Unlocking Value from. Patanjali V, Lead Data Scientist, Tiger Analytics Anand B, Director Analytics Consulting,Tiger Analytics
|
|
|
- Beryl Beasley
- 10 years ago
- Views:
Transcription
1 Unlocking Value from Patanjali V, Lead Data Scientist, Anand B, Director Analytics Consulting,
2 EXECUTIVE SUMMARY Today a lot of unstructured data is being generated in the form of text, images, videos and speech. This data could contain valuable information that companies can utilize to make the right decisions. In this article, we focus on one such form of unstructured data which is speech. We present a use case, where we analyzed speech in clinical trials to automate a significant part of the operational processes, which has the potential to reduce the quality control costs by half. 2
3 What Is Speech Analytics? Speech has several aspects to it. Some of the elements of speech like words, speech rate, tone, emotions etc. are discernible by humans. There are other elements that humans don t identify so easily like minor variations in pitch and speech rates. Speech analytics is the characterization of speech based on these factors to derive actionable business insights from the data. 3
4 There are several ways in which speech can be analyzed, based on the type of application: Full transcription Full transcription involves conversion of speech into text format in applications like Siri or in transcribing meetings (for example, between a doctor and a patient), conferences, etc. Converting speech into text allows it to be searched more easily. Speaker diarization Speaker diarization involves separation of certain sections of speech based on the speaker. While transcribing speech with more than one speaker, like a meeting or a conference, it is important to not just convert speech to text but to identify who the speaker is. Keyword detection Keyword detection entails identification of certain specific keywords in an audio. Customer care centers can detect certain keywords like unhappy and disappointed and use them to monitor agent performance. Speaker authentication/identification (voice fingerprinting) Speaker authentication/identification (voice fingerprinting) involves identifying unique characteristics in every speaker s voice that allow us humans to differentiate between and identify speakers. Some fraud detection applications capture these unique features and create voice fingerprints during customer care interactions and compare against known blacklists. Emotion detection Emotion detection involves identification of the emotional state of the speaker. This can help identify irate customers during customer care interactions, among other applications. Other characteristics of conversation These are pauses, noise, etc. Characteristics like loud noises or long pauses could be indicators of a bad customer care conversation. Depending on the type of business problem, the analysis framework would have one or more of the above 4
5 Problems Faced During Clinical Trials Testing the efficacy of drugs for mental illnesses involves the doctor having detailed discussions with the patients to evaluate their mental state at various stages of the treatment. The clinical trials evaluate both the quality of the interviews and then whether or not the drug meets its targets. Interview quality evaluation typically involves experts listening to audio recordings of the interviews and scoring it on various quality metrics. This manual review is quite expensive. The objective here is to use speech analytics to assist the manual reviewers and significantly cut down the costs associated with review time. Pre-processing Role of Speech Analytics The first step was for us to remove any background noise so that the spoken dialog is clearly heard. We then split the files into sections of alternating speech and silence. Following this, we grouped the speech sections into clusters, each representing different speakers. Feature extraction We then extracted several hundred features from the audio files starting from direct features like duration and amplitudes to more abstract features like speech rates, frequency wise energy content and MFCCs. Among other things, these features also helped capture information that was characteristic of a person, similar to how a human would identify a person by their voice. Prediction The objective was to predict an interview quality score, a single number constructed by combining several qualitative aspects of the interview quality. We computed this score manually for a few audio files and then developed machine learning algorithms to identify inherent patterns and predict this score for all other audio files. We used various supervised machine learning techniques - logistic regression, boosted trees, random forests, support vector machines, etc. The best performing algorithm improved accuracy of identifying bad interviews by more than 50% compared to the random baseline, meaning the cost of identifying potentially bad interviews was halved. In other words, in the same amount of time, one could identify and review twice the number of bad interviews and gain rich insights which will eventually help the quality of clinical trials significantly. 5
6 Conclusion Speech analytics is an area with potential applications in almost all businesses that have any form of verbal interaction from call centers to classrooms. With the increase in computing power, and big data technologies, analyzing large volumes of unstructured speech data is becoming increasingly mainstream. When used appropriately, it can give a company significant reduction in cost as well as strong competitive advantage. Some functions like customer care have started incorporating speech analytics but there is still a long way to go before the full potential is realized. 6
7 About the Authors/ Patanjali V, the primary author, is a Lead Data Scientist at Tiger Analytics. He leads advanced analytics engagements that involve complex/unstructured data. Anand Bharadwaj, the co-author, is a Director at. He has 18+ years of experience in the consulting industry and loves to ensure business value realization of analytics solutions., ( provides Big Data and advanced analytics solutions to help businesses make data driven business decisions. We bring deep expertise in data sciences along with understanding of business needs and state-of-the-art technologies to solve business problems. References
8 Contact Us USA - East Coast 2321 Blue Ridge Rd., Suite 203 Raleigh, NC USA - West Coast 4701 Patrick Henry Drive, Building 16, Suite 14 Santa Clara, CA India - Chennai No. D-1, SIDCO Industrial Estate, Guindy, Chennai , India
NICE MULTI-CHANNEL INTERACTION ANALYTICS
NICE MULTI-CHANNEL INTERACTION ANALYTICS Revealing Customer Intent in Contact Center Communications CUSTOMER INTERACTIONS: The LIVE Voice of the Customer Every day, customer service departments handle
Certificate Program in Applied Big Data Analytics in Dubai. A Collaborative Program offered by INSOFE and Synergy-BI
Certificate Program in Applied Big Data Analytics in Dubai A Collaborative Program offered by INSOFE and Synergy-BI Program Overview Today s manager needs to be extremely data savvy. They need to work
From Raw Data to. Actionable Insights with. MATLAB Analytics. Learn more. Develop predictive models. 1Access and explore data
100 001 010 111 From Raw Data to 10011100 Actionable Insights with 00100111 MATLAB Analytics 01011100 11100001 1 Access and Explore Data For scientists the problem is not a lack of available but a deluge.
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate
Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate Description The Helzberg School of Management has launched two graduate-level certificates: one in Data
7 Best Practices for Speech Analytics. Autonomy White Paper
7 Best Practices for Speech Analytics Autonomy White Paper Index Executive Summary 1 Best Practice #1: Prioritize Efforts 1 Best Practice #2: Think Contextually to Get to the Root Cause 1 Best Practice
Session 61 L, Applications of Data Analytics in Health Insurance. Moderator/Presenter: Henning Chiv, FSA, MAAA
Session 61 L, Applications of Data Analytics in Health Insurance Moderator/Presenter: Henning Chiv, FSA, MAAA Session 61: Applications of Data Analytics in Health Insurance Henning Chiv, FSA, MAAA June
Social Media Implementations
SEM Experience Analytics Social Media Implementations SEM Experience Analytics delivers real sentiment, meaning and trends within social media for many of the world s leading consumer brand companies.
Applying Data Science to Sales Pipelines for Fun and Profit
Applying Data Science to Sales Pipelines for Fun and Profit Andy Twigg, CTO, C9 @lambdatwigg Abstract Machine learning is now routinely applied to many areas of industry. At C9, we apply machine learning
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION
ISSN 9 X INFORMATION TECHNOLOGY AND CONTROL, 00, Vol., No.A ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION Danuta Zakrzewska Institute of Computer Science, Technical
Hurwitz ValuePoint: Predixion
Predixion VICTORY INDEX CHALLENGER Marcia Kaufman COO and Principal Analyst Daniel Kirsch Principal Analyst The Hurwitz Victory Index Report Predixion is one of 10 advanced analytics vendors included in
Speech Analytics. Whitepaper
Speech Analytics Whitepaper This document is property of ASC telecom AG. All rights reserved. Distribution or copying of this document is forbidden without permission of ASC. 1 Introduction Hearing the
STATISTICA. Financial Institutions. Case Study: Credit Scoring. and
Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT
Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin
Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)
Knowledge Discovery from patents using KMX Text Analytics
Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs [email protected] Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers
Advanced In-Database Analytics
Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??
