Analysis of Internet Transport Service Performance with Active Queue Management in a QoS-enabled Network
|
|
|
- Elwin Tyrone Walsh
- 10 years ago
- Views:
Transcription
1 University of Helsinki - Department of Computer Science Analysis of Internet Transport Service Performance with Active Queue Management in a QoS-enabled Network Oriana Riva [email protected]
2 Contents TCP Congestion Control in the Internet Router queue management algorithms Tail Drop discipline Active Queue Management (AQM) Goals Random Early Detection (RED) Test Arrangements Test Environment Test Cases Test Results and Analysis Conclusions University of Helsinki - Department of Computer Science 2
3 TCP Congestion Control in the Internet Internet has grown and TCP congestion control mechanisms are not sufficient to provide good service in all circumstances Wired vs. Wireless The Internet is evolving to support QoS Problem: There is a limit to how much control can be accomplished from the edges of the network A possible solution is an advanced form of router queue management such as Active Queue Management (RFC 2309) Current router algorithm employed in the Internet: Tail Drop University of Helsinki - Department of Computer Science 3
4 Tail Drop buffer Principle: fix the maximum length for each queue, accept packets for the queue until the maximum length is reached, then drop subsequent incoming packets Advantages easy to implement Disadvantages Full Queues Discriminate against bursty traffic and cause multiple packets to be dropped Synchronization of sources Lock-Out: a single connection or few flows manage to monopolize the available queue resources University of Helsinki - Department of Computer Science 4
5 Active Queue Management (AQM) Based on a proactive approach: drop packets before buffer becomes full use the average queue length as congestion indicator Can provide the following advantages for responsive flows Control the average queuing delay and reduce end-to-end latency Guarantee more equity in resources utilization (fairness) Reduce the number of packets dropped in routers Provide greater capacity to absorb bursts without dropping packets Avoid global synchronization of sources Avoid Lock-Out behaviour The most famous example of AQM is the Random Early Detection (RED) algorithm University of Helsinki - Department of Computer Science 5
6 RED - Algorithm Calculate the average queue size (avg) by a low pass filtering with weight w q, 0<w q <1 avg n + 1 = ( 1 wq)avgn + w q ist =instantaneous queue length If avg<min th do nothing If avg>max th drop the packet Else drop (or mark) packet with probability: p' p = = max p (avg min p'/( 1 count p') th )/(max q th q ist min th ) Dropping/Marking Probability, p' p=1 count =number of unmarked packets since the last time a packet was dropped or since avg exceeded min th avg max th min th University of Helsinki - Department of Computer Science 6
7 Source UDP 100Mbit/s TCP Test Arrangements Intermediate Router Wired Network 10Mbit/s Last-hop Router 140 kbit/s bottleneck Destination Wireless Network imple scenario (Each scenario is tested with 20 replications) PC with Linux Operating System (kernel version ) Standard Linux TCP Implementation with SACK option (Timestamps: OFF The Intermediate Router employs Tail Drop with a huge buffer size The Last-hop Router employs Tail Drop or RED without ECN RED Parameters: buffer size=20kbytes, min th =5kbytes, max th =18kbytes, max p =0.1 Metrics: Elapsed Time, Num Retx Packets, Fairness, etc University of Helsinki - Department of Computer Science 7
8 Test Arrangements - Test Environment The last-hop router implements a DiffServ (DS) PHB using HTB (Hierarchical Token Bucket) packet scheduler with two service classes Each service class employs Tail Drop or RED Queuing allocates bandwidth and buffer space: Bandwidth: which packet to serve next (scheduling) Buffer Space: which packet to drop next (buffer management) Traffic Sources TCP TCP UDP TCP UDP UDP Traffic Classes Class TCP Class UDP Scheduling HTB Tail Drop/RED Drop Buffer Management University of Helsinki - Department of Computer Science 8
9 Test Arrangements - Test Case 1 Workload: 3 competing TCP flows 1 service class bottleneck bandwidth =140kbit/s 2 TCP connections start simultaneously (data traffic sent=292kbytes) The third connection starts with a delay varying from 0 up to 7 seconds (data traffic sent= 46.7kbytes) TCP 1 TCP 2 TCP 3 R R bottleneck 140kbit/s TCP 1 TCP 2 TCP 3 data sent = 292kbytes data sent= 46.7kbytes University of Helsinki - Department of Computer Science 9
10 Test Arrangements - Test Case 2 Workload: TCP and UDP traffic with DiffServ The UDP traffic starts later and has different duration 1. The UDP traffic lasts for the entire duration of the TCP transfe 2. The UDP traffic ends before the TCP connection ends Effects derived from the introduction of service differentiation: 1. Unique service class for TCP and UDP traffic (available bandwidth=140kbit/s) 2. Separate service classes for TCP traffic and higher-priority UDP traffic (class bandwidth=70kbit/s) bottleneck (140kbit/s) TCP UDP R R DS 70/140kbit/s 70/100kbit/s TCP UDP University of Helsinki - Department of Computer Science 10
11 Results Test Case 1 3 competing TCP connections Results of the third connection for different starting points Elapsed Time Three-way Handshake Phase Elaps.Time (sec) RED Tail Drop ,5 starting time of the third flow (sec) Hand.phase (sec) RED Tail Drop ,5 starting time of the third flow (sec) Stable results and improved performance when RED is employed Tail Drop Scenario after 2 seconds: the elapsed time doubles the RED s one! University of Helsinki - Department of Computer Science 11
12 Results Test Case 1 3 competing TCP connections Elapsed Time of the 3rd flow Tail Drop RED Elapsed Time (sec) Min Median Max 25% Percentile 75% Percentile ,5 starting time of the third flow (sec) Wide variation range Elapsed Time (sec) Min Median Max 25% Percentile 75% Percentile ,5 starting time of the third flow(sec) Limited variation range University of Helsinki - Department of Computer Science 12
13 Test Case 1 - Lock-Out of Tail Drop Tail Drop: example from the scenario after 2 seconds The initial flows monopolize most of the bandwidth (phenomenon of Lock-Out) The exponential retransmit back-off rule doubles the retransmit timer when a retransmitted packet is lost University of Helsinki - Department of Computer Science 13
14 Results - Test Case 1 3 competing TCP flows Third flow s data load is 4/25 of the initial flows data load RED guarantees to the third flow improved and stable performance RED drops packets in proportion to the amount of bandwidth the flow uses on the output link Elaps.Time(sec) Num Retx Pkts Tail Drop - Elapsed Time fastest flow slowest flow 3rd flow ,5 starting time of the third flow (sec) Tail Drop - Retx Packets fastest flow slowest flow 3rd flow ,5 starting time of the third flow (sec) RED - Elapsed Time University of Helsinki - Department of Computer Science 14 Elaps. Time (sec) Num Retx Pkts fastest flow slowest flow 3rd flow ,5 starting time of the third flow (sec) RED - Retx Packets fastest flow slowest flow 3rd flow ,5 starting time of the third flow (sec)
15 Results - Test Case 2 Single TCP flow competing with UDP traffic lasting 5sec El.Time (sec) Elapsed Time of the TCP flow Tail Drop RED 26 Tail Drop + DS RED + DS 25, , ,5 Num of Recv Pkts Num of Received UDP Pkts Tail Drop RED Tail Drop + DS RED + DS starting time of the UDP flow (sec) starting time of the UDP flow (sec) 1 service class : Tail Drop: unstable results for both TCP and UDP traffic RED: performance close to the results with 2 service classes 2 service classes (Higher priority UDP traffic) Tail Drop and RED achieve the same performance University of Helsinki - Department of Computer Science 15
16 Test Case 2 - Unfairness of Tail Drop TCP traffic competing with UDP traffic of equal priority The performance changes by varying the starting point of the UDP traffic TCP El. Time=25.5s UDP Rec Pkts=181 TCP El. Time=23.7s UDP Rec Pkts=127 TCP El. Time=24.5s UDP Rec Pkts=224 UDP flow starts University of Helsinki - Department of Computer Science 16
17 Results Test Case 2 Time Sequence Graph of Traffic TCP competing with higherpriority UDP traffic starting after 0.5s Tail Drop: el. time=8.3s Timeout expiration Start to drop packets late Discard consecutive packets RED: el. time=4.9s 3 DUPACKs Start to drop packets early Discard randomly + SACK option University of Helsinki - Department of Computer Science 17
18 Results Test Case 2 1 TCP flow + UDP traffic (starting after 3 seconds) in presence of service differentiation Tail Drop: el.time=35.9s; rtx pkts=1 RED: el.time=35,8s; rtx pkts=7 The dropped packets are evenly distributed over a wide range The Recovery phase with Tail Drop is roughly the double of the RED s one University of Helsinki - Department of Computer Science 18
19 RED fairness Conclusions Fair sharing of resources Avoid Lock-Out Stable results RED drops more packets than Tail Drop, BUT By starting to drop packets early it manages to recover quickly from congestion and provides improved performance It drops packets from each flow in proportion to the amount of bandwidth the flow uses on the output link University of Helsinki - Department of Computer Science 19
20 Wired Network DiffServ Router TCP/UDP Future Work DiffServ Router Wireless Network background traffic Source Seawind Destination Emulate various wireless link characteristics on the last-hop link Add background traffic Advanced use of DiffServ with different traffic mixes Use of TCP variants Use of ECN (Explicit Congestion Notification) in combination with RED Tuning of RED parameters University of Helsinki - Department of Computer Science 20
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
17: Queue Management. Queuing. Mark Handley
17: Queue Management Mark Handley Queuing The primary purpose of a queue in an IP router is to smooth out bursty arrivals, so that the network utilization can be high. But queues add delay and cause jitter.
Active Queue Management
Active Queue Management TELCOM2321 CS2520 Wide Area Networks Dr. Walter Cerroni University of Bologna Italy Visiting Assistant Professor at SIS, Telecom Program Slides partly based on Dr. Znati s material
1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.
Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one
Active Queue Management (AQM) based Internet Congestion Control
Active Queue Management (AQM) based Internet Congestion Control October 1 2002 Seungwan Ryu ([email protected]) PhD Student of IE Department University at Buffalo Contents Internet Congestion Control
Active Queue Management
Course of Multimedia Internet (Sub-course Reti Internet Multimediali ), AA 2010-2011 Prof. 6. Active queue management Pag. 1 Active Queue Management Active Queue Management (AQM) is a feature that can
Passive Queue Management
, 2013 Performance Evaluation of Computer Networks Objectives Explain the role of active queue management in performance optimization of TCP/IP networks Learn a range of active queue management algorithms
TCP, Active Queue Management and QoS
TCP, Active Queue Management and QoS Don Towsley UMass Amherst [email protected] Collaborators: W. Gong, C. Hollot, V. Misra Outline motivation TCP friendliness/fairness bottleneck invariant principle
Internet Quality of Service
Internet Quality of Service Weibin Zhao [email protected] 1 Outline 1. Background 2. Basic concepts 3. Supporting mechanisms 4. Frameworks 5. Policy & resource management 6. Conclusion 2 Background:
Protagonist International Journal of Management And Technology (PIJMT) Online ISSN- 2394-3742. Vol 2 No 3 (May-2015) Active Queue Management
Protagonist International Journal of Management And Technology (PIJMT) Online ISSN- 2394-3742 Vol 2 No 3 (May-2015) Active Queue Management For Transmission Congestion control Manu Yadav M.Tech Student
Robust Router Congestion Control Using Acceptance and Departure Rate Measures
Robust Router Congestion Control Using Acceptance and Departure Rate Measures Ganesh Gopalakrishnan a, Sneha Kasera b, Catherine Loader c, and Xin Wang b a {[email protected]}, Microsoft Corporation,
Improving QOS in IP Networks. Principles for QOS Guarantees. Principles for QOS Guarantees (more) Principles for QOS Guarantees (more)
Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
Quality of Service (QoS)) in IP networks
Quality of Service (QoS)) in IP networks Petr Grygárek rek 1 Quality of Service (QoS( QoS) QoS is the ability of network to support applications without limiting it s s function or performance ITU-T T
Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow
International Journal of Soft Computing and Engineering (IJSCE) Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow Abdullah Al Masud, Hossain Md. Shamim, Amina Akhter
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions
Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University
Network management and QoS provisioning - QoS in the Internet
QoS in the Internet Inernet approach is based on datagram service (best effort), so provide QoS was not a purpose for developers. Mainly problems are:. recognizing flows;. manage the issue that packets
Active Queue Management and Wireless Networks
Active Queue Management and Wireless Networks Vikas Paliwal November 13, 2003 1 Introduction Considerable research has been done on internet dynamics and it has been shown that TCP s congestion avoidance
Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage
Lecture 16: Quality of Service CSE 123: Computer Networks Stefan Savage Final Next week (trust Blink wrt time/location) Will cover entire class Style similar to midterm I ll post a sample (i.e. old) final
Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71
Chapter 7 outline 7.1 multimedia networking applications 7.2 streaming stored audio and video 7.3 making the best out of best effort service 7.4 protocols for real-time interactive applications RTP, RTCP,
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
A Hysteretic Model of Queuing System with Fuzzy Logic Active Queue Management
A Hysteretic Model of Queuing System with Fuzzy Logic Active Queue Management Vladimir Deart, Andrey Maslennikov Moscow Technical University of Communications and Informatics Moscow, Russia [email protected],
Master s Thesis. A Study on Active Queue Management Mechanisms for. Internet Routers: Design, Performance Analysis, and.
Master s Thesis Title A Study on Active Queue Management Mechanisms for Internet Routers: Design, Performance Analysis, and Parameter Tuning Supervisor Prof. Masayuki Murata Author Tomoya Eguchi February
18: Enhanced Quality of Service
18: Enhanced Quality of Service Mark Handley Traditional best-effort queuing behaviour in routers Data transfer: datagrams: individual packets no recognition of flows connectionless: no signalling Forwarding:
Parallel TCP Data Transfers: A Practical Model and its Application
D r a g a n a D a m j a n o v i ć Parallel TCP Data Transfers: A Practical Model and its Application s u b m i t t e d t o the Faculty of Mathematics, Computer Science and Physics, the University of Innsbruck
16/5-05 Datakommunikation - Jonny Pettersson, UmU 2. 16/5-05 Datakommunikation - Jonny Pettersson, UmU 4
Multimedia Networking Principles Last time Classify multimedia Multimedia Networking Applications Streaming stored audio and video Identify the network Real-time Multimedia: Internet Phone services the
CS551 End-to-End Internet Packet Dynamics [Paxson99b]
CS551 End-to-End Internet Packet Dynamics [Paxson99b] Bill Cheng http://merlot.usc.edu/cs551-f12 1 End-to-end Packet Dynamics How do you measure Internet performance? Why do people want to know? Are ISPs
Comparative Analysis of Congestion Control Algorithms Using ns-2
www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,
Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics:
Quality of Service 1 Traditional Nonconverged Network Traditional data traffic characteristics: Bursty data flow FIFO access Not overly time-sensitive; delays OK Brief outages are survivable 2 1 Converged
"Charting the Course... ... to Your Success!" QOS - Implementing Cisco Quality of Service 2.5 Course Summary
Course Summary Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as best effort, IntServ, and DiffServ,
Distributed Systems 3. Network Quality of Service (QoS)
Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski [email protected] 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through
Performance improvement of active queue management with per-flow scheduling
Performance improvement of active queue management with per-flow scheduling Masayoshi Nabeshima, Kouji Yata NTT Cyber Solutions Laboratories, NTT Corporation 1-1 Hikari-no-oka Yokosuka-shi Kanagawa 239
TCP in Wireless Networks
Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems
Mobile Communications Chapter 9: Mobile Transport Layer
Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery
Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan
Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service
Requirements for Simulation and Modeling Tools. Sally Floyd NSF Workshop August 2005
Requirements for Simulation and Modeling Tools Sally Floyd NSF Workshop August 2005 Outline for talk: Requested topic: the requirements for simulation and modeling tools that allow one to study, design,
Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic
Real-time apps and Quality of Service
Real-time apps and Quality of Service Focus What transports do applications need? What network mechanisms provide which kinds of quality assurances? Topics Real-time versus Elastic applications Adapting
Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION
Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List
CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE
CS/ECE 438: Communication Networks Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE Introduction The Internet only provides a best effort service
Active Queue Management
Active Queue Management Rong Pan Cisco System EE384y Spring Quarter 2006 Outline Queue Management Drop as a way to feedback to TCP sources Part of a closed-loop Traditional Queue Management Drop Tail Problems
Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)
Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including
Optimizing Converged Cisco Networks (ONT)
Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS Introducing QoS Objectives Explain why converged networks require QoS. Identify the major quality issues with converged networks.
Chapter 6 Congestion Control and Resource Allocation
Chapter 6 Congestion Control and Resource Allocation 6.3 TCP Congestion Control Additive Increase/Multiplicative Decrease (AIMD) o Basic idea: repeatedly increase transmission rate until congestion occurs;
How To Provide Qos Based Routing In The Internet
CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this
IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS)
IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS) COURSE OVERVIEW: Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such
Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led
Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led Course Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements,
Analyzing Marking Mod RED Active Queue Management Scheme on TCP Applications
212 International Conference on Information and Network Technology (ICINT 212) IPCSIT vol. 7 (212) (212) IACSIT Press, Singapore Analyzing Marking Active Queue Management Scheme on TCP Applications G.A.
Aggregate Traffic Performance with Active Queue Management and Drop from Tail
Aggregate Traffic Performance with Active Queue Management and Drop from Tail Gianluca Iannaccone Sprint ATL Adrian Court Burlingame CA 9400 [email protected] Martin May Activia Networks Parc of
The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback
The network we see so far CSE56 - Lecture 08 QoS Network Xiaowei Yang TCP saw-tooth FIFO w/ droptail or red Best-effort service Web-surfing, email, ftp, file-sharing Internet Best Effort Service Our network
Quality of Service on the Internet: Evaluation of the IntServ Architecture on the Linux Operative System 1
Quality of Service on the Internet: Evaluation of the IntServ Architecture on the Linux Operative System 1 Elisabete Reis [email protected] Polytechnic Institute of Coimbra Fernando Melo [email protected]
An enhanced TCP mechanism Fast-TCP in IP networks with wireless links
Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected] 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
TCP for Wireless Networks
TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted
TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the
Cisco Quality of Service and DDOS
Cisco Quality of Service and DDOS Engineering Issues for Adaptive Defense Network MITRE 7/25/2001 Contents 1. INTRODUCTION...1 2. TESTBED SETUP...1 3. QUALITY OF SERVICE (QOS) TESTS...3 3.1. FIRST IN,
Announcements. Midterms. Mt #1 Tuesday March 6 Mt #2 Tuesday April 15 Final project design due April 11. Chapters 1 & 2 Chapter 5 (to 5.
Announcements Midterms Mt #1 Tuesday March 6 Mt #2 Tuesday April 15 Final project design due April 11 Midterm #1 Chapters 1 & 2 Chapter 5 (to 5.2) 1 Congestion Too much traffic can destroy performance
High-Speed TCP Performance Characterization under Various Operating Systems
High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,
Using TrueSpeed VNF to Test TCP Throughput in a Call Center Environment
Using TrueSpeed VNF to Test TCP Throughput in a Call Center Environment TrueSpeed VNF provides network operators and enterprise users with repeatable, standards-based testing to resolve complaints about
Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks
Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Vasilios A. Siris and Despina Triantafyllidou Institute of Computer Science (ICS) Foundation for Research and Technology - Hellas
Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput
Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput Guojun Jin Brian Tierney Distributed Systems Department Lawrence Berkeley National Laboratory 1 Cyclotron
Why Congestion Control. Congestion Control and Active Queue Management. Max-Min Fairness. Fairness
Congestion Control and Active Queue Management Congestion Control, Efficiency and Fairness Analysis of TCP Congestion Control A simple TCP throughput formula RED and Active Queue Management How RED wors
- QoS and Queuing - Queuing Overview
1 Queuing Overview - QoS and Queuing - A queue is used to store traffic until it can be processed or serialized. Both switch and router interfaces have ingress (inbound) queues and egress (outbound) queues.
Active Queue Management A router based control mechanism
Active Queue Management A router based control mechanism Chrysostomos Koutsimanis B.Sc. National Technical University of Athens Pan Gan Park B.Sc. Ajou University Abstract In this report we are going to
A Survey On Active Queue Management Mechanisms
130 IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 A Survey On Active Queue Management Mechanisms G.Thiruchelvi 1 and J.Raja 2, 1 Periyar Maniammai University,Thanjavur,Tamilnadu,India
Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services
1 Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services Arjan Durresi 1, Sastri Kota 2, Mukul Goyal 1, Raj Jain 3, Venkata Bharani 1 1 Department of Computer and Information
Access Control: Firewalls (1)
Access Control: Firewalls (1) World is divided in good and bad guys ---> access control (security checks) at a single point of entry/exit: in medieval castles: drawbridge in corporate buildings: security/reception
QoS Strategy in DiffServ aware MPLS environment
QoS Strategy in DiffServ aware MPLS environment Teerapat Sanguankotchakorn, D.Eng. Telecommunications Program, School of Advanced Technologies Asian Institute of Technology P.O.Box 4, Klong Luang, Pathumthani,
TCP over Wireless Networks
TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/
Modeling Active Queue Management algorithms using Stochastic Petri Nets
Modeling Active Queue Management algorithms using Stochastic Petri Nets Master Thesis Author: S. Dijkstra Supervising committee: prof. dr. ir. B.R.H.M. Haverkort dr. ir. P.T. de Boer ir. N.D. van Foreest
TCP/IP Over Lossy Links - TCP SACK without Congestion Control
Wireless Random Packet Networking, Part II: TCP/IP Over Lossy Links - TCP SACK without Congestion Control Roland Kempter The University of Alberta, June 17 th, 2004 Department of Electrical And Computer
An Adaptive RIO (A-RIO) Queue Management Algorithm
An Adaptive RIO (A-RIO) Queue Management Algorithm Julio Orozco 1,2 and David Ros 1 1 GET/ENST Bretagne, Rue de la Châtaigneraie, CS 1767, 35576 Cesson Sévigné Cedex, France 2 IRISA/INRIA Rennes, Campus
Integrated Service (IntServ) versus Differentiated Service (Diffserv)
Integrated Service (IntServ) versus Differentiated Service (Diffserv) Information taken from Kurose and Ross textbook Computer Networking A Top- Down Approach Featuring the Internet ACN: IntServ and DiffServ
Low-rate TCP-targeted Denial of Service Attack Defense
Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu
Overview. 15-441: Computer Networking. Components of Integrated Services. Service Interfaces RSVP. Differentiated services
