DATA MINING AND CUSTOMER RELATIONSHIP MANAGEMENT FOR CLIENTS SEGMENTATION
|
|
|
- Meryl Potter
- 10 years ago
- Views:
Transcription
1 DATA MINING AND CUSTOMER RELATIONSHIP MANAGEMENT FOR CLIENTS SEGMENTATION Ionela-Catalina Tudorache (Zamfir) 1, Radu-Ioan Vija 2 1), 2) The Bucharest University of Economic Studies, Economic Cybernetics and Statistics Doctoral School [email protected], [email protected] Abstract Starting from the idea that, nowadays, data mining techniques are applied in more and more different domains, one of the most important economic domain is Customer Relationship Management. In this respect, many studies were developed, from market research studies, to clients segmentation. We use principal components analysis to extract essential information from our dataset, and to eliminate redundancy, and k-means algorithm to classify clients of an audit company. Finally, we conclude that data mining techniques can be used for clients segmentation and provide useful results for marketing, products and management departments of the company. Keywords: classification, clients. CRM, data mining, segmentation JEL Classification: C38, D49 Introduction and literature review Knowing what customers want is a one of the most important issues for a company, no matter what services/products that company provides. In this respect, many models and techniques were developed: from statistical segmentation of clients, up to data mining techniques (such as classification models) and neural networks. When we say clients segmentation, we take into account the CRM (Customer Relationship Management) department of a company, as well as the research department. Many of big companies develop and use their own model to detect their customers behavior, characteristics, patterns and, finally, their preferences. During the fast decades, many articles were wrote and new models were developed in this area. In 2002, Rygielski, Wang and Yen have reviewed several applications of data mining techniques from: discovery, predictive modeling and forensic analysis areas. They start from the idea that customer relationship management is possible due to data mining techniques that have become tools that answer business questions regarding customers. Villanueva and Hansseus (2007) believe that the interest of managers is shifted from product management to customer relationship management. There are two ways to accomplish this goal: to focus on what customers value the most, and to identify the methods to maximize customers equity. Shaving the same idea, the focus on customers value, Verhoef, Doorn and Dorotic (2007) make a wide literature review and reade to the conclusion that customer lifetime value is a research area that has too few studies. 212
2 In 2014, a recent literature review, having as authors Janakiraman and Umanmahes reveals the major role of Data Mining techniques used in customer relationship management. In this regard data mining techniques are used more for classification, clustering and prediction. Studying the pros and cons of data mining techniques, the authors suggest that besides the wide range of applications areas, the only argument against them is related to security and privacy. A big issue is how data is taken, what it is used for and if it is used in unethical way. There are 5 major parts in this article: section 1 represents the introduction and literature review, section 2 presents the methodologies applied, section 3 is about the dataset used, variables and observations, section 4 is the case study, while the final section presents the conclusions and further areas of interest. Methodology From methodological point of view, we used data mining techniques after we collected, selected and filtered the data set. The first part in data processing is eliminating the outliers (observations that influence the analysis by having very big or very small values for one or more variables). Data standardization is the next step before running any analysis. This step is important because there are variables that influence the further analysis by having different measurement units (for examples: turnover variables is measured in billions, while the net result is measured in millions). For further step is the major analysis runned: principal components analysis. Using this method, we reduce the dimensional space from 24 variables to 6 variables (called principal components). The main reason why this analysis is necessary is the redundancy in data set (the information from one variable is partially retrieved in one or more variables). In this respect, principal component analysis creates new variables (principal components) that take a reasonable percent of total information (over 80%) and are not correlated (the redundancy is zero). The principal components model is: (1) where: - is principal component number j ( in this case) - is component i of j eigenvector of the covariance matrix (the j eigenvector is associated to the j eigenvalue of the covariance matrix). In this case: - is the i variable (in this case there are 24 original variables, that are financial or economical indicators or ratios of all companies). Once the principal scores are calculated for each observations, we use all 6 new variables (after we name them, according to their correlation with original variables) to classify companies. Recent literature review study reveals that data mining techniques are used especially for classification and prediction. Because the main objective of this study is client segmentation, we use supervised recognition techniques is order to classify clients into profitability and algorithmically method that is used to identify the number of classes taken into account. This method is preferred because it accomplishes in a better way the general criterion of classification (high homogeneity within classes and high heterogeneity between them). After identifying the number of classes that accomplishes the criterion above, K-Means Algorithm is used to classify the companies. 213
3 Database, variables and descriptive statistics The database used in this paper is represented by the main clients of Deloitte company. We used a sample of a confidential database of Deloitte client database and the variables studied are presented in the below table (data for 2014) : turnover(mld); Net Resultat (mil); Number of employees; LOW 52 Week Low ;HIGH 52 Week High ;Moody Rating ; S&P Rating; Fitch Rating ;Market; ADJ EPS Est Next Yr; Sales LFY; Sales Est Current Yr; Sales Est Next Yr; PE Ratio; Price to Book; Price To Sales; Price to Cash Flow; Price to EBITDA; Return on Assets; Return on Equity; Return on Capital Table no. 1. Descriptive statistics ca pr emp p low high Mean Std Error Median Std Dev Kurtosis Skewness Range Minimum Maximum adjcy adjny sales salcy salny pe Mean Std Error Median Std Dev Kurtosis Skewness Range Minimum Maximum cap val gaap gaapcy gaapny adj Mean Std Error Median Std Dev Kurtosis Skewness
4 Range Minimum Maximum ptb pts ptcf ptebitda roa roe Mean Std Error Median Std Dev Kurtosis Skewness Range Minimum Maximum source: Excel output The table from above is the descriptive statistics for the variables. For almost all variables, the average value and the standard deviation is representative from statistical point of view. Application and results As we mentioned in the methodology part, the main reason for this type of analysis is information redundancy that is given by correlation matrix. In this respect, a 0.13 correlation is between turnover and net result, 0.29 between number of employees and net result, 0.95 between market capitalisation and enterprise value, 0.74 between enterprise value and estimated sales for next year; 0.9 between price to cash flow and price to EBITDA. Figure no. 1. Eigenvalues of the covariance matrix source: SAS Output 215
5 The figure from above show the eigenvalues of the covariance matrix, and reveals the number of principal components taken into analysis. According to coverage percentage criterion 6 components are enough (because all of them take 86.83% of total information), and, according to Kaiser s criterion (applied only on standardised variables), 6 components are considered (because there are 6 eigenvalues higher than 1). Taking into account 6 principal components that take over 85% of total information, each component takes more information from several variables, and care be named, like: - W 1 is highly correlated with: p, low, high, cap, val, gaap, gaapcy, gaapny, adj, adjcy, adjny, sales, salcy, salny. From this point of view, the first principal component can be named prices and commercial component; - W 2 is highly correlated with ptcf and ptebitda, that means that the second principal component is "money price"; - W 3 is correlated with roa and roe, and it's name is profitability component; - W 4 is correlated with emp, and is the resource component; - W 5 is correlated with pts and the name is price to sales; - W 6 takes most of ca and pr and can be named as income; Figure no. 2. Ward's dendrogram source: SAS output The figure from above is the hierarchically classification tree (using Ward method). The horizontal line delimitates between three classes chosen to be customers segmentation criterion. The major objective of this analysis is to group all 44 companies into three major clusters, in order to identify: hidden patterns for each class, major characteristics for classes, and use this analysis as decision support for marketing campaigns. It is important to mention that, because of the fact that three companies were grouped into a single cluster, this type of segmentation is not part of our analysis objectives, and those companies were removed from further analysis. 216
6 Table no. 2. Classes centroids Count Avg Avg of of nume roa emp pr CLUSTER of roe source: Excel output ca Avg of p val The table from above shows all three classes, and a part of the centroids, calculated for original data. The first and the third classes contain 13 companies, while the second one has 18 companies. The first class is represented by the big customers, that bring an annual big profit for the company, either by consulting or audit services. Class 2 has small companies that also bring an important part of total income, because there are many customers that use audit and consulting services, while the third class is represented by middle customers. Even if we took into account only the first 44 major clients for Deloitte, we have demonstrated that this sample may be split into customers categories and, for each class can be developed special marketing advertisings or promotions. Conclusions and further research Applying data mining methods allows as to study different clusters and to construct different categories considering a various set of variables as the turnover and the ratings of agencies specialized in the field. We can observe that our variables are strongly correlated which lead us to conclude a business maturity and performance. For further research, we propose to extend this research to for a bigger sample, in order to identify more hidden patterns and behaviors for observations. References 1. Janakiraman, S., Umanmaheswari, K., 2014, A Survey on Data Mining Techniques for Customer Relationship Management; ijebea; vol. 7(1); pp Ruxanda, G., 2009, Analiza multidimensională a datelor, Academia de Studii Economice, Ș coala Doctorală, Bucureș ti 3. Rygielski, C., Wang, J-C, Yen D.C., 2002, Data Mining techniques for customer relationship management; Technology in Society, (24), pp Scarlat, E., Chirita, N., 2012, Bazele ciberneticii economice, Ed. Economica, Bucuresti 5. Villameva, J., Hanssens, D.M., 2007, Customer Equity: Measurement, Management and Research Opportunities; Foundations an Trends in Marketing; vol. 1(1), pp. 1-95; 6. Verhoef, P.C., Doorn, J.van, Dorotic, M., 2007, Customes Value Management: An Overview and Research Agenda, Marketing-JRM, vol. 2, pp Bloomberg.com, [Accessed April 2015] 8. Moodys.com, [Accessed April 2015] 9. Fitch.com, [Accessed April 2015] 217
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
How To Cluster
Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation
CLASSIFICATION OF EUROPEAN UNION COUNTRIES FROM DATA MINING POINT OF VIEW, USING SAS ENTERPRISE GUIDE
CLASSIFICATION OF EUROPEAN UNION COUNTRIES FROM DATA MINING POINT OF VIEW, USING SAS ENTERPRISE GUIDE Abstract Ana Maria Mihaela Iordache 1 Ionela Catalina Tudorache 2 Mihai Tiberiu Iordache 3 With the
Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool.
International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 19-24 Comparative Analysis of EM Clustering Algorithm
The influence of teacher support on national standardized student assessment.
The influence of teacher support on national standardized student assessment. A fuzzy clustering approach to improve the accuracy of Italian students data Claudio Quintano Rosalia Castellano Sergio Longobardi
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
1 Choosing the right data mining techniques for the job (8 minutes,
CS490D Spring 2004 Final Solutions, May 3, 2004 Prof. Chris Clifton Time will be tight. If you spend more than the recommended time on any question, go on to the next one. If you can t answer it in the
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/2004 Hierarchical
Web Usage Mining: Identification of Trends Followed by the user through Neural Network
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 617-624 International Research Publications House http://www. irphouse.com /ijict.htm Web
Using Data Mining Techniques to Increase Efficiency of Customer Relationship Management Process
Research Journal of Applied Sciences, Engineering and Technology 4(23): 5010-5015, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: February 22, 2012 Accepted: July 02, 2012 Published:
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
Clustering UE 141 Spring 2013
Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or
Data Mining Applications in Fund Raising
Data Mining Applications in Fund Raising Nafisseh Heiat Data mining tools make it possible to apply mathematical models to the historical data to manipulate and discover new information. In this study,