Text Analytics Beginner s Guide. Extracting Meaning from Unstructured Data
Text Analytics Beginner s Guide Extracting Meaning from Unstructured Data Contents Text Analytics 3 Use Cases 7 Terms 9 Trends 14 Scenario 15 Resources 24 2 2013 Angoss Software Corporation. All rights
Customer Interaction Analytics Speech Analytics The Next Frontier
Customer Interaction Analytics Speech Analytics The Next Frontier www.wipro.com RAJESH SEHGAL & SHALABH SRIVASTAVA PROCESS LAB, MISSION QUALITY & OPERATIONAL EXCELLENCE, WIPRO BPO Table of Contents Customer
INTRODUCTION TO TRANSANA 2.2 FOR COMPUTER ASSISTED QUALITATIVE DATA ANALYSIS SOFTWARE (CAQDAS)
INTRODUCTION TO TRANSANA 2.2 FOR COMPUTER ASSISTED QUALITATIVE DATA ANALYSIS SOFTWARE (CAQDAS) DR ABDUL RAHIM HJ SALAM LANGUAGE ACADEMY UNIVERSITY TECHNOLOGY MALAYSIA TRANSANA VERSION 2.2 MANAGINGYOUR
Random forest algorithm in big data environment
Random forest algorithm in big data environment Yingchun Liu * School of Economics and Management, Beihang University, Beijing 100191, China Received 1 September 2014, www.cmnt.lv Abstract Random forest
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
CASE STUDY. Uniphore Software Systems Contact: [email protected] Website: www.uniphore.com 1
CASE STUDY Automatic Terminal Information Service (ATIS) transcription uses Automated Speech Recognition technology How a leading commercial aircraft manufacturer helped their International Pilots understand
Understanding Your Customer Journey by Extending Adobe Analytics with Big Data
SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction
Sentiment Analysis on Big Data
SPAN White Paper!? Sentiment Analysis on Big Data Machine Learning Approach Several sources on the web provide deep insight about people s opinions on the products and services of various companies. Social
Framing Business Problems as Data Mining Problems
Framing Business Problems as Data Mining Problems Asoka Diggs Data Scientist, Intel IT January 21, 2016 Legal Notices This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS
Maximize Revenues on your Customer Loyalty Program using Predictive Analytics
Maximize Revenues on your Customer Loyalty Program using Predictive Analytics 27 th Feb 14 Free Webinar by Before we begin... www Q & A? Your Speakers @parikh_shachi Technical Analyst @tatvic Loves js
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
C E D A T 8 5. Innovating services and technologies for speech content management
C E D A T 8 5 Innovating services and technologies for speech content management Company profile 25 years experience in the market of transcription/reporting services; Cedat 85 Group: Cedat 85 srl Subtitle
Microsoft Azure Machine learning Algorithms
Microsoft Azure Machine learning Algorithms Tomaž KAŠTRUN @tomaz_tsql [email protected] http://tomaztsql.wordpress.com Our Sponsors Speaker info https://tomaztsql.wordpress.com Agenda Focus on explanation
2015 Workshops for Professors
SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market
Automatic Evaluation Software for Contact Centre Agents voice Handling Performance
International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015 1 Automatic Evaluation Software for Contact Centre Agents voice Handling Performance K.K.A. Nipuni N. Perera,
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
The Predictive Data Mining Revolution in Scorecards:
January 13, 2013 StatSoft White Paper The Predictive Data Mining Revolution in Scorecards: Accurate Risk Scoring via Ensemble Models Summary Predictive modeling methods, based on machine learning algorithms
An Introduction to Advanced Analytics and Data Mining
An Introduction to Advanced Analytics and Data Mining Dr Barry Leventhal Henry Stewart Briefing on Marketing Analytics 19 th November 2010 Agenda What are Advanced Analytics and Data Mining? The toolkit
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
B2B opportunity predictiona Big Data and Advanced. Analytics Approach. Insert
B2B opportunity predictiona Big Data and Advanced Analytics Approach Vodafone Global Enterprise Manu Kumar, Head of Targeting, Optimization & Data Science Insert Agenda Why B2B opportunities are hard to
Virtual Site Event. Predictive Analytics: What Managers Need to Know. Presented by: Paul Arnest, MS, MBA, PMP February 11, 2015
Virtual Site Event Predictive Analytics: What Managers Need to Know Presented by: Paul Arnest, MS, MBA, PMP February 11, 2015 1 Ground Rules Virtual Site Ground Rules PMI Code of Conduct applies for this
Driving Insurance World through Science - 1 - Murli D. Buluswar Chief Science Officer
Driving Insurance World through Science - 1 - Murli D. Buluswar Chief Science Officer What is The Science Team s Mission? 2 What Gap Do We Aspire to Address? ü The insurance industry is data rich but ü
Instilling Confidence in Security and Risk Operations with Behavioral Analytics and Contextualization
WHITEPAPER Instilling Confidence in Security and Risk Operations with Behavioral Analytics and Contextualization Understanding Why Automated Machine Learning Behavioral Analytics with Contextualization
MACHINE LEARNING BASICS WITH R
MACHINE LEARNING [Hands-on Introduction of Supervised Machine Learning Methods] DURATION 2 DAY The field of machine learning is concerned with the question of how to construct computer programs that automatically
Innovative Analytics for Traditional, Social, and Text Data. Dr. Gerald Fahner, Senior Director Analytic Science, FICO
Innovative Analytics for Traditional, Social, and Text Data Dr. Gerald Fahner, Senior Director Analytic Science, FICO Hot Trends in Predictive Analytics Big Data the Fuel is high-volume, high-velocity
KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES
HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within
HOW IS C360 DIFFERENT THAN TRADITIONAL LEAD SCORING?
Corporate360 is a leading IT sales intelligence provider. The company's flagship product Tech SalesCloud is a cloud software, designed for IT marketers to avail comprehensive marketing campaign data services.
The LENA TM Language Environment Analysis System:
FOUNDATION The LENA TM Language Environment Analysis System: The Interpreted Time Segments (ITS) File Dongxin Xu, Umit Yapanel, Sharmi Gray, & Charles T. Baer LENA Foundation, Boulder, CO LTR-04-2 September
Why is Internal Audit so Hard?
Why is Internal Audit so Hard? 2 2014 Why is Internal Audit so Hard? 3 2014 Why is Internal Audit so Hard? Waste Abuse Fraud 4 2014 Waves of Change 1 st Wave Personal Computers Electronic Spreadsheets
Analyzing Big Data: The Path to Competitive Advantage
White Paper Analyzing Big Data: The Path to Competitive Advantage by Marcia Kaplan Contents Introduction....2 How Big is Big Data?................................................................................
OPERA SOLUTIONS CAPABILITIES. ACH and Wire Fraud: advanced anomaly detection to find and stop costly attacks
OPERA SOLUTIONS CAPABILITIES ACH and Wire Fraud: advanced anomaly detection to find and stop costly attacks 2 The information you need to fight fraud does exist You just have to know it when you see it
ITS Training and Documentation Needs Assessment Project Report
ITS Training and Documentation Needs Assessment Project Report Sharon Beltaine User Support Services Information Technology Services Ithaca College Report ITS Training and Documentation Needs Assessment
Data-Driven Decisions: Role of Operations Research in Business Analytics
Data-Driven Decisions: Role of Operations Research in Business Analytics Dr. Radhika Kulkarni Vice President, Advanced Analytics R&D SAS Institute April 11, 2011 Welcome to the World of Analytics! Lessons
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Agenda» Overview» What is Big Data?» Accelerates advances in computer & technologies» Revolutionizes data measurement»
Performance Evaluation of Requirements Engineering Methodology for Automated Detection of Non Functional Requirements
Performance Evaluation of Engineering Methodology for Automated Detection of Non Functional J.Selvakumar Assistant Professor in Department of Software Engineering (PG) Sri Ramakrishna Engineering College
How To Make A Credit Risk Model For A Bank Account
TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző [email protected] 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions
«The Five Myths of Predictive Analytics» 1
The Five Myths of Predictive Analytics @AnalyticsQueen #PAWGov email: [email protected] White paper: www.aryng.com Piyanka Jain President & CEO, Aryng.com «The Five Myths of Predictive Analytics» 1 Analytics
Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD
Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,
Predictive modelling around the world 28.11.13
Predictive modelling around the world 28.11.13 Agenda Why this presentation is really interesting Introduction to predictive modelling Case studies Conclusions Why this presentation is really interesting
Applications of speech-to-text in customer service. Dr. Joachim Stegmann Deutsche Telekom AG, Laboratories
Applications of speech-to-text in customer service. Dr. Joachim Stegmann Deutsche Telekom AG, Laboratories Contents. 1. Motivation 2. Scenarios 2.1 Voice box / call-back 2.2 Quality management 3. Technology
Multichannel Customer Listening and Social Media Analytics
( Multichannel Customer Listening and Social Media Analytics KANA Experience Analytics Lite is a multichannel customer listening and social media analytics solution that delivers sentiment, meaning and
Enhanced Boosted Trees Technique for Customer Churn Prediction Model
IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V5 PP 41-45 www.iosrjen.org Enhanced Boosted Trees Technique for Customer Churn Prediction
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
How To Analyze Claims Data
ACE CLAIMS MANAGEMENT ACE 4D: POWER OF PREDICTIVE ANALYTICS THE STATE-OF-THE-ART PROGRESSES Predictive data analytics is coming out of the shadows to change the course of claims management. A new approach,
New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
Provalis Research Text Analytics and the Victory Index
point Provalis Research Text Analytics and the Victory Index Fern Halper, Ph.D. Fellow Daniel Kirsch Senior Analyst Provalis Research Text Analytics and the Victory Index Unstructured data is everywhere
At a recent industry conference, global
Harnessing Big Data to Improve Customer Service By Marty Tibbitts The goal is to apply analytics methods that move beyond customer satisfaction to nurturing customer loyalty by more deeply understanding
Big Analytics: A Next Generation Roadmap
