Outline. The Stack ADT Applications of Stacks Array-based implementation Growable array-based stack. Stacks 2
|
|
|
- Bertha Douglas
- 10 years ago
- Views:
Transcription
1 Stacks
2 Outline The Stack ADT Applications of Stacks Array-based implementation Growable array-based stack Stacks 2
3 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data structure An ADT specifies: Data stored Operations on the data Error conditions associated with operations Example: ADT modeling a simple stock trading system The data stored are buy/sell orders The operations supported are order buy(stock, shares, price) order sell(stock, shares, price) void cancel(order) Error conditions: Buy/sell a nonexistent stock Cancel a nonexistent order Stacks 3
4 The Stack ADT The Stack ADT stores arbitrary objects Insertions and deletions follow the last-in first-out scheme Think of a spring-loaded plate dispenser Main stack operations: push(object o): inserts element o pop(): removes and returns the last inserted element Auxiliary stack operations: top(): returns a reference to the last inserted element without removing it size(): returns the number of elements stored empty(): returns a Boolean value indicating whether no elements are stored Stacks 4
5 Exceptions Attempting the execution of an operation of ADT may sometimes cause an error condition, called an exception Exceptions are said to be thrown by an operation that cannot be executed In the Stack ADT, operations pop and top cannot be performed if the stack is empty Attempting the execution of pop or top on an empty stack throws an EmptyStackException Stacks 5
6 Applications of Stacks Direct applications Page-visited history in a Web browser Undo sequence in a text editor Saving local variables when one function calls another, and this one calls another, and so on. Indirect applications Auxiliary data structure for algorithms Component of other data structures Stacks 6
7 Let the Hunger Games begin! Stacks 7
8 C++ Run-time Stack The C++ run-time system keeps track of the chain of active functions with a stack When a function is called, the run-time system pushes on the stack a frame containing Local variables and return value Program counter, keeping track of the statement being executed When a function returns, its frame is popped from the stack and control is passed to the method on top of the stack main() { int i = 5; foo(i); } foo(int j) { int k; k = j+1; bar(k); } bar(int m) { } bar PC = 1 m = 6 foo PC = 3 j = 5 k = 6 main PC = 2 i = 5 Stacks 8
9 Array-based Stack A simple way of implementing the Stack ADT uses an array We add elements from left to right A variable keeps track of the index of the top element Algorithm size() return t + 1 Algorithm pop() if isempty() then throw EmptyStackException else t t 1 return S[t + 1] S t Stacks 9
10 Array-based Stack (cont.) The array storing the stack elements may become full A push operation will then throw a FullStackException Limitation of the arraybased implementation Not intrinsic to the Stack ADT Algorithm push(o) if t = S.length 1 then throw FullStackException else t t + 1 S[t] o S t Stacks 10
11 Performance and Limitations Performance Let n be the number of elements in the stack The space used is O(n) Each operation runs in time O(1) Limitations The maximum size of the stack must be defined a priori, and cannot be changed Trying to push a new element into a full stack causes an implementation-specific exception Stacks 11
12 Computing Spans We show how to use a stack as an auxiliary data structure in an algorithm Spans have applications to financial analysis E.g., stock at 52-week high Given an array X, the span S[i] of X[i] is the maximum number of consecutive elements X[j] immediately preceding X[i] and such that X[j] X[i] X S Stacks 12
13 Naïve Compute Spans Algorithm Algorithm spans1(x, n) Input array X of n integers Output array S of spans of X # S new array of n integers n for i 0 to n 1 do n s 1 n while s i X[i s] X[i] (n 1) s s (n 1) S[i] s n return S 1 [TEAMS] What is the big-oh? Algorithm spans1 runs in O(n 2 ) time Stacks 13
14 Computing Spans with a Stack We keep in a stack the indices of the elements visible when looking back We scan the array from left to right Let i be the current index We pop indices from the stack until we find index j such that X[i] X[j] We set S[i] i j We push i onto the stack Stacks 14
15 Linear Algorithm Each index of the array Is pushed into the stack exactly one Is popped from the stack at most once The statements in the while-loop are executed at most n times Algorithm spans2 runs in O(n) time Algorithm spans2(x, n) # S new array of n integers n A new empty stack 1 for i 0 to n 1 do n while ( A.isEmpty() X[top()] X[i] ) do n j A.pop() n if A.isEmpty() then n S[i] i + 1 n else j top() n S[i] i j n A.push(i) n return S 1 Stacks 15
16 Growable Array-based Stack In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one How large should the new array be? incremental strategy: increase the size by a constant c doubling strategy: double the size Algorithm push(o) if t = S.length 1 then A new array of size for i 0 to t do A[i] S[i] S A t t + 1 S[t] o Stacks 16
17 Comparison of the Strategies We compare the incremental strategy and the doubling strategy by analyzing the total time T(n) needed to perform a series of n push operations We assume that we start with an empty stack represented by an array of size 1 We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., T(n)/n Stacks 17
18 Incremental Strategy Analysis We replace the array k = n/c times The total time T(n) of a series of n push operations is proportional to n + c + 2c + 3c + 4c + + kc = n + c( k) = n + ck(k + 1)/2 Since c is a constant, T(n) is O(n + k 2 ), i.e., O(n 2 ) The amortized time of a push operation is O(n) Stacks 18
19 Doubling Strategy Analysis We replace the array k = log 2 n times The total time T(n) of a series of n push operations is proportional to n k = n + 2 k = 2n 1 T(n) is O(n) The amortized time of a push operation is O(1) geometric series Stacks
20 Stack Interface in C++ Interface corresponding to our Stack ADT Requires the definition of class EmptyStackException Similar to STL vector STL construct is stack template <typename Object> class Stack { public: int size(); bool empty(); Object& top() throw(emptystackexception); void push(object o); Object pop() throw(emptystackexception); }; Stacks 20
21 Array-based Stack in C++ template <typename Object> class ArrayStack { private: int capacity; // stack capacity Object *S; // stack array int top; // top of stack public: ArrayStack(int c) { capacity = c; S = new Object[capacity]; t = 1; } bool empty() { return (t < 0); } Object pop() throw(emptystackexception) { if(isempty()) throw EmptyStackException ( Access to empty stack ); return S[t--]; } // (other functions omitted) Stacks 21
This lecture. Abstract data types Stacks Queues. ADTs, Stacks, Queues 1. 2004 Goodrich, Tamassia
This lecture Abstract data types Stacks Queues ADTs, Stacks, Queues 1 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data structure An ADT specifies: Data stored Operations
Stacks. Stacks (and Queues) Stacks. q Stack: what is it? q ADT. q Applications. q Implementation(s) CSCU9A3 1
Stacks (and Queues) 1 Stacks Stack: what is it? ADT Applications Implementation(s) 2 CSCU9A3 1 Stacks and ueues A stack is a very important data structure in computing science. A stack is a seuence of
Outline. Computer Science 331. Stack ADT. Definition of a Stack ADT. Stacks. Parenthesis Matching. Mike Jacobson
Outline Computer Science 1 Stacks Mike Jacobson Department of Computer Science University of Calgary Lecture #12 1 2 Applications Array-Based Linked List-Based 4 Additional Information Mike Jacobson (University
STACKS,QUEUES, AND LINKED LISTS
STACKS,QUEUES, AND LINKED LISTS Stacks Queues Linked Lists Double-Ended Queues Case Study: A Stock Analysis Applet 1 Stacks Astack is a container of objects that are inserted and removed according to the
Introduction to Stacks
Introduction to Stacks What is a Stack Stack implementation using array. Stack implementation using linked list. Applications of Stack. What is a Stack? Stack is a data structure in which data is added
What is a Stack? Stacks and Queues. Stack Abstract Data Type. Java Interface for Stack ADT. Array-based Implementation
Stacks and Queues What is a Stack? Stores a set of elements in a particular order Accessed in Last-In In-First-Out (LIFO) fashion Real life examples: Pile of books PEZ dispenser Cup trays in cafeteria
1.00 Lecture 35. Data Structures: Introduction Stacks, Queues. Reading for next time: Big Java: 15.1-15.3. Data Structures
1.00 Lecture 35 Data Structures: Introduction Stacks, Queues Reading for next time: Big Java: 15.1-15.3 Data Structures Set of reusable classes used in algorithms, simulations, operating systems, applications
Analysis of a Search Algorithm
CSE 326 Lecture 4: Lists and Stacks 1. Agfgd 2. Dgsdsfd 3. Hdffdsf 4. Sdfgsfdg 5. Tefsdgass We will review: Analysis: Searching a sorted array (from last time) List ADT: Insert, Delete, Find, First, Kth,
Last not not Last Last Next! Next! Line Line Forms Forms Here Here Last In, First Out Last In, First Out not Last Next! Call stack: Worst line ever!
