FUTURE RESEARCH DIRECTIONS OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING *
|
|
|
- Iris Andrews
- 10 years ago
- Views:
Transcription
1 International Journal of Software Engineering and Knowledge Engineering World Scientific Publishing Company FUTURE RESEARCH DIRECTIONS OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING * HAIPING XU Computer and Information Science Department, University of Massachusetts Dartmouth North Dartmouth, MA 02747, USA [email protected] Received (18 July 2014) Revised (22 November 2014) Accepted (22 November 2014) Software Engineering (SE) and Knowledge Engineering (KE) are closely related disciplines with goals of turning the development process of software systems and knowledge-based systems, respectively, into engineering disciplines. In particular, they together can provide systematic approaches for engineering intelligent software systems more efficiently and cost-effectively. As there is a large overlap between the two disciplines, the interplay is vital for both to be successful. In this paper, we divide the intersection of SE and KE into three subareas, namely Knowledge- Supported Software Engineering (KSSE), Engineering Knowledge as a Software (EKaaS), and Intelligent Software System Engineering (ISSE). For each subarea, we describe the challenges along with the current trends, and predict the future research directions that may have the most potential for success. Keywords: Software engineering; Knowledge engineering; Knowledge-supported software engineering; Intelligent software systems; Knowledge as a software. 1. Introduction To enhance the quality of software systems and effective management of software development processes, the discipline of Software Engineering (SE) was first coined in a NATO sponsored international conference in 1968 [1]. The initial goal of software engineering was to apply engineering disciplines to the software development process, in order to deal with the so-called software crisis problem. Issues related to the software crisis problem include poor software quality, project time and budget being out of control, and difficulties in software maintenance due to a lack of systematic, rigorous and measurable development methodologies. During the past decades, many of the software engineering principles and best practices have been successfully applied to different aspects of a software development process such as requirement analysis, software design, software testing, software maintenance, and software quality assurance [2]. On the other hand, in the early 1980s, much of the research in Artificial Intelligence (AI) focused on the development of Knowledge-Based Systems (KBSs) including expert systems, * This paper is based on an invited talk of the same title given at the 26th International Conference on Software Engineering and Knowledge Engineering (SEKE 2014), Vancouver, Canada, July 1-3,
2 2 H. Xu supported by proper knowledge representation formalisms and efficient inference mechanisms. However, the development of large commercial KBSs failed in many cases, which is comparable to the similar situation of software crisis in developing traditional software systems in the late 1960s [3]. As a result, the new discipline Knowledge Engineering (KE) emerged with its goal of applying engineering disciplines to the development of scalable and large long-living commercial KBSs. Researchers in KE initially considered the development of KBSs a transfer process that converts existing human knowledge into knowledge bases, but later realized that such a transfer process view could not capture an expert s tacit knowledge for problem-solving capabilities. Thus, the process of building KBSs should be more appropriately viewed as a modeling activity during the knowledge-acquisition phase [3]. Since both KE and SE are essentially modeling processes, they must share many useful principles and methodologies in system modeling and engineering. In the following sections, we divide the intersection of SE and KE into a number of subareas, and then discuss about them in more details. 2. Intersection between Software Engineering and Knowledge Engineering Figure 1 shows a mapping of the relationship between SE and KE. As shown in the figure, the intersection of SE and KE is identified as SEKE (Software Engineering and Knowledge Engineering), which represents the major topic of this paper. There are many books, journals and proceedings published in the past two decades that are related to SEKE. Among them, the International Conference on Software Engineering and Knowledge Engineering (SEKE) and its associated International Journal of Software Engineering and Knowledge Engineering (IJSEKE) particularly welcome papers for sharing methods and results between the two disciplines. A central theme of the IJSEKE journal is the interplay between software engineering and knowledge engineering, for example, how knowledge engineering methods can be applied to software engineering, and vice versa [4]. This emphasis makes the scope of IJSEKE different from that of pure SE journals such as IEEE Transactions on Software Engineering (TSE) and ACM Transactions on Software Engineering and Methodology (TOSEM), and pure KE journals such as IEEE Transactions on Knowledge and Data Engineering (TKDE) and Data and Knowledge Engineering Journal (DKE). Fig. 1. The intersection of software engineering and knowledge engineering
3 Future Research Directions of Software Engineering and Knowledge Engineering 3 In order to study the current trends and the future research directions of SEKE, we divide the intersection of SE and KE into three subareas, namely Knowledge-Supported Software Engineering (KSSE), Engineering Knowledge as a Software (EKaaS), and Intelligent Software System Engineering (ISSE). As shown in Fig. 2, the top portion of the intersection, i.e., the subarea KSSE, addresses how knowledge engineering methods can be applied to software engineering; in other words, how to make the software engineering activities more efficient and cost-effective using knowledge-based analysis or knowledge-supported systems. A typical example of research in this area is to analyze software engineering data using big data analysis or data mining approaches. The bottom portion of the intersection in Fig. 2 is called EKaaS, which studies the application of software engineering methods to knowledge engineering. Researchers in this subarea view a knowledge-based system as a traditional software system, and studies how to make the development process of KBSs more efficient and cost-effective by applying software engineering principles and methodologies. An example of such study is to develop large-scale domain knowledge using modularization principle in SE. In the middle portion of the intersection in Fig. 2, the subarea is identified as ISSE, which focuses on engineering intelligent software systems using both SE and KE methods. There are many different types of intelligent software systems nowadays, among which some typical examples include knowledge-based software information systems [5], ambient intelligent systems [6], and slow intelligent systems [7]. Fig. 2. Subareas in the intersection of software engineering and knowledge engineering 3. Challenges and Future Research Directions Current prevailing technologies such as mobile cloud computing, big data analysis and ambient intelligence, will have strong impacts on the future research directions of SEKE. In the following sections, we study the current and emerging trends in each subarea of SEKE, and try to predict the possible future research directions in the coming years.
4 4 H. Xu 3.1. Intelligent Software System Engineering (ISSE) The initial goal of AI was to build intelligent machines that may replace human beings; however, researchers later realized that such a goal was not practical and realistic, at least for the time being. Therefore, in the 1990s, agent-based techniques became one of the major themes of AI for the purpose of building intelligent systems that could help human beings solve problems rather than replace them. Although agent-based technologies have been quite successfully used to build intelligent software systems in the past two decades, new computer-based technologies will inevitably bring us new challenges. For example, in a recent prediction by Ann Mack, a former Director of Trendspotting at JWT Worldwide, the smartphone screens will eventually disappear due to the rise of the Internet of Things (IoT) and wearable technology [8]. It is foreseeable that with the wearable devices, such as smartwatches and smartglasses, becoming much popular, more and more intelligent software systems will be shifted from desktops to mobile devices and the cloud. Thus how to efficiently and cost-effectively develop intelligent software systems on mobile devices as well as in the cloud will be a challenging research topic in the next decade. On the other hand, big data analysis and data mining techniques offer us a great opportunity to extract useful knowledge from massive unstructured data, which is critical for predicting future events or user behaviors in constructing practical intelligent software systems. A good example of using such techniques in a smart software system is to achieve predictive security that can track and predict cyber threats, in order to prevent the system from being attacked. This approach can bring obvious advantages over the traditional reactive security, where only defensive actions can be taken when a threat has been identified. There are many other possible future research directions in the subarea ISSE, for example, it would be challenging to study how to effectively develop slow intelligent systems that can gradually learn the way how human solves problems without extensive training [7]. As another example of current trends, Ambient Intelligence (AmI) allows high technology to be seamlessly embedded in our natural surroundings. As a result, users could use such technology in their daily life with effortless interactions [6]. This type of smart systems may present software engineers new critical system requirements, for example, a scalable software architecture that can integrate many different advanced technologies. It is predictable that researchers in this subarea will face many interesting challenges in the next few years Knowledge-Supported Software Engineering (KSSE) The goal of KSSE is to improve software development process using knowledge engineering methods. Since the success of SE heavily depends on the experience of the software developers, Experience Factory (EF) [9] has become a useful approach in Knowledge-Based Software Engineering (KBSE). Related to this effort, Learning Software Organization (LSO) studies how to improve software process through knowledge discovery, sharing and reuse within software organizations [10]. With the current prevailing technologies like semantic web and ontological engineering, LSO will
5 Future Research Directions of Software Engineering and Knowledge Engineering 5 continue to be an important research area in the next 10 years. Similarly, Computational Intelligence (CI) and Knowledge Discovery and Data mining (KDD) techniques also played important roles in fields such as software quality assurance, discovery of software defects and project management. To make a software process more efficient and costeffective, KE methods can be applied in many phases of a software process model. A recent version of Guide to the Software Engineering Body of Knowledge (SWEBOK Guide V3.0) defines 15 Knowledge Areas (KAs) within the field of software engineering. It characterizes the contents of the software engineering discipline, and provides a general framework to apply KE in each KA [11]. In addition, as big data analysis techniques and data mining approaches being increasingly used to acquire useful knowledge from massive unstructured data, effectively mining software engineering data will be an interesting research topic in the coming years [12]. Model checking has been one of the most successful approaches in software engineering during the past decades; however, it is not scalable due to limitations related to the state-explosion problem. Thus, there is a pressing need to apply knowledge-based techniques to make the model checking approach more scalable and practical for verifying software systems of reasonable sizes. As another example, we anticipate in the near future, smart IDEs will emerge to support efficient software development. Such IDEs may automatically acquire knowledge from experienced software developers, and detect major program errors, especially in concurrent programming Engineering Knowledge as a Software (EKaaS) EKaaS is to use software engineering methods to solve knowledge engineering problems. KE is essentially a modeling process, which shares many common methodologies with SE [3]. For example, the conceptual models in KE are similar to the software architectures in SE; therefore, principles for the development of software architectures may be applied to the construction of conceptual models in KE. Similarly, modularization of domain knowledge follows the same idea of Component-Based Software Engineering (CBSE). It is expected that with well-defined interfaces between different modules of the domain knowledge established by various individuals or organizations, knowledge conflict, inconsistency and uncertainty among different modules may be properly and efficiently resolved. When large-scale domain knowledge being developed, knowledge defined previously must be reused and possibly required to be transformed. This may lead to an interesting research direction that studies how software reuse methodologies could be applied to the reuse of domain knowledge. Finally, formal methods play critical roles in both SE and KE. Some formal techniques that have been successfully applied in SE, such as Petri nets and model checking techniques, may also find their ways in KE to support efficient reasoning and formal verification of domain knowledge. 4. Concluding Remarks Although software engineering and knowledge engineering are two different disciplines under the subject of computer science, they are closely related and overlapped. As more
6 6 H. Xu and more knowledge being acquired using knowledge engineering methods, many of the software systems can be implemented as intelligent software supported by knowledge bases and efficient reasoning mechanisms. The development of such software systems requires both of the SE and KE disciplines, thus the interplay between SE and KE has become much more important than ever before. In this paper, we divide the intersection of SE and KE into three subareas, discuss about the current trends in each subarea, and predict their possible future research directions. It is our belief that with the new technologies, such as big data analysis and mobile cloud computing, getting more popular, the future research directions of SEKE will be inevitably influenced. Acknowledgments The author appreciates the support and guidance from Dr. S. K. Chang, Editor-in-Chief of IJSEKE, and the anonymous reviewers who help improve the paper. References [1] P. Naur and B. Randell (Eds.), Software Engineering: Report on a Conference Sponsored by the NATO Science Committee, Garmisch, Germany, October 7-11, [2] C. L. Simons, I. C. Parmee and P. D. Coward, 35 years on: to what extent has software engineering design achieved its goals?, IEE Proceedings - Software, 150(6) (2003) [3] R. Studer, V. R. Benjamins and D. Fensela, Knowledge engineering: principles and methods, Data & Knowledge Engineering, 25(1 2) (1998) [4] S. K. Chang, Foreword, International Journal of Software Engineering and Knowledge Engineering (IJSEKE), 1(1) (1991). [5] P. Devanbu, P. G. Selfridge, B. W. Ballard and R. J. Brachman, A knowledge-based software information system, in Proc. of the 12th international conference on Software engineering (ICSE 90), Nice, France, March 26-30, 1990, pp [6] T. Basten, L. Benini, A. Chandrakasan, et al., Scaling into ambient intelligence, in Proc. of the 6th Design, Automation, and Test in Europe Conference (DATE 03), Munich, Germany, March 2003, pp [7] S. K. Chang, A general framework for slow intelligence systems, International Journal of Software Engineering and Knowledge Engineering (IJSEKE), 20(1) (2010) [8] J. Widman, 8 technologies that are on the way out and one that we ll never be rid of, Computerworld, International Data Group Inc., June 20, Retrieved on June 23, 2014 from [9] V. R. Basili1, G. Caldiera and H. D. Rombach, Experience factory, Encyclopedia of Software Engineering, John Wiley & Sons, Inc., [10] A. Birk, T. Dingsøyr, Trends in learning software organizations: current needs and future solutions, Professional Knowledge Management, LNCS 3782, Springer Berlin Heidelberg, 2005, pp [11] P. Bourque and R.E. Fairley (Eds.), Guide to the Software Engineering Body of Knowledge, Version 3.0, IEEE Computer Society, [12] A. E. Hassan and T. Xie, Software intelligence: the future of mining software engineering data, in Proc. of the FSE/SDP Workshop on Future of Software Engineering Research (FoSER 2010), November 7-11, 2010, Santa Fe, NM, USA, pp
Current Research Topic In Software Engineering
Current Research Topic In Software Engineering A PROJECT REPORT Submitted by MD. Mithun Ahamed Id: 13-96937-2 Under the guidance of DR. Dip Nandi in partial fulfillment for the award of the degre of Master
Mobile Device and Technology Characteristics Impact on Mobile Application Testing
13 Mobile Device and Technology Characteristics Impact on Mobile Application Testing TINA SCHWEIGHOFER AND MARJAN HERIČKO, University of Maribor Mobile technologies have a significant impact on processes
ONTOLOGY-BASED APPROACH TO DEVELOPMENT OF ADJUSTABLE KNOWLEDGE INTERNET PORTAL FOR SUPPORT OF RESEARCH ACTIVITIY
ONTOLOGY-BASED APPROACH TO DEVELOPMENT OF ADJUSTABLE KNOWLEDGE INTERNET PORTAL FOR SUPPORT OF RESEARCH ACTIVITIY Yu. A. Zagorulko, O. I. Borovikova, S. V. Bulgakov, E. A. Sidorova 1 A.P.Ershov s Institute
TECHNOLOGY ANALYSIS FOR INTERNET OF THINGS USING BIG DATA LEARNING
TECHNOLOGY ANALYSIS FOR INTERNET OF THINGS USING BIG DATA LEARNING Sunghae Jun 1 1 Professor, Department of Statistics, Cheongju University, Chungbuk, Korea Abstract The internet of things (IoT) is an
An Agent-Based Concept for Problem Management Systems to Enhance Reliability
An Agent-Based Concept for Problem Management Systems to Enhance Reliability H. Wang, N. Jazdi, P. Goehner A defective component in an industrial automation system affects only a limited number of sub
A Comparison of Computer Science and Software Engineering Programmes in English Universities
A Comparison of Computer Science and Software Engineering Programmes in English Universities Farid Meziane and Sunil Vadera School of Computing, Science and Engineering University of Salford, Salford M5
Implementation of hybrid software architecture for Artificial Intelligence System
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 2007 35 Implementation of hybrid software architecture for Artificial Intelligence System B.Vinayagasundaram and
1.1 The Nature of Software... Object-Oriented Software Engineering Practical Software Development using UML and Java. The Nature of Software...
1.1 The Nature of Software... Object-Oriented Software Engineering Practical Software Development using UML and Java Chapter 1: Software and Software Engineering Software is intangible Hard to understand
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
APPLYING CASE BASED REASONING IN AGILE SOFTWARE DEVELOPMENT
APPLYING CASE BASED REASONING IN AGILE SOFTWARE DEVELOPMENT AIMAN TURANI Associate Prof., Faculty of computer science and Engineering, TAIBAH University, Medina, KSA E-mail: [email protected] ABSTRACT
Information Services for Smart Grids
Smart Grid and Renewable Energy, 2009, 8 12 Published Online September 2009 (http://www.scirp.org/journal/sgre/). ABSTRACT Interconnected and integrated electrical power systems, by their very dynamic
Operations Research and Knowledge Modeling in Data Mining
Operations Research and Knowledge Modeling in Data Mining Masato KODA Graduate School of Systems and Information Engineering University of Tsukuba, Tsukuba Science City, Japan 305-8573 [email protected]
Elite: A New Component-Based Software Development Model
Elite: A New Component-Based Software Development Model Lata Nautiyal Umesh Kumar Tiwari Sushil Chandra Dimri Shivani Bahuguna Assistant Professor- Assistant Professor- Professor- Assistant Professor-
Access Control of Cloud Service Based on UCON
Access Control of Cloud Service Based on UCON Chen Danwei, Huang Xiuli, and Ren Xunyi Nanjing University of posts & Telecommunications, New Model Street No.66, 210003, Nanjing, China [email protected],
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and
CREDENTIALS & CERTIFICATIONS 2015
THE COMMUNITY FOR TECHNOLOGY LEADERS www.computer.org CREDENTIALS & CERTIFICATIONS 2015 KEYS TO PROFESSIONAL SUCCESS CONTENTS SWEBOK KNOWLEDGE AREA CERTIFICATES Software Requirements 3 Software Design
Demonstration of an Automated Integrated Test Environment for Web-based Applications
Demonstration of an Automated Integrated Test Environment for Web-based Applications Tiziana Margaria 1,2, Oliver Niese 2, and Bernhard Steffen 2 1 METAFrame Technologies GmbH, Dortmund, Germany [email protected]
Knowledge-based Approach in Information Systems Life Cycle and Information Systems Architecture
5 th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics January 25-26, 2007 Poprad, Slovakia Knowledge-based Approach in Information Systems Life Cycle and Information
Database Scheme Configuration for a Product Line of MPC-TOOLS
Database Scheme Configuration for a Product Line of MPC-TOOLS Benjamin Klöpper, Tobias Rust, Bernhard Vedder, and Wilhelm Dangelmaier Heinz Nixdorf Institute, University of Paderborn, Fürstenallee 11,
Risk Knowledge Capture in the Riskit Method
Risk Knowledge Capture in the Riskit Method Jyrki Kontio and Victor R. Basili [email protected] / [email protected] University of Maryland Department of Computer Science A.V.Williams Building
CS4507 Advanced Software Engineering
CS4507 Advanced Software Engineering Lecturer: Adrian O Riordan Office: Room G.71 WGB Email: a.oriordan cs.ucc.ie Course Webpage: http://www.cs.ucc.ie/~adrian/cs4507.html CS4507 Overview 5 Credit course
Theme 1: IT Governance and Audit Methodologies
Theme 1: IT Governance and Audit Methodologies Recent rapid development of new IT technologies was followed up by an instantaneous integration of them at the organizational level. The management of the
Chapter 13: Knowledge Management In Nutshell. Information Technology For Management Turban, McLean, Wetherbe John Wiley & Sons, Inc.
Chapter 13: Knowledge Management In Nutshell Information Technology For Management Turban, McLean, Wetherbe John Wiley & Sons, Inc. Objectives Define knowledge and describe the different types of knowledge.
KEY KNOWLEDGE MANAGEMENT TECHNOLOGIES IN THE INTELLIGENCE ENTERPRISE
KEY KNOWLEDGE MANAGEMENT TECHNOLOGIES IN THE INTELLIGENCE ENTERPRISE RAMONA-MIHAELA MATEI Ph.D. student, Academy of Economic Studies, Bucharest, Romania [email protected] Abstract In this rapidly
How To Use Data Mining For Knowledge Management In Technology Enhanced Learning
Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 115 Data Mining for Knowledge Management in Technology Enhanced Learning
The Role of Modelling in Teaching Formal Methods for Software Engineering
The Role of Modelling in Teaching Formal Methods for Software Engineering A. J. Cowling Department of Computer Science University of Sheffield Sheffield, England [email protected] Abstract. This
MEng, BSc Applied Computer Science
School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions
jeti: A Tool for Remote Tool Integration
jeti: A Tool for Remote Tool Integration Tiziana Margaria 1, Ralf Nagel 2, and Bernhard Steffen 2 1 Service Engineering for Distributed Systems, Institute for Informatics, University of Göttingen, Germany
FITMAN Future Internet Enablers for the Sensing Enterprise: A FIWARE Approach & Industrial Trialing
FITMAN Future Internet Enablers for the Sensing Enterprise: A FIWARE Approach & Industrial Trialing Oscar Lazaro. [email protected] Ainara Gonzalez [email protected] June Sola [email protected]
MULTI AGENT-BASED DISTRIBUTED DATA MINING
MULTI AGENT-BASED DISTRIBUTED DATA MINING REECHA B. PRAJAPATI 1, SUMITRA MENARIA 2 Department of Computer Science and Engineering, Parul Institute of Technology, Gujarat Technology University Abstract:
Web-Based Genomic Information Integration with Gene Ontology
Web-Based Genomic Information Integration with Gene Ontology Kai Xu 1 IMAGEN group, National ICT Australia, Sydney, Australia, [email protected] Abstract. Despite the dramatic growth of online genomic
Semantic Concept Based Retrieval of Software Bug Report with Feedback
Semantic Concept Based Retrieval of Software Bug Report with Feedback Tao Zhang, Byungjeong Lee, Hanjoon Kim, Jaeho Lee, Sooyong Kang, and Ilhoon Shin Abstract Mining software bugs provides a way to develop
Skybox Security Survey: Next-Generation Firewall Management
Skybox Security Survey: Next-Generation Firewall Management November 2012 Worldwide Results Notice: This document contains a summary of the responses to a November 2012 survey of medium- to largesize organizations
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired
SERENITY Pattern-based Software Development Life-Cycle
SERENITY Pattern-based Software Development Life-Cycle Francisco Sanchez-Cid, Antonio Maña Computer Science Department University of Malaga. Spain {cid, amg}@lcc.uma.es Abstract Most of current methodologies
ERP Integration into Generic Plant Automation Model
Integration into Generic Plant Automation Model Yoseba K. Penya, Alexei Bratoukhine and Thilo Sauter Institute of Computer Technology VIENNA UNIVERSITY OF TECHNOLOGY Gußhausstraße 27/E384, A-1040 Wien
MEng, BSc Computer Science with Artificial Intelligence
School of Computing FACULTY OF ENGINEERING MEng, BSc Computer Science with Artificial Intelligence Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give
2 AIMS: an Agent-based Intelligent Tool for Informational Support
Aroyo, L. & Dicheva, D. (2000). Domain and user knowledge in a web-based courseware engineering course, knowledge-based software engineering. In T. Hruska, M. Hashimoto (Eds.) Joint Conference knowledge-based
Best-Practice Software Engineering: Software Processes to Support Project Success. Dietmar Winkler
Best-Practice Software Engineering: Software Processes to Support Project Success Dietmar Winkler Vienna University of Technology Institute of Software Technology and Interactive Systems [email protected]
Distributed Framework for Data Mining As a Service on Private Cloud
RESEARCH ARTICLE OPEN ACCESS Distributed Framework for Data Mining As a Service on Private Cloud Shraddha Masih *, Sanjay Tanwani** *Research Scholar & Associate Professor, School of Computer Science &
BSc in Information Technology Degree Programme. Syllabus
BSc in Information Technology Degree Programme Syllabus Semester 1 Title IT1012 Introduction to Computer Systems 30 - - 2 IT1022 Information Technology Concepts 30 - - 2 IT1033 Fundamentals of Programming
Agent-Based Software and Practical Case of Agent-Based Software Development
Agent-Based Software and Practical Case of Agent-Based Software Development Course 2008/2009 SUBJECTS: AGENT-BASED SOFTWARE and PRACTICAL CASE OF AGENT-BASED SOFTWARE DEVELOPMENT EUROPEAN MASTER on SOFTWARE
Test Coverage Criteria for Autonomous Mobile Systems based on Coloured Petri Nets
9th Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems Institut für Verkehrssicherheit und Automatisierungstechnik, TU Braunschweig, 2012 FORMS/FORMAT 2012 (http://www.forms-format.de)
Miracle Integrating Knowledge Management and Business Intelligence
ALLGEMEINE FORST UND JAGDZEITUNG (ISSN: 0002-5852) Available online www.sauerlander-verlag.com/ Miracle Integrating Knowledge Management and Business Intelligence Nursel van der Haas Technical University
Strategic Management System for Academic World
2011 International Conference on Software and Computer Applications IPCSIT vol.9 (2011) (2011) IACSIT Press, Singapore Strategic Management System for Academic World Expert System Based on Composition
Competitive intelligence: History, importance, objectives, process and issues
Competitive intelligence: History, importance, objectives, process and issues Dhekra BEN SASSI Anissa FRINI Wahiba BEN ABDESLAM May 13-15 2015, Athens, Greece Introduction State of the art Critical Issues
Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo
Software Engineering for Big Data CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Big Data Big data technologies describe a new generation of technologies that aim
How To Create A Text Classification System For Spam Filtering
Term Discrimination Based Robust Text Classification with Application to Email Spam Filtering PhD Thesis Khurum Nazir Junejo 2004-03-0018 Advisor: Dr. Asim Karim Department of Computer Science Syed Babar
Adapting to the Level of Experience of the User in Mixed-Initiative Web Self-Service Applications
Adapting to the Level of Experience of the User in Mixed-Initiative Web Self-Service Applications Mehmet H. Göker Kaidara Software 330 Distel Circle, Suite 150 Los Altos, CA 94022 [email protected] Abstract.