Big Analytics: A Next Generation Roadmap Cloud Developers Summit & Expo: October 1, 2014 Neil Fox, CTO: SoftServe, Inc. 2014 SoftServe, Inc. Remember Life Before The Web? 1994 Even Revolutions Take Time
Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign
Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign Arun K Mandapaka, Amit Singh Kushwah, Dr.Goutam Chakraborty Oklahoma State University, OK, USA ABSTRACT Direct
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Multichannel analytics and discovery
Brochure Multichannel analytics and discovery Gain greater insight with Multichannel Discovery from HP Autonomy A better way to understand multichannel activity Autonomy ExploreCloud highlights Social
Pentaho Data Mining Last Modified on January 22, 2007
Pentaho Data Mining Copyright 2007 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest information, please visit our web site at www.pentaho.org
Our Raison d'être. Identify major choice decision points. Leverage Analytical Tools and Techniques to solve problems hindering these decision points
Analytic 360 Our Raison d'être Identify major choice decision points Leverage Analytical Tools and Techniques to solve problems hindering these decision points Empowerment through Intelligence Our Suite
ICT Project on Text Transcription of Technical Video Lectures and Creation of Video Searchable Index, Metadata and Online Quizzes
ICT Project on Text Transcription of Technical Video Lectures and Creation of Video Searchable Index, Metadata and Online Quizzes Status Report up to September 30, 2010 Project duration: April 2009 to
Using Data Analytics to Detect Fraud. Other Data Analysis Techniques
Using Data Analytics to Detect Fraud Other Data Analysis Techniques Qualitative Data Analysis Most data analysis techniques require the use of data in the form of numbers. Qualitative data analysis is
Big Data Executive Survey
Big Data Executive Full Questionnaire Big Date Executive Full Questionnaire Appendix B Questionnaire Welcome The survey has been designed to provide a benchmark for enterprises seeking to understand the
DATAOPT SOLUTIONS. What Is Big Data?
DATAOPT SOLUTIONS What Is Big Data? WHAT IS BIG DATA? It s more than just large amounts of data, though that s definitely one component. The more interesting dimension is about the types of data. So Big
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research [email protected]
Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research [email protected] Introduction Logistics Prerequisites: basics concepts needed in probability and statistics
VWF. Virtual Wafer Fab
VWF Virtual Wafer Fab VWF is software used for performing Design of Experiments (DOE) and Optimization Experiments. Split-lots can be used in various pre-defined analysis methods. Split parameters can
EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN
EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN Sridhar S Associate Professor, Department of Information Science and Technology, Anna University,
Jiffy Lube Uses OdinText Software to Increase Revenue. Text Analytics, The One Methodology You Need to Grow!
Jiffy Lube Uses OdinText Software to Increase Revenue. Text Analytics, The One Methodology You Need to Grow! The Net Promoter score (NPS) is considered the most important customer loyalty metric by many
BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL
The Fifth International Conference on e-learning (elearning-2014), 22-23 September 2014, Belgrade, Serbia BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL SNJEŽANA MILINKOVIĆ University
Big Data Text Mining and Visualization. Anton Heijs
Copyright 2007 by Treparel Information Solutions BV. This report nor any part of it may be copied, circulated, quoted without prior written approval from Treparel7 Treparel Information Solutions BV Delftechpark
Improving Traceability of Requirements Through Qualitative Data Analysis
Improving Traceability of Requirements Through Qualitative Data Analysis Andreas Kaufmann, Dirk Riehle Open Source Research Group, Computer Science Department Friedrich-Alexander University Erlangen Nürnberg
Thirukkural - A Text-to-Speech Synthesis System
Thirukkural - A Text-to-Speech Synthesis System G. L. Jayavardhana Rama, A. G. Ramakrishnan, M Vijay Venkatesh, R. Murali Shankar Department of Electrical Engg, Indian Institute of Science, Bangalore 560012,
NICE PERFORM ANALYTICS SUITE
NICE PERFORM ANALYTICS SUITE Insight from Interactions EXTRACTING THE VALUE FROM INTERACTIONS Every day, millions of vital business interactions take place around the world, as organizations interact with
Table of Contents. Introduction... 3 Post-Call Analytics vs. Real-Time Monitoring... 3. How Real-Time Monitoring Works... 4
Table of Contents Introduction... 3 Post-Call Analytics vs. Real-Time Monitoring... 3 How Real-Time Monitoring Works... 4 Putting Real-Time Monitoring Into Action... 5 The Impact of Real-Time Monitoring...