IT services for analyses of various data samples
IT services for analyses of various data samples Ján Paralič, František Babič, Martin Sarnovský, Peter Butka, Cecília Havrilová, Miroslava Muchová, Michal Puheim, Martin Mikula, Gabriel Tutoky Technical
DHL Data Mining Project. Customer Segmentation with Clustering
DHL Data Mining Project Customer Segmentation with Clustering Timothy TAN Chee Yong Aditya Hridaya MISRA Jeffery JI Jun Yao 3/30/2010 DHL Data Mining Project Table of Contents Introduction to DHL and the
THE USING FACTOR ANALYSIS METHOD IN PREDICTION OF BUSINESS FAILURE
THE USING FACTOR ANALYSIS METHOD IN PREDICTION OF BUSINESS FAILURE Mary Violeta Petrescu Ph. D University of Craiova Faculty of Economics and Business Administration Craiova, Romania Abstract: : After
Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca
Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016
Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with
SPSS Tutorial. AEB 37 / AE 802 Marketing Research Methods Week 7
SPSS Tutorial AEB 37 / AE 802 Marketing Research Methods Week 7 Cluster analysis Lecture / Tutorial outline Cluster analysis Example of cluster analysis Work on the assignment Cluster Analysis It is a
RISK ANALYSIS ON THE LEASING MARKET
The Academy of Economic Studies Master DAFI RISK ANALYSIS ON THE LEASING MARKET Coordinator: Prof.Dr. Radu Radut Student: Carla Biclesanu Bucharest, 2008 Table of contents Introduction Chapter I Financial
Adaptive Framework for Network Traffic Classification using Dimensionality Reduction and Clustering
IV International Congress on Ultra Modern Telecommunications and Control Systems 22 Adaptive Framework for Network Traffic Classification using Dimensionality Reduction and Clustering Antti Juvonen, Tuomo
Data Mining Techniques
15.564 Information Technology I Business Intelligence Outline Operational vs. Decision Support Systems What is Data Mining? Overview of Data Mining Techniques Overview of Data Mining Process Data Warehouses
Data Mining Framework for Direct Marketing: A Case Study of Bank Marketing
www.ijcsi.org 198 Data Mining Framework for Direct Marketing: A Case Study of Bank Marketing Lilian Sing oei 1 and Jiayang Wang 2 1 School of Information Science and Engineering, Central South University
K-Means Cluster Analysis. Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1
K-Means Cluster Analsis Chapter 3 PPDM Class Tan,Steinbach, Kumar Introduction to Data Mining 4/18/4 1 What is Cluster Analsis? Finding groups of objects such that the objects in a group will be similar
Medical Information Management & Mining. You Chen Jan,15, 2013 [email protected]
Medical Information Management & Mining You Chen Jan,15, 2013 [email protected] 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?
Rule based Classification of BSE Stock Data with Data Mining
International Journal of Information Sciences and Application. ISSN 0974-2255 Volume 4, Number 1 (2012), pp. 1-9 International Research Publication House http://www.irphouse.com Rule based Classification
Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning
Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step
The Investigation of Online Marketing Strategy: A Case Study of ebay
Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 362 The Investigation of Online Marketing Strategy: A Case Study of ebay Chu-Chai
SoSe 2014: M-TANI: Big Data Analytics
SoSe 2014: M-TANI: Big Data Analytics Lecture 4 21/05/2014 Sead Izberovic Dr. Nikolaos Korfiatis Agenda Recap from the previous session Clustering Introduction Distance mesures Hierarchical Clustering
Data Mining Techniques in CRM
Data Mining Techniques in CRM Inside Customer Segmentation Konstantinos Tsiptsis CRM 6- Customer Intelligence Expert, Athens, Greece Antonios Chorianopoulos Data Mining Expert, Athens, Greece WILEY A John
Data Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
Crime Hotspots Analysis in South Korea: A User-Oriented Approach
, pp.81-85 http://dx.doi.org/10.14257/astl.2014.52.14 Crime Hotspots Analysis in South Korea: A User-Oriented Approach Aziz Nasridinov 1 and Young-Ho Park 2 * 1 School of Computer Engineering, Dongguk
Principal Component Analysis
Principal Component Analysis ERS70D George Fernandez INTRODUCTION Analysis of multivariate data plays a key role in data analysis. Multivariate data consists of many different attributes or variables recorded
IMPROVISATION OF STUDYING COMPUTER BY CLUSTER STRATEGIES
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND SCIENCE IMPROVISATION OF STUDYING COMPUTER BY CLUSTER STRATEGIES C.Priyanka 1, T.Giri Babu 2 1 M.Tech Student, Dept of CSE, Malla Reddy Engineering
