of operations management Direct Design Operations Management Deliver Develop Supply network management Capacity management Inventory management Planning
Exponential Smoothing with Trend. As we move toward medium-range forecasts, trend becomes more important.
Exponential Smoothing with Trend As we move toward medium-range forecasts, trend becomes more important. Incorporating a trend component into exponentially smoothed forecasts is called double exponential
Nominal and ordinal logistic regression
Nominal and ordinal logistic regression April 26 Nominal and ordinal logistic regression Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome
Inventory Management
Crash Course on: Inventory Management Inventories today: a curse, a blessing, a must..? 1 Course programme: 1. Why do we keep inventories? 2. Typical demand classifications and analyses helpful in inventory
MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
Forecasting methods applied to engineering management
Forecasting methods applied to engineering management Áron Szász-Gábor Abstract. This paper presents arguments for the usefulness of a simple forecasting application package for sustaining operational
Inventory Control Subject to Known Demand
Production and Operation Managements Inventory Control Subject to Known Demand Prof. JIANG Zhibin Department of Industrial Engineering & Management Shanghai Jiao Tong University Contents Introduction Types
Linear Equations in One Variable
Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve
Inventory Management. Material Requirements Planning. Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006
Inventory Management Material Requirements Planning Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006 Assumptions: Basic MRP Model Demand Constant vs Variable Known vs Random Continuous vs
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
2.2 Elimination of Trend and Seasonality
26 CHAPTER 2. TREND AND SEASONAL COMPONENTS 2.2 Elimination of Trend and Seasonality Here we assume that the TS model is additive and there exist both trend and seasonal components, that is X t = m t +
講 師 : 周 世 玉 Shihyu Chou
講 師 : 周 世 玉 Shihyu Chou Logistics involves the following activities: sourcing and purchasing inputs, managing inventory, maintaining warehouses, and arranging transportation and delivery. There are three
Industry Environment and Concepts for Forecasting 1
Table of Contents Industry Environment and Concepts for Forecasting 1 Forecasting Methods Overview...2 Multilevel Forecasting...3 Demand Forecasting...4 Integrating Information...5 Simplifying the Forecast...6
Abstract: Why inventory exists. Types of inventory. This is sequel to OM 601 assignment.
Abstract: This is sequel to OM 601 assignment. The reason for this assignment is to improve overall competitiveness of Hefley Finland by focusing on inventory management. In this assignment I first clarify
Demand Management Where Practice Meets Theory
Demand Management Where Practice Meets Theory Elliott S. Mandelman 1 Agenda What is Demand Management? Components of Demand Management (Not just statistics) Best Practices Demand Management Performance
Production Management
Production Management Chwen-Tzeng Su, PhD Professor, Department of Industrial Management National Yunlin University of Science & Technology Touliu, Yunlin, Taiwan 640, R.O.C. E-mail: [email protected]
Finanzdienstleistungen (Praxis) Algorithmic Trading
Finanzdienstleistungen (Praxis) Algorithmic Trading Definition A computer program (Software) A process for placing trade orders like Buy, Sell It follows a defined sequence of instructions At a speed and
CHAPTER 11 FORECASTING AND DEMAND PLANNING
OM CHAPTER 11 FORECASTING AND DEMAND PLANNING DAVID A. COLLIER AND JAMES R. EVANS 1 Chapter 11 Learning Outcomes l e a r n i n g o u t c o m e s LO1 Describe the importance of forecasting to the value
Inventory Models for Special Cases: A & C Items and Challenges
CTL.SC1x -Supply Chain & Logistics Fundamentals Inventory Models for Special Cases: A & C Items and Challenges MIT Center for Transportation & Logistics Inventory Management by Segment A Items B Items
Merchandise Accounts. Chapter 7 - Unit 14
Merchandise Accounts Chapter 7 - Unit 14 Merchandising... Merchandising... There are many types of companies out there Merchandising... There are many types of companies out there Service company - sells
Features: NEW!! EIM Version 3 Spreadsheets!
NEW!! EIM Version 3 Spreadsheets! An exciting new tool has just been released by EIM, Inc. that implements the principles of effective inventory management! The Version 3 Spreadsheets feature our newly
Variable Costs. Breakeven Analysis. Examples of Variable Costs. Variable Costs. Mixed
Breakeven Analysis Variable Vary directly in proportion to activity: Example: if sales increase by 5%, then the Variable will increase by 5% Remain the same, regardless of the activity level Mixed Combines
A DISCRETE TIME MARKOV CHAIN MODEL IN SUPERMARKETS FOR A PERIODIC INVENTORY SYSTEM WITH ONE WAY SUBSTITUTION
A DISCRETE TIME MARKOV CHAIN MODEL IN SUPERMARKETS FOR A PERIODIC INVENTORY SYSTEM WITH ONE WAY SUBSTITUTION A Class Project for MATH 768: Applied Stochastic Processes Fall 2014 By Chudamani Poudyal &
IEEM 341 Supply Chain Management Week 11 Risk-Pooling Dr. Lu
IEEM 341 Supply Chain Management Week 11 Risk-Pooling Dr. Lu 11-1 Impact of Aggregation on Safety Inventory Risk-pooling effect Models of aggregation Information centralization Specialization Product substitution
Tema 4: Supply Chain Management
Tema 4: Supply Chain Management Logistics 1 Supplier Manufacturer Warehouse Retailer Customer Tema basado en: Supply Chain Management: Strategy, Planning, and Operations, Sunil Copra and Peter Meindl (Editors).
1 2 3 4 5 Demand 150 170 180 160 160
MGT 3110: Exam 2 Study Guide 1. What is aggregate planning? What is its purpose? 2. What are demand options for aggregate planning? Give examples and discuss the effects of each. 3. Why is there a need
Inventory Management: Fundamental Concepts & EOQ. Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006
Inventory Management: Fundamental Concepts & EOQ Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006 Agenda Wrap up of Demand Forecasting Fundamentals of Inventory Management Economic Order Quantity
Basic Queuing Relationships
Queueing Theory Basic Queuing Relationships Resident items Waiting items Residence time Single server Utilisation System Utilisation Little s formulae are the most important equation in queuing theory
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly
