ATV - Lifetime Data Analysis
|
|
|
- Russell Phelps
- 10 years ago
- Views:
Transcription
1 Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: FME - School of Mathematics and Statistics EIO - Department of Statistics and Operations Research UB - (ENG)Universitat de Barcelona MASTER'S DEGREE IN STATISTICS AND OPERATIONS RESEARCH (Syllabus 2013). (Teaching unit Optional) 5 Teaching languages: Spanish, English Teaching staff Coordinator: Others: GUADALUPE GÓMEZ MELIS GUADALUPE GÓMEZ MELIS - A OLGA JULIÀ DE FERRAN - A KLAUS GERHARD LANGOHR - A Prior skills In order to follow the course successfully the student has to be familiar with the following concepts: estimation theory and confidence intervals, likelihood function, maximum likelihood estimation, regression models, hypothesis tests. The student will have to use the R software for homework and data analysis. Chapters 1 through 3 of the book "Principles of Statistical Inference" Cox, Cambridge University Press (2006) should be mastered. Degree competences to which the subject contributes Specific: 3. CE-2. Ability to master the proper terminology in a field that is necessary to apply statistical or operations research models and methods to solve real problems. 4. CE-3. Ability to formulate, analyze and validate models applicable to practical problems. Ability to select the method and / or statistical or operations research technique more appropriate to apply this model to the situation or problem. 5. CE-5. Ability to formulate and solve real problems of decision-making in different application areas being able to choose the statistical method and the optimization algorithm more suitable in every occasion. Translate to english 6. CE-6. Ability to use appropriate software to perform the necessary calculations in solving a problem. Transversal: 2. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained. 1 / 11
2 Teaching methodology Lectures: One hour and a half sessions in which the main concepts and topics are introduced. The lecturer will use a computer to introduce the course content. Emphasis is put on ideas and intuition. Topics are discussed from the point of view of real situations concerning clinical trials or epidemiological studies. Problem-solving sessions: Incorporated into the practical sessions. Laboratory sessions: One hour and a half sessions held in the computer lab in which theoretical problems are tackled and exercises are carried out using computers. Learning objectives of the subject Survival analysis is employed in many fields to analyze data representing the duration or elapsed time between two events. It is also known as event history analysis, lifetime data analysis, reliability analysis and time to event analysis. A key characteristic that distinguishes survival analysis from other areas of statistics is that survival data are usually censored, sometimes truncated and the normality hypothesis is inadequate. Censoring occurs when the information for some individuals is incomplete, what may happen for different reasons discussed in class. The course Lifetime Data Analysis covers a series of procedures and techniques for analyzing censored and/or truncated data. While the course is focused on medical applications in public health and in epidemiology, it also has direct applications to other disciplines such as economics, actuarial sciences, engineering and demography. The aim of the course is to develop the core of survival analysis and to put into practice the knowledge acquired by means of the statistical software package R. Abilities to be acquired: * Identification of those situations or studies in which it is necessary to use Survival Analysis methodology. The ability to define the events and times relevant to each situation. * Identification and knowledge of the different types of censoring and truncation. The ability to construct the likelihood in each case. * Knowledge on the most common parametric models: Exponential, Weibull, Gamma, Gompertz, Lognormal and Log- Logistic. The ability to evaluate the most adequate model in a concrete example. * The ability to obtain and interpret the Kaplan-Meier estimator, to know its most important properties and how to calculate estimators for the cumulative risk functions. * Knowledge on how to present different hypothesis tests in order to compare two or more survival curves. The ability to select the most appropriate test according to the type of alternative hypothesis. * Knowledge on how to use accelerated lifetime regression models: the Weibull and the log-logistic model. Knowledge of their relationships and differences. * The ability to set out and interpret a proportional hazard model, as well as checking the goodness-of-fit by means of studying different residuals. 2 / 11
3 Study load Total learning time: 125h Hours large group: 30h 24.00% Hours medium group: 0h 0.00% Hours small group: 15h 12.00% Guided activities: 0h 0.00% Self study: 80h 64.00% 3 / 11
4 Content Basic concepts and parametric models Learning time: 6h 30m Theory classes: 5h Laboratory classes: 1h 30m Survival function. Hazard function. Mean and median life Principal parametric models. Censoring and truncation Learning time: 5h Theory classes: 3h 30m Laboratory classes: 1h 30m Different types of right censoring. Left and interval censoring. Construction of the likelihood. One sample non-parametric inference Learning time: 9h 30m Theory classes: 6h 30m Laboratory classes: 3h Kaplan-Meier estimator for the survival function. Nelson-Aalen estimator for the cumulative risk function Asymptotic Properties. Confidence intervals and confidence bands. Two sample comparison Learning time: 6h 30m Theory classes: 5h Laboratory classes: 1h 30m Two sample comparison The (weighted) log-rank test. Fleming-Harrington tests family. Stratified tests 4 / 11
5 Parametric regression Learning time: 6h 30m Theory classes: 4h 30m Laboratory classes: 2h 5 / 11
6 Accelerated life models. Log-linear, proportional hazards and proportional odds models. Weibull regression model. Log-logístic model 6 / 11
7 7 / 11
8 8 / 11
9 9 / 11
10 Semi-parametric regression: Cox Model Learning time: 8h Theory classes: 6h Laboratory classes: 2h Cox's regression model. Partial likelihood. Validating Cox model. Survival analysis for discrete times Learning time: 3h Theory classes: 3h Logit and clog-log models Relation with logistic models Taking care of ties in Cox model Qualification system Assessment is based on the following: * Problems completed and handed in throughout the course (3 sets) (25%) * Case study with real data (25%) * Final exam (50%) 10 / 11
11 Bibliography Basic: Klein, John P. ; Moeschberger, Melvin L. Survival analysis: techniques for censored and truncated data [on line]. 2nd ed. 2003Available on: < ISBN Kleinbaum, David; Klein, Mitchel. Survival analysis: a self-learning text. 3rd ed. Springer, ISBN Smith, Peter J. Analysis of failure and survival data. Chapman and Hall, Collett, D. Modelling survival data in medical research. 2nd ed. Chapman & Hall, Parmar, Mahesh K. B.; Machin, D. Survival analysis a practical approach. John Wiley & Sons, Complementary: Cox, D. R.; Oakes, D. Analysis of survival data. Chapman and Hall, Kalbfleisch, John D.; Prentice, R.L. The statistical analysis of failure time data. 2nd ed. Wiley-Interscience, Lee, Elisa T. Statistical methods for survival data analysis. 2nd ed. Wiley, Therneau, Terry M.; Grambsch, P.M. Modeling survival data : extending the Cox model. Springer, Lawless, Jerald F. Statistical models and methods for lifetime data. 2nd ed ISBN / 11
200628 - DAIC - Advanced Experimental Design in Clinical Research
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 200 - FME - School of Mathematics and Statistics 1004 - UB - (ENG)Universitat de Barcelona MASTER'S DEGREE IN STATISTICS AND
240ST014 - Data Analysis of Transport and Logistics
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 240 - ETSEIB - Barcelona School of Industrial Engineering 715 - EIO - Department of Statistics and Operations Research MASTER'S
Name of the module: Multivariate biostatistics and SPSS Number of module: 471-8-4081
Name of the module: Multivariate biostatistics and SPSS Number of module: 471-8-4081 BGU Credits: 1.5 ECTS credits: Academic year: 4 th Semester: 15 days during fall semester Hours of instruction: 8:00-17:00
200630 - FBIO - Fundations of Bioinformatics
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 200 - FME - School of Mathematics and Statistics 1004 - UB - (ENG)Universitat de Barcelona MASTER'S DEGREE IN STATISTICS AND
Distance to Event vs. Propensity of Event A Survival Analysis vs. Logistic Regression Approach
Distance to Event vs. Propensity of Event A Survival Analysis vs. Logistic Regression Approach Abhijit Kanjilal Fractal Analytics Ltd. Abstract: In the analytics industry today, logistic regression is
COURSE PLAN BDA: Biomedical Data Analysis Master in Bioinformatics for Health Sciences. 2015-2016 Academic Year Qualification.
COURSE PLAN BDA: Biomedical Data Analysis Master in Bioinformatics for Health Sciences 2015-2016 Academic Year Qualification. Master's Degree 1. Description of the subject Subject name: Biomedical Data
SUMAN DUVVURU STAT 567 PROJECT REPORT
SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.
Statistics for Biology and Health
Statistics for Biology and Health Series Editors M. Gail, K. Krickeberg, J.M. Samet, A. Tsiatis, W. Wong For further volumes: http://www.springer.com/series/2848 David G. Kleinbaum Mitchel Klein Survival
Regression Modeling Strategies
Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Survival Analysis of Left Truncated Income Protection Insurance Data. [March 29, 2012]
Survival Analysis of Left Truncated Income Protection Insurance Data [March 29, 2012] 1 Qing Liu 2 David Pitt 3 Yan Wang 4 Xueyuan Wu Abstract One of the main characteristics of Income Protection Insurance
Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
820031 - SICSB - Information Systems and Communications for Health Services
Coordinating unit: 820 - EUETIB - Barcelona College of Industrial Engineering Teaching unit: 707 - ESAII - Department of Automatic Control Academic year: Degree: 2015 BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING
240EO016 - Process Automation
Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering Teaching unit: 707 - ESAII - Department of Automatic Control Academic year: Degree: 2015 MASTER'S DEGREE IN MANAGEMENT ENGINEERING
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
Introduction to Event History Analysis DUSTIN BROWN POPULATION RESEARCH CENTER
Introduction to Event History Analysis DUSTIN BROWN POPULATION RESEARCH CENTER Objectives Introduce event history analysis Describe some common survival (hazard) distributions Introduce some useful Stata
230617 - NS - Network Security
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 744 - ENTEL - Department of Network Engineering DEGREE IN TELECOMMUNICATIONS
Lecture 2 ESTIMATING THE SURVIVAL FUNCTION. One-sample nonparametric methods
Lecture 2 ESTIMATING THE SURVIVAL FUNCTION One-sample nonparametric methods There are commonly three methods for estimating a survivorship function S(t) = P (T > t) without resorting to parametric models:
Parametric Survival Models
Parametric Survival Models Germán Rodríguez [email protected] Spring, 2001; revised Spring 2005, Summer 2010 We consider briefly the analysis of survival data when one is willing to assume a parametric
270107 - MD - Data Mining
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 015 70 - FIB - Barcelona School of Informatics 715 - EIO - Department of Statistics and Operations Research 73 - CS - Department of
Tips for surviving the analysis of survival data. Philip Twumasi-Ankrah, PhD
Tips for surviving the analysis of survival data Philip Twumasi-Ankrah, PhD Big picture In medical research and many other areas of research, we often confront continuous, ordinal or dichotomous outcomes
Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models
Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models Abstract This paper considers the modeling of claim durations for existing claimants under income
Lecture 15 Introduction to Survival Analysis
Lecture 15 Introduction to Survival Analysis BIOST 515 February 26, 2004 BIOST 515, Lecture 15 Background In logistic regression, we were interested in studying how risk factors were associated with presence
Distribution (Weibull) Fitting
Chapter 550 Distribution (Weibull) Fitting Introduction This procedure estimates the parameters of the exponential, extreme value, logistic, log-logistic, lognormal, normal, and Weibull probability distributions
Tests for Two Survival Curves Using Cox s Proportional Hazards Model
Chapter 730 Tests for Two Survival Curves Using Cox s Proportional Hazards Model Introduction A clinical trial is often employed to test the equality of survival distributions of two treatment groups.
220114 - Environmental Science and Technology
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering 736 - PE - Department of Engineering Design 706 -
Survival analysis methods in Insurance Applications in car insurance contracts
Survival analysis methods in Insurance Applications in car insurance contracts Abder OULIDI 1-2 Jean-Marie MARION 1 Hérvé GANACHAUD 3 1 Institut de Mathématiques Appliquées (IMA) Angers France 2 Institut
UNDERGRADUATE DEGREE DETAILS : BACHELOR OF SCIENCE WITH
QATAR UNIVERSITY COLLEGE OF ARTS & SCIENCES Department of Mathematics, Statistics, & Physics UNDERGRADUATE DEGREE DETAILS : Program Requirements and Descriptions BACHELOR OF SCIENCE WITH A MAJOR IN STATISTICS
Comparison of Survival Curves
Comparison of Survival Curves We spent the last class looking at some nonparametric approaches for estimating the survival function, Ŝ(t), over time for a single sample of individuals. Now we want to compare
Statistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural
Survival Analysis, Software
Survival Analysis, Software As used here, survival analysis refers to the analysis of data where the response variable is the time until the occurrence of some event (e.g. death), where some of the observations
270015 - IES - Introduction to Software Engineering
Coordinating unit: 270 - FIB - Barcelona School of Informatics Teaching unit: 747 - ESSI - Department of Service and Information System Engineering Academic year: Degree: 2015 BACHELOR'S DEGREE IN INFORMATICS
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-
Curriculum Doctoral Program in Business Administration Curriculum Amended in Academic Year 2004
Curriculum Doctoral Program in Business Administration Curriculum Amended in Academic Year 2004 1. Curriculum Name : Doctoral Program in Business Administration 2. The Degree : Doctor of Business Administration
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
230615 - ITSM - Information Technology Service Management
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 744 - ENTEL - Department of Network Engineering DEGREE IN TELECOMMUNICATIONS
Statistical Analysis of Life Insurance Policy Termination and Survivorship
Statistical Analysis of Life Insurance Policy Termination and Survivorship Emiliano A. Valdez, PhD, FSA Michigan State University joint work with J. Vadiveloo and U. Dias Session ES82 (Statistics in Actuarial
BIOM611 Biological Data Analysis
BIOM611 Biological Data Analysis Spring, 2015 Tentative Syllabus Introduction BIOMED611 is a ½ unit course required for all 1 st year BGS students (except GCB students). It will provide an introduction
230612 - AMC - Advanced Mobile Communications
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications
230667 - SCPD - System on Chip Physical Design
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering DEGREE IN
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
UNIVERSITY OF KENTUCKY COLLEGE OF PUBLIC HEALTH. Proposal for a Graduate Certificate in Biostatistics. Purpose and Background
UNIVERSITY OF KENTUCKY COLLEGE OF PUBLIC HEALTH Proposal for a Graduate Certificate in Biostatistics Purpose and Background There is an increasing need for research-oriented health professionals who will
MEU. INSTITUTE OF HEALTH SCIENCES COURSE SYLLABUS. Biostatistics
MEU. INSTITUTE OF HEALTH SCIENCES COURSE SYLLABUS title- course code: Program name: Contingency Tables and Log Linear Models Level Biostatistics Hours/week Ther. Recite. Lab. Others Total Master of Sci.
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. School of Mathematical Sciences
! ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences New Revised COURSE: COS-MATH-252 Probability and Statistics II 1.0 Course designations and approvals:
240IOI21 - Operations Management
Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering Teaching unit: 732 - OE - Department of Management Academic year: Degree: 2015 MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus
An Application of Weibull Analysis to Determine Failure Rates in Automotive Components
An Application of Weibull Analysis to Determine Failure Rates in Automotive Components Jingshu Wu, PhD, PE, Stephen McHenry, Jeffrey Quandt National Highway Traffic Safety Administration (NHTSA) U.S. Department
DPLS 722 Quantitative Data Analysis
DPLS 722 Quantitative Data Analysis Spring 2011 3 Credits Catalog Description Quantitative data analyses require the use of statistics (descriptive and inferential) to summarize data collected, to make
Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry
Paper 12028 Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry Junxiang Lu, Ph.D. Overland Park, Kansas ABSTRACT Increasingly, companies are viewing
Categorical Data Analysis
Categorical Data Analysis Lecturer: FENG Zhenghui ( 冯 峥 晖 ) Office Hours: Saturday 10:00am-12:00am Office: B405 Economic Building Email:[email protected] Course Description This course deals with statistical
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics Lecturer: Mikhail Zhitlukhin. 1. Course description Probability Theory and Introductory Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
MATH5885 LONGITUDINAL DATA ANALYSIS
MATH5885 LONGITUDINAL DATA ANALYSIS Semester 1, 2013 CRICOS Provider No: 00098G 2013, School of Mathematics and Statistics, UNSW MATH5885 Course Outline Information about the course Course Authority: William
Duration Analysis. Econometric Analysis. Dr. Keshab Bhattarai. April 4, 2011. Hull Univ. Business School
Duration Analysis Econometric Analysis Dr. Keshab Bhattarai Hull Univ. Business School April 4, 2011 Dr. Bhattarai (Hull Univ. Business School) Duration April 4, 2011 1 / 27 What is Duration Analysis?
220027 - Flight Mechanics
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering 220 - ETSEIAT - Terrassa School of Industrial and
Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
Survival Distributions, Hazard Functions, Cumulative Hazards
Week 1 Survival Distributions, Hazard Functions, Cumulative Hazards 1.1 Definitions: The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution of a
240EO035 - Information Systems
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 240 - ETSEIB - Barcelona School of Industrial Engineering 732 - OE - Department of Management MASTER'S DEGREE IN MANAGEMENT ENGINEERING
230670 - EDM - Electronic Devices Modelling
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering DEGREE IN
Linda Staub & Alexandros Gekenidis
Seminar in Statistics: Survival Analysis Chapter 2 Kaplan-Meier Survival Curves and the Log- Rank Test Linda Staub & Alexandros Gekenidis March 7th, 2011 1 Review Outcome variable of interest: time until
Program description for the Master s Degree Program in Mathematics and Finance
Program description for the Master s Degree Program in Mathematics and Finance : English: Master s Degree in Mathematics and Finance Norwegian, bokmål: Master i matematikk og finans Norwegian, nynorsk:
Statistics 3202 Introduction to Statistical Inference for Data Analytics 4-semester-hour course
Statistics 3202 Introduction to Statistical Inference for Data Analytics 4-semester-hour course Prerequisite: Stat 3201 (Introduction to Probability for Data Analytics) Exclusions: Class distribution:
Teaching Biostatistics to Postgraduate Students in Public Health
Teaching Biostatistics to Postgraduate Students in Public Health Peter A Lachenbruch - h s hgeles, California, USA 1. Introduction This paper describes how biostatistics is taught in US Schools of Public
Introduction. Survival Analysis. Censoring. Plan of Talk
Survival Analysis Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 01/12/2015 Survival Analysis is concerned with the length of time before an event occurs.
An Introduction to Survival Analysis
An Introduction to Survival Analysis Dr Barry Leventhal Henry Stewart Briefing on Marketing Analytics 19 th November 2010 Agenda Survival Analysis concepts Descriptive approach 1 st Case Study which types
Checking proportionality for Cox s regression model
Checking proportionality for Cox s regression model by Hui Hong Zhang Thesis for the degree of Master of Science (Master i Modellering og dataanalyse) Department of Mathematics Faculty of Mathematics and
Exam P - Total 23/23 - 1 -
Exam P Learning Objectives Schools will meet 80% of the learning objectives on this examination if they can show they meet 18.4 of 23 learning objectives outlined in this table. Schools may NOT count a
STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400&3400 STAT2400&3400 STAT2400&3400 STAT2400&3400 STAT3400 STAT3400
Exam P Learning Objectives All 23 learning objectives are covered. General Probability STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 STAT2400 1. Set functions including set notation and basic elements
Master programme in Statistics
Master programme in Statistics Björn Holmquist 1 1 Department of Statistics Lund University Cramérsällskapets årskonferens, 2010-03-25 Master programme Vad är ett Master programme? Breddmaster vs Djupmaster
Department/Academic Unit: Public Health Sciences Degree Program: Biostatistics Collaborative Program
Department/Academic Unit: Public Health Sciences Degree Program: Biostatistics Collaborative Program Department of Mathematics and Statistics Degree Level Expectations, Learning Outcomes, Indicators of
Introduction to Survival Analysis
John Fox Lecture Notes Introduction to Survival Analysis Copyright 2014 by John Fox Introduction to Survival Analysis 1 1. Introduction I Survival analysis encompasses a wide variety of methods for analyzing
Economic Statistics (ECON2006), Statistics and Research Design in Psychology (PSYC2010), Survey Design and Analysis (SOCI2007)
COURSE DESCRIPTION Title Code Level Semester Credits 3 Prerequisites Post requisites Introduction to Statistics ECON1005 (EC160) I I None Economic Statistics (ECON2006), Statistics and Research Design
240EI032 - Human Resources Management
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 240 - ETSEIB - Barcelona School of Industrial Engineering 732 - OE - Department of Management MASTER'S DEGREE IN MATERIALS SCIENCE