CRISP - DM. Data Mining Process. Process Standardization. Why Should There be a Standard Process? Cross-Industry Standard Process for Data Mining
Mining Process CRISP - DM Cross-Industry Standard Process for Mining (CRISP-DM) European Community funded effort to develop framework for data mining tasks Goals: Cross-Industry Standard Process for Mining
Customer Profiling for Marketing Strategies in a Healthcare Environment MaryAnne DePesquo, Phoenix, Arizona
Paper 1285-2014 Customer Profiling for Marketing Strategies in a Healthcare Environment MaryAnne DePesquo, Phoenix, Arizona ABSTRACT In this new era of healthcare reform, health insurance companies have
A fast, powerful data mining workbench designed for small to midsize organizations
FACT SHEET SAS Desktop Data Mining for Midsize Business A fast, powerful data mining workbench designed for small to midsize organizations What does SAS Desktop Data Mining for Midsize Business do? Business
Neural Networks Lesson 5 - Cluster Analysis
Neural Networks Lesson 5 - Cluster Analysis Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm [email protected] Rome, 29
DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate
A QoS-Aware Web Service Selection Based on Clustering
International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 1 A QoS-Aware Web Service Selection Based on Clustering R.Karthiban PG scholar, Computer Science and Engineering,
Dimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
Data Mining Clustering (2) Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining
Data Mining Clustering (2) Toon Calders Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining Outline Partitional Clustering Distance-based K-means, K-medoids,
Detecting Money Laundering Actions Using Data Mining and Expert Systems
Detecting Money Laundering Actions Using Data Mining and Expert Systems Ekrem Duman Dogus University Industrial Engineering Department Istanbul, TURKEY Joint work with Ayse Buyukkaya Outline Our experience
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat
Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,
A Demonstration of Hierarchical Clustering
Recitation Supplement: Hierarchical Clustering and Principal Component Analysis in SAS November 18, 2002 The Methods In addition to K-means clustering, SAS provides several other types of unsupervised
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
Prediction of Stock Performance Using Analytical Techniques
136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 Prediction of Stock Performance Using Analytical Techniques Carol Hargreaves Institute of Systems Science National University
ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION
ISSN 9 X INFORMATION TECHNOLOGY AND CONTROL, 00, Vol., No.A ON INTEGRATING UNSUPERVISED AND SUPERVISED CLASSIFICATION FOR CREDIT RISK EVALUATION Danuta Zakrzewska Institute of Computer Science, Technical
W6.B.1. FAQs CS535 BIG DATA W6.B.3. 4. If the distance of the point is additionally less than the tight distance T 2, remove it from the original set
http://wwwcscolostateedu/~cs535 W6B W6B2 CS535 BIG DAA FAQs Please prepare for the last minute rush Store your output files safely Partial score will be given for the output from less than 50GB input Computer
A Comparative Study of clustering algorithms Using weka tools
A Comparative Study of clustering algorithms Using weka tools Bharat Chaudhari 1, Manan Parikh 2 1,2 MECSE, KITRC KALOL ABSTRACT Data clustering is a process of putting similar data into groups. A clustering
Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1
Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
Management Science Letters
Management Science Letters 4 (2014) 905 912 Contents lists available at GrowingScience Management Science Letters homepage: www.growingscience.com/msl Measuring customer loyalty using an extended RFM and
Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank
Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing C. Olivia Rud, VP, Fleet Bank ABSTRACT Data Mining is a new term for the common practice of searching through
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired
Enhanced Boosted Trees Technique for Customer Churn Prediction Model
IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V5 PP 41-45 www.iosrjen.org Enhanced Boosted Trees Technique for Customer Churn Prediction
How To Identify A Churner
2012 45th Hawaii International Conference on System Sciences A New Ensemble Model for Efficient Churn Prediction in Mobile Telecommunication Namhyoung Kim, Jaewook Lee Department of Industrial and Management
Customer Classification And Prediction Based On Data Mining Technique
Customer Classification And Prediction Based On Data Mining Technique Ms. Neethu Baby 1, Mrs. Priyanka L.T 2 1 M.E CSE, Sri Shakthi Institute of Engineering and Technology, Coimbatore 2 Assistant Professor