ECE 551 C++ Programming, Data structures, and Algorithms Abstract Data Type: Stack Last In First Out (LIFO) 1 2 2 1 4 3 1 3 4 Stacks in Programming Worst line ever! 5 3 1 5 Stacks are not useful for waiting
DATA STRUCTURE - STACK
DATA STRUCTURE - STACK http://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm Copyright tutorialspoint.com A stack is an abstract data type ADT, commonly used in most programming
Course: Programming II - Abstract Data Types. The ADT Stack. A stack. The ADT Stack and Recursion Slide Number 1
Definition Course: Programming II - Abstract Data Types The ADT Stack The ADT Stack is a linear sequence of an arbitrary number of items, together with access procedures. The access procedures permit insertions
Universidad Carlos III de Madrid
Universidad Carlos III de Madrid Algorithms and Data Structures (ADS) Bachelor in Informatics Engineering Computer Science Department Lists, Stacks and Queues. Authors: Isabel Segura Bedmar April 2011
Queues Outline and Required Reading: Queues ( 4.2 except 4.2.4) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic
Queues Outline and Required Reading: Queues ( 4. except 4..4) COSC, Fall 3, Section A Instructor: N. Vlajic Queue ADT Queue linear data structure organized according to first-in/first-out (FIFO) principle!
7.1 Our Current Model
Chapter 7 The Stack In this chapter we examine what is arguably the most important abstract data type in computer science, the stack. We will see that the stack ADT and its implementation are very simple.
Data Structures and Algorithms V22.0102. Otávio Braga
Data Structures and Algorithms V22.0102 Otávio Braga We use a stack When an operand is read, output it When an operator is read Pop until the top of the stack has an element of lower precedence Then push
Quiz 4 Solutions EECS 211: FUNDAMENTALS OF COMPUTER PROGRAMMING II. 1 Q u i z 4 S o l u t i o n s
Quiz 4 Solutions Q1: What value does function mystery return when called with a value of 4? int mystery ( int number ) { if ( number
Data Structures Using C++ 2E. Chapter 5 Linked Lists
Data Structures Using C++ 2E Chapter 5 Linked Lists Doubly Linked Lists Traversed in either direction Typical operations Initialize the list Destroy the list Determine if list empty Search list for a given
Binary Heap Algorithms
CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected] 2005 2009 Glenn G. Chappell
Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction
Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know
Abstract Data Type. EECS 281: Data Structures and Algorithms. The Foundation: Data Structures and Abstract Data Types
EECS 281: Data Structures and Algorithms The Foundation: Data Structures and Abstract Data Types Computer science is the science of abstraction. Abstract Data Type Abstraction of a data structure on that
Zabin Visram Room CS115 CS126 Searching. Binary Search
Zabin Visram Room CS115 CS126 Searching Binary Search Binary Search Sequential search is not efficient for large lists as it searches half the list, on average Another search algorithm Binary search Very
Linked Lists Linked Lists, Queues, and Stacks
Linked Lists Linked Lists, Queues, and Stacks CSE 10: Introduction to C Programming Fall 200 Dynamic data structure Size is not fixed at compile time Each element of a linked list: holds a value points
Recursion. Definition: o A procedure or function that calls itself, directly or indirectly, is said to be recursive.
Recursion Definition: o A procedure or function that calls itself, directly or indirectly, is said to be recursive. Why recursion? o For many problems, the recursion solution is more natural than the alternative
Course: Programming II - Abstract Data Types. The ADT Queue. (Bobby, Joe, Sue, Ellen) Add(Ellen) Delete( ) The ADT Queues Slide Number 1
Definition Course: Programming II - Abstract Data Types The ADT Queue The ADT Queue is a linear sequence of an arbitrary number of items, together with access procedures. The access procedures permit addition
Data Structures and Algorithms Lists
Data Structures and Algorithms Lists Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/19 5-0: Abstract Data Types An
Cpt S 223. School of EECS, WSU
Abstract Data Types 1 Topics Abstract Data Types (ADTs) Some basic ADTs: Lists Stacks Queues 2 Primitive Data Type vs. Abstract Data Types Primitive DT: ADT: programmer progra ammer Interface (API) e.g.,
COMP 356 Programming Language Structures Notes for Chapter 10 of Concepts of Programming Languages Implementing Subprograms.
COMP 356 Programming Language Structures Notes for Chapter 10 of Concepts of Programming Languages Implementing Subprograms 1 Activation Records activation declaration location Recall that an activation
Habanero Extreme Scale Software Research Project
Habanero Extreme Scale Software Research Project Comp215: Java Method Dispatch Zoran Budimlić (Rice University) Always remember that you are absolutely unique. Just like everyone else. - Margaret Mead
Sequential Data Structures
Sequential Data Structures In this lecture we introduce the basic data structures for storing sequences of objects. These data structures are based on arrays and linked lists, which you met in first year
CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team
CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A
14 Stacks, Queues, And Linked Lists
14-1 Java Au Naturel by William C. Jones 14-1 14 Stacks, Queues, And Linked Lists Overview This chapter requires that you have a solid understanding of arrays (Chapter Seven) and have studied Exceptions
Stacks. Linear data structures
Stacks Linear data structures Collection of components that can be arranged as a straight line Data structure grows or shrinks as we add or remove objects ADTs provide an abstract layer for various operations
CmpSci 187: Programming with Data Structures Spring 2015
CmpSci 187: Programming with Data Structures Spring 2015 Lecture #12 John Ridgway March 10, 2015 1 Implementations of Queues 1.1 Linked Queues A Linked Queue Implementing a queue with a linked list is
Big O and Limits Abstract Data Types Data Structure Grand Tour. http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.
Big O and Limits Abstract Data Types Data Structure Grand Tour http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.png Consider the limit lim n f ( n) g ( n ) What does it
BSc (Hons) Business Information Systems, BSc (Hons) Computer Science with Network Security. & BSc. (Hons.) Software Engineering
BSc (Hons) Business Information Systems, BSc (Hons) Computer Science with Network Security & BSc. (Hons.) Software Engineering Cohort: BIS/05/FT BCNS/05/FT BSE/05/FT Examinations for 2005-2006 / Semester
QUEUES. Primitive Queue operations. enqueue (q, x): inserts item x at the rear of the queue q
QUEUES A queue is simply a waiting line that grows by adding elements to its end and shrinks by removing elements from the. Compared to stack, it reflects the more commonly used maxim in real-world, namely,
HW3: Programming with stacks
HW3: Programming with stacks Due: 12PM, Noon Thursday, September 18 Total: 20pts You may do this assignment with one other student. A team of two members must practice pair programming. Pair programming
Boolean Expressions, Conditions, Loops, and Enumerations. Precedence Rules (from highest to lowest priority)
Boolean Expressions, Conditions, Loops, and Enumerations Relational Operators == // true if two values are equivalent!= // true if two values are not equivalent < // true if left value is less than the
API for java.util.iterator. ! hasnext() Are there more items in the list? ! next() Return the next item in the list.
Sequences and Urns 2.7 Lists and Iterators Sequence. Ordered collection of items. Key operations. Insert an item, iterate over the items. Design challenge. Support iteration by client, without revealing
Efficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case.
Algorithms Efficiency of algorithms Computational resources: time and space Best, worst and average case performance How to compare algorithms: machine-independent measure of efficiency Growth rate Complexity
Chapter 8: Bags and Sets
Chapter 8: Bags and Sets In the stack and the queue abstractions, the order that elements are placed into the container is important, because the order elements are removed is related to the order in which
Sample Questions Csci 1112 A. Bellaachia
Sample Questions Csci 1112 A. Bellaachia Important Series : o S( N) 1 2 N N i N(1 N) / 2 i 1 o Sum of squares: N 2 N( N 1)(2N 1) N i for large N i 1 6 o Sum of exponents: N k 1 k N i for large N and k
DATA STRUCTURE - QUEUE
DATA STRUCTURE - QUEUE http://www.tutorialspoint.com/data_structures_algorithms/dsa_queue.htm Copyright tutorialspoint.com Queue is an abstract data structure, somewhat similar to stack. In contrast to
Storage Classes CS 110B - Rule Storage Classes Page 18-1 \handouts\storclas
CS 110B - Rule Storage Classes Page 18-1 Attributes are distinctive features of a variable. Data type, int or double for example, is an attribute. Storage class is another attribute. There are four storage
COMP 356 Programming Language Structures Notes for Chapter 4 of Concepts of Programming Languages Scanning and Parsing
COMP 356 Programming Language Structures Notes for Chapter 4 of Concepts of Programming Languages Scanning and Parsing The scanner (or lexical analyzer) of a compiler processes the source program, recognizing
Parallel Programming
Parallel Programming 0024 Recitation Week 7 Spring Semester 2010 R 7 :: 1 0024 Spring 2010 Today s program Assignment 6 Review of semaphores Semaphores Semaphoren and (Java) monitors Semaphore implementation
Queues and Stacks. Atul Prakash Downey: Chapter 15 and 16
Queues and Stacks Atul Prakash Downey: Chapter 15 and 16 Queues Queues occur in real life a lot. Queues at checkout Queues in banks In software systems: Queue of requests at a web servers Properties of
Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child
Binary Search Trees Data in each node Larger than the data in its left child Smaller than the data in its right child FIGURE 11-6 Arbitrary binary tree FIGURE 11-7 Binary search tree Data Structures Using
Analysis of Binary Search algorithm and Selection Sort algorithm
Analysis of Binary Search algorithm and Selection Sort algorithm In this section we shall take up two representative problems in computer science, work out the algorithms based on the best strategy to
Linked Lists, Stacks, Queues, Deques. It s time for a chainge!