Sun Li Centre for Academic Computing [email protected]
Sun Li Centre for Academic Computing [email protected] Elementary Data Analysis Group Comparison & One-way ANOVA Non-parametric Tests Correlations General Linear Regression Logistic Models Binary Logistic
Risks in new drug development: Approval success rates for investigational drugs
Risks in new drug development: Approval success rates for investigational drugs Joseph A. DiMasi, PhD Boston, Mass The drug development process is known to be complex, costly, and time-consuming. 1-3 The
250325 - METNUMER - Numerical Methods
Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering Teaching unit: 751 - ECA - Department of Civil and Environmental Engineering Academic year: Degree: 2015 BACHELOR'S DEGREE IN GEOLOGICAL
Statistics in Applications III. Distribution Theory and Inference
2.2 Master of Science Degrees The Department of Statistics at FSU offers three different options for an MS degree. 1. The applied statistics degree is for a student preparing for a career as an applied
Predicting Customer Churn in the Telecommunications Industry An Application of Survival Analysis Modeling Using SAS
Paper 114-27 Predicting Customer in the Telecommunications Industry An Application of Survival Analysis Modeling Using SAS Junxiang Lu, Ph.D. Sprint Communications Company Overland Park, Kansas ABSTRACT
Statistical Methods for research in International Relations and Comparative Politics
James Raymond Vreeland Dept. of Political Science Assistant Professor Yale University E-Mail: [email protected] Room 300 Tel: 203-432-5252 124 Prospect Avenue Office hours: Wed. 10am to 12pm New
PROBABILITY AND STATISTICS. Ma 527. 1. To teach a knowledge of combinatorial reasoning.
PROBABILITY AND STATISTICS Ma 527 Course Description Prefaced by a study of the foundations of probability and statistics, this course is an extension of the elements of probability and statistics introduced
Module 223 Major A: Concepts, methods and design in Epidemiology
Module 223 Major A: Concepts, methods and design in Epidemiology Module : 223 UE coordinator Concepts, methods and design in Epidemiology Dates December 15 th to 19 th, 2014 Credits/ECTS UE description
240ST1131 - Operations Management in the Supply Chain
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 240 - ETSEIB - Barcelona School of Industrial Engineering 732 - OE - Department of Management MASTER'S DEGREE IN SUPPLY CHAINS,
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln. Log-Rank Test for More Than Two Groups
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln Log-Rank Test for More Than Two Groups Prepared by Harlan Sayles (SRAM) Revised by Julia Soulakova (Statistics)
7.1 The Hazard and Survival Functions
Chapter 7 Survival Models Our final chapter concerns models for the analysis of data which have three main characteristics: (1) the dependent variable or response is the waiting time until the occurrence
Interpretation of Somers D under four simple models
Interpretation of Somers D under four simple models Roger B. Newson 03 September, 04 Introduction Somers D is an ordinal measure of association introduced by Somers (96)[9]. It can be defined in terms
820086 - AND - Non-Destructive Testing
Coordinating unit: 820 - EUETIB - Barcelona College of Industrial Engineering Teaching unit: 702 - CMEM - Department of Materials Science and Metallurgy Academic year: Degree: 2015 BACHELOR'S DEGREE IN
STATISTICS APPLIED TO BUSINESS ADMINISTRATION
BASIC PROGRAM FOR THE COURSE STATISTICS APPLIED TO BUSINESS ADMINISTRATION Degree: BA (ADE) Course: 2nd Semester: second Credits: 6 Type: Core Code: 25837 Department of Applied Economics III (Econometrics
Life Table Analysis using Weighted Survey Data
Life Table Analysis using Weighted Survey Data James G. Booth and Thomas A. Hirschl June 2005 Abstract Formulas for constructing valid pointwise confidence bands for survival distributions, estimated using
Developing Business Failure Prediction Models Using SAS Software Oki Kim, Statistical Analytics
Paper SD-004 Developing Business Failure Prediction Models Using SAS Software Oki Kim, Statistical Analytics ABSTRACT The credit crisis of 2008 has changed the climate in the investment and finance industry.
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected]
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected] IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way