Overview 15-441: Computer Networking Lecture 21: QoS and Mobile/Wireless Networking RSVP Differentiated services Internet mobility TCP Over Noisy Links Lecture 21: 3-31-05 2 Components of Integrated Services
Authors Mário Serafim Nunes IST / INESC-ID Lisbon, Portugal [email protected]
Adaptive Quality of Service of Voice over IP Communications Nelson Costa Instituto Superior Técnico (IST) Lisbon, Portugal [email protected] Authors Mário Serafim Nunes Lisbon, Portugal [email protected]
Novel Approach for Queue Management and Improvisation of QOS for Communication Networks
Novel Approach for Queue Management and Improvisation of QOS for Communication Networks J. Venkatesan 1, S. Thirumal 2 1 M. Phil, Research Scholar, Arignar Anna Govt. Arts College, Cheyyar, T.V Malai Dt,
CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING
CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility
02-QOS-ADVANCED-DIFFSRV
IP QoS DiffServ Differentiated Services Architecture Agenda DiffServ Principles DS-Field, DSCP Historical Review Newest Implementations Per-Hop Behaviors (PHB) DiffServ in Detail DiffServ in other Environments
STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT
STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT 1. TIMING ACCURACY The accurate multi-point measurements require accurate synchronization of clocks of the measurement devices. If for example time stamps
Quality of Service (QoS) on Netgear switches
Quality of Service (QoS) on Netgear switches Section 1 Principles and Practice of QoS on IP networks Introduction to QoS Why? In a typical modern IT environment, a wide variety of devices are connected
Technology Overview. Class of Service Overview. Published: 2014-01-10. Copyright 2014, Juniper Networks, Inc.
Technology Overview Class of Service Overview Published: 2014-01-10 Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, California 94089 USA 408-745-2000 www.juniper.net Juniper Networks, Junos,
Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic.
Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. A Network and Data Link Layer infrastructure Design to Improve QoS in Voice and video Traffic Jesús Arturo Pérez,
Multimedia Requirements. Multimedia and Networks. Quality of Service
Multimedia Requirements Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Transfer/Control Protocols Quality of Service
Packet Queueing Delay
Some Active Queue Management Methods for Controlling Packet Queueing Delay Mahmud H. Etbega Mohamed, MSc PhD 2009 Design and Performance Evaluation of Some New Versions of Active Queue Management Schemes
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC
TCP Trunking for Bandwidth Management of Aggregate Traffic
TCP Trunking for Bandwidth Management of Aggregate Traffic H.T. Kung [email protected] Division of Engineering and Applied Sciences Harvard University Cambridge, MA 02138, USA S.Y. Wang [email protected]
Congestions and Control Mechanisms n Wired and Wireless Networks
International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst
The Interaction of Forward Error Correction and Active Queue Management
The Interaction of Forward Error Correction and Active Queue Management Tigist Alemu, Yvan Calas, and Alain Jean-Marie LIRMM UMR 5506 CNRS and University of Montpellier II 161, Rue Ada, 34392 Montpellier
King Fahd University of Petroleum & Minerals Computer Engineering g Dept
King Fahd University of Petroleum & Minerals Computer Engineering g Dept COE 543 Mobile and Wireless Networks Term 111 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724 Email: [email protected] 12/24/2011
Improving our Evaluation of Transport Protocols. Sally Floyd Hamilton Institute July 29, 2005
Improving our Evaluation of Transport Protocols Sally Floyd Hamilton Institute July 29, 2005 Computer System Performance Modeling and Durable Nonsense A disconcertingly large portion of the literature
Motivation. QoS Guarantees. Internet service classes. Certain applications require minimum level of network performance:
QoS Guarantees Motivation introduction call admission traffic specification link-level scheduling call setup protocol reading: Tannenbaum, 393-395, 458-471 Ch 6 in Ross/Kurose Certain applications require