72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD
72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD Paulo Gottgtroy Auckland University of Technology [email protected] Abstract This paper is
Curriculum of the research and teaching activities. Matteo Golfarelli
Curriculum of the research and teaching activities Matteo Golfarelli The curriculum is organized in the following sections I Curriculum Vitae... page 1 II Teaching activity... page 2 II.A. University courses...
Deploying Artificial Intelligence Techniques In Software Engineering
Deploying Artificial Intelligence Techniques In Software Engineering Jonathan Onowakpo Goddey Ebbah Department of Computer Science University of Ibadan Ibadan, Nigeria Received March 8, 2002 Accepted March
A Mind Map Based Framework for Automated Software Log File Analysis
2011 International Conference on Software and Computer Applications IPCSIT vol.9 (2011) (2011) IACSIT Press, Singapore A Mind Map Based Framework for Automated Software Log File Analysis Dileepa Jayathilake
Open Access Research and Design for Mobile Terminal-Based on Smart Home System
Send Orders for Reprints to [email protected] The Open Automation and Control Systems Journal, 2015, 7, 479-484 479 Open Access Research and Design for Mobile Terminal-Based on Smart Home System
Typical programme structures for MSc programmes in the School of Computing Science
Typical programme structures for MSc programmes in the School of Computing Science 1 If you have a good degree in a subject other than computing: MSc Information Technology MSc Software Development 2 MSc
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
EXPLOITING FOLKSONOMIES AND ONTOLOGIES IN AN E-BUSINESS APPLICATION
EXPLOITING FOLKSONOMIES AND ONTOLOGIES IN AN E-BUSINESS APPLICATION Anna Goy and Diego Magro Dipartimento di Informatica, Università di Torino C. Svizzera, 185, I-10149 Italy ABSTRACT This paper proposes
Course Description Bachelor in Management Information Systems
Course Description Bachelor in Management Information Systems 1605215 Principles of Management Information Systems (3 credit hours) Introducing the essentials of Management Information Systems (MIS), providing
A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems
A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems Ismail Hababeh School of Computer Engineering and Information Technology, German-Jordanian University Amman, Jordan Abstract-
IMPROVING RESOURCE LEVELING IN AGILE SOFTWARE DEVELOPMENT PROJECTS THROUGH AGENT-BASED APPROACH
IMPROVING RESOURCE LEVELING IN AGILE SOFTWARE DEVELOPMENT PROJECTS THROUGH AGENT-BASED APPROACH Constanta Nicoleta BODEA PhD, University Professor, Economic Informatics Department University of Economics,
Software Engineering of NLP-based Computer-assisted Coding Applications
Software Engineering of NLP-based Computer-assisted Coding Applications 1 Software Engineering of NLP-based Computer-assisted Coding Applications by Mark Morsch, MS; Carol Stoyla, BS, CLA; Ronald Sheffer,
A METHOD FOR REWRITING LEGACY SYSTEMS USING BUSINESS PROCESS MANAGEMENT TECHNOLOGY
A METHOD FOR REWRITING LEGACY SYSTEMS USING BUSINESS PROCESS MANAGEMENT TECHNOLOGY Gleison Samuel do Nascimento, Cirano Iochpe Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre,
A Framework of Context-Sensitive Visualization for User-Centered Interactive Systems
Proceedings of 10 th International Conference on User Modeling, pp423-427 Edinburgh, UK, July 24-29, 2005. Springer-Verlag Berlin Heidelberg 2005 A Framework of Context-Sensitive Visualization for User-Centered
707.009 Foundations of Knowledge Management Organizational Knowledge Repositories
707.009 Foundations of Knowledge Management Organizational Knowledge Repositories Markus Strohmaier Univ. Ass. / Assistant Professor Knowledge Management Institute Graz University of Technology, Austria
The SWEBOK Initiative and Software Measurement Intentions
The SWEBOK Initiative and Software Measurement Intentions Abstract ALAIN ABRAN Executive Co-editor, SWEBOK Project Pierre Bourque, Robert Dupuis (Co-editors) Articulating a body of knowledge is an essential
SmartLink: a Web-based editor and search environment for Linked Services
SmartLink: a Web-based editor and search environment for Linked Services Stefan Dietze, Hong Qing Yu, Carlos Pedrinaci, Dong Liu, John Domingue Knowledge Media Institute, The Open University, MK7 6AA,
Training Management System for Aircraft Engineering: indexing and retrieval of Corporate Learning Object
Training Management System for Aircraft Engineering: indexing and retrieval of Corporate Learning Object Anne Monceaux 1, Joanna Guss 1 1 EADS-CCR, Centreda 1, 4 Avenue Didier Daurat 31700 Blagnac France
SEMANTIC WEB BASED INFERENCE MODEL FOR LARGE SCALE ONTOLOGIES FROM BIG DATA
SEMANTIC WEB BASED INFERENCE MODEL FOR LARGE SCALE ONTOLOGIES FROM BIG DATA J.RAVI RAJESH PG Scholar Rajalakshmi engineering college Thandalam, Chennai. [email protected] Mrs.
Using Semantic Data Mining for Classification Improvement and Knowledge Extraction
Using Semantic Data Mining for Classification Improvement and Knowledge Extraction Fernando Benites and Elena Sapozhnikova University of Konstanz, 78464 Konstanz, Germany. Abstract. The objective of this
There is no software engineering crisis
There is no software engineering crisis Alex Colburn Jonathan Hsieh Matthew Kehrt Aaron Kimball January 16, 2008 Introduction There is no software engineering crisis. In order to determine what is meant
Process Modelling from Insurance Event Log
Process Modelling from Insurance Event Log P.V. Kumaraguru Research scholar, Dr.M.G.R Educational and Research Institute University Chennai- 600 095 India Dr. S.P. Rajagopalan Professor Emeritus, Dr. M.G.R
Quality Management of Software and Systems: Continuous Improvement Approaches
Quality Management of Software and Systems: Continuous Improvement Approaches Contents Quality Improvement Paradigm (QIP) Experience Factory (EF) Goal Question Metric (GQM) GQM + Strategies TQM Definition
Context Aware Mobile Network Marketing Services
Context-aware Mobile Multimedia Services in the Cloud Dejan Kovachev, Ralf Klamma Chair for Computer Science 5 (Information Systems), RWTH Aachen University Ahornstr. 55, D-52056, Aachen, Germany {kovachev,
Constructing Enterprise Information Network Security Risk Management Mechanism by Ontology
Tamkang Journal of Science and Engineering, Vol. 13, No. 1, pp. 79 87 (2010) 79 Constructing Enterprise Information Network Security Risk Management Mechanism by Ontology Fong-Hao Liu 1 * and Wei-Tsong
JOURNAL OF OBJECT TECHNOLOGY
JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2007 Vol. 6, No. 1, January-February 2007 CM Configuration Change Management John D.
A Quality Requirements Safety Model for Embedded and Real Time Software Product Quality
A Quality Requirements Safety Model for Embedded and Real Time Product Quality KHALID T. AL-SARAYREH Department of Engineering Hashemite University Zarqa 13115, Jordan [email protected] Abstract safety
Telecommunication (120 ЕCTS)
Study program Faculty Cycle Software Engineering and Telecommunication (120 ЕCTS) Contemporary Sciences and Technologies Postgraduate ECTS 120 Offered in Tetovo Description of the program This master study
Information Security in Big Data using Encryption and Decryption
International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842 Information Security in Big Data using Encryption and Decryption SHASHANK -PG Student II year MCA S.K.Saravanan, Assistant Professor
SWAP: ONTOLOGY-BASED KNOWLEDGE MANAGEMENT WITH PEER-TO-PEER TECHNOLOGY
SWAP: ONTOLOGY-BASED KNOWLEDGE MANAGEMENT WITH PEER-TO-PEER TECHNOLOGY M. EHRIG, C. TEMPICH AND S. STAAB Institute AIFB University of Karlsruhe 76128 Karlsruhe, Germany E-mail: {meh,cte,sst}@aifb.uni-karlsruhe.de
A semantic extension of a hierarchical storage management system for small and medium-sized enterprises.
Faculty of Computer Science Institute of Software- and Multimedia Technology, Chair of Multimedia Technology A semantic extension of a hierarchical storage management system for small and medium-sized
IoT-03-2017 R&I on IoT integration and platforms INTERNET OF THINGS FOCUS AREA
HORIZON 2020 WP 2016-17 IoT-03-2017 R&I on IoT integration and platforms INTERNET OF THINGS DG CONNECT European Commission Internet of Things As enabler of a future hyper-connected society, the Internet
Argumentación en Agentes Inteligentes: Teoría y Aplicaciones Prof. Carlos Iván Chesñevar
Argumentation in Intelligent Agents: Theory and Applications Carlos Iván Chesñevar [email protected] http://cs.uns.edu.ar/~cic cic Part 5 - Outline Main research projects in argumentation Main conferences