Use of Data Mining Techniques to Improve the Effectiveness of Sales and Marketing
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 4, April 2015,
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Data quality in Accounting Information Systems
Data quality in Accounting Information Systems Comparing Several Data Mining Techniques Erjon Zoto Department of Statistics and Applied Informatics Faculty of Economy, University of Tirana Tirana, Albania
O Shaughnessy Screens
O Shaughnessy Screens Andy Prophet SI-Pro UG: April 2007 O Shaughnessy Strategy Newest book: Predicting the Markets of Tomorrow: A Contrarian Investment Strategy for the Next Twenty Years, James O Shaughnessy,
A Survey on Outlier Detection Techniques for Credit Card Fraud Detection
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VI (Mar-Apr. 2014), PP 44-48 A Survey on Outlier Detection Techniques for Credit Card Fraud
Issues in Information Systems Volume 16, Issue IV, pp. 30-36, 2015
DATA MINING ANALYSIS AND PREDICTIONS OF REAL ESTATE PRICES Victor Gan, Seattle University, [email protected] Vaishali Agarwal, Seattle University, [email protected] Ben Kim, Seattle University, [email protected]
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
Chapter ML:XI (continued)
Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
dm106 TEXT MINING FOR CUSTOMER RELATIONSHIP MANAGEMENT: AN APPROACH BASED ON LATENT SEMANTIC ANALYSIS AND FUZZY CLUSTERING
dm106 TEXT MINING FOR CUSTOMER RELATIONSHIP MANAGEMENT: AN APPROACH BASED ON LATENT SEMANTIC ANALYSIS AND FUZZY CLUSTERING ABSTRACT In most CRM (Customer Relationship Management) systems, information on
A Content based Spam Filtering Using Optical Back Propagation Technique
A Content based Spam Filtering Using Optical Back Propagation Technique Sarab M. Hameed 1, Noor Alhuda J. Mohammed 2 Department of Computer Science, College of Science, University of Baghdad - Iraq ABSTRACT
Customer Analytics. Turn Big Data into Big Value
Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data
ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Strategic Online Advertising: Modeling Internet User Behavior with
2 Strategic Online Advertising: Modeling Internet User Behavior with Patrick Johnston, Nicholas Kristoff, Heather McGinness, Phuong Vu, Nathaniel Wong, Jason Wright with William T. Scherer and Matthew
Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Predictive Models for Enhanced Audit Selection: The Texas Audit Scoring System
Predictive Models for Enhanced Audit Selection: The Texas Audit Scoring System FTA TECHNOLOGY CONFERENCE 2003 Bill Haffey, SPSS Inc. Daniele Micci-Barreca, Elite Analytics LLC Agenda ß Data Mining Overview
SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING
AAS 07-228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations
What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO
What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,
Customer Relationship Management using Adaptive Resonance Theory
Customer Relationship Management using Adaptive Resonance Theory Manjari Anand M.Tech.Scholar Zubair Khan Associate Professor Ravi S. Shukla Associate Professor ABSTRACT CRM is a kind of implemented model
Example application (1) Telecommunication. Lecture 1: Data Mining Overview and Process. Example application (2) Health
Lecture 1: Data Mining Overview and Process What is data mining? Example applications Definitions Multi disciplinary Techniques Major challenges The data mining process History of data mining Data mining
A Cluster Analysis Approach for Banks Risk Profile: The Romanian Evidence
109 European Research Studies, Volume XII, Issue (1) 2009 A Cluster Analysis Approach for Banks Risk Profile: The Romanian Evidence By Nicolae DARDAC 1 Iustina Alina BOITAN 2 Abstract: Cluster analysis,
COLOR-BASED PRINTED CIRCUIT BOARD SOLDER SEGMENTATION
COLOR-BASED PRINTED CIRCUIT BOARD SOLDER SEGMENTATION Tz-Sheng Peng ( 彭 志 昇 ), Chiou-Shann Fuh ( 傅 楸 善 ) Dept. of Computer Science and Information Engineering, National Taiwan University E-mail: [email protected]
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining /8/ What is Cluster
CLUSTER ANALYSIS FOR SEGMENTATION
CLUSTER ANALYSIS FOR SEGMENTATION Introduction We all understand that consumers are not all alike. This provides a challenge for the development and marketing of profitable products and services. Not every
Research on Clustering Analysis of Big Data Yuan Yuanming 1, 2, a, Wu Chanle 1, 2
Advanced Engineering Forum Vols. 6-7 (2012) pp 82-87 Online: 2012-09-26 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/aef.6-7.82 Research on Clustering Analysis of Big Data