Linked Lists, Stacks, Queues, Deques It s time for a chainge! Learning Goals After this unit, you should be able to... Differentiate an abstraction from an implementation. Define and give examples of problems
Chapter 7D The Java Virtual Machine
This sub chapter discusses another architecture, that of the JVM (Java Virtual Machine). In general, a VM (Virtual Machine) is a hypothetical machine (implemented in either hardware or software) that directly
The ADT Binary Search Tree
The ADT Binary Search Tree The Binary Search Tree is a particular type of binary tree that enables easy searching for specific items. Definition The ADT Binary Search Tree is a binary tree which has an
ADTs,, Arrays, Linked Lists
1 ADTs,, Arrays, Linked Lists Outline and Required Reading: ADTs ( 2.1.2) Arrays ( 1.5) Linked Lists ( 4.3.1, 4.3.2) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic Abstract Data Type (ADT) 2 abstract
Unordered Linked Lists
Unordered Linked Lists Derive class unorderedlinkedlist from the abstract class linkedlisttype Implement the operations search, insertfirst, insertlast, deletenode See code on page 292 Defines an unordered
Linear ADTs. Restricted Lists. Stacks, Queues. ES 103: Data Structures and Algorithms 2012 Instructor Dr Atul Gupta
Linear DT-1: Restricted Lists Stacks, Queues tul Gupta Restricted Lists Stack Queue Circular queue Priority queue General Lists rrays Linked list Circular list Doubly linked list Linear DTs 1 Stacks Using
Software Engineering Concepts: Testing. Pointers & Dynamic Allocation. CS 311 Data Structures and Algorithms Lecture Slides Monday, September 14, 2009
Software Engineering Concepts: Testing Simple Class Example continued Pointers & Dynamic Allocation CS 311 Data Structures and Algorithms Lecture Slides Monday, September 14, 2009 Glenn G. Chappell Department
Abstract Data Types. Chapter 2
Chapter 2 Abstract Data Types The second idea at the core of computer science, along with algorithms, is data. In a modern computer, data consists fundamentally of binary bits, but meaningful data is organized
1/1 7/4 2/2 12/7 10/30 12/25
Binary Heaps A binary heap is dened to be a binary tree with a key in each node such that: 1. All leaves are on, at most, two adjacent levels. 2. All leaves on the lowest level occur to the left, and all
Short Notes on Dynamic Memory Allocation, Pointer and Data Structure
Short Notes on Dynamic Memory Allocation, Pointer and Data Structure 1 Dynamic Memory Allocation in C/C++ Motivation /* a[100] vs. *b or *c */ Func(int array_size) double k, a[100], *b, *c; b = (double
CompSci-61B, Data Structures Final Exam
Your Name: CompSci-61B, Data Structures Final Exam Your 8-digit Student ID: Your CS61B Class Account Login: This is a final test for mastery of the material covered in our labs, lectures, and readings.
Data Structures in the Java API
Data Structures in the Java API Vector From the java.util package. Vectors can resize themselves dynamically. Inserting elements into a Vector whose current size is less than its capacity is a relatively
X86-64 Architecture Guide
X86-64 Architecture Guide For the code-generation project, we shall expose you to a simplified version of the x86-64 platform. Example Consider the following Decaf program: class Program { int foo(int
CS 111 Classes I 1. Software Organization View to this point:
CS 111 Classes I 1 Software Organization View to this point: Data Objects and primitive types Primitive types operators (+, /,,*, %). int, float, double, char, boolean Memory location holds the data Objects
Moving from CS 61A Scheme to CS 61B Java
Moving from CS 61A Scheme to CS 61B Java Introduction Java is an object-oriented language. This document describes some of the differences between object-oriented programming in Scheme (which we hope you
Inside the Java Virtual Machine
CS1Bh Practical 2 Inside the Java Virtual Machine This is an individual practical exercise which requires you to submit some files electronically. A system which measures software similarity will be used
Lecture 12: Abstract data types
Lecture 12: Abstract data types Algebras Abstract data types Encapsulation and information hiding Parameterization Algebras Definition Which kinds of data do we want to discuss? What can we do with it?
Algorithms and Data Structures Written Exam Proposed SOLUTION
Algorithms and Data Structures Written Exam Proposed SOLUTION 2005-01-07 from 09:00 to 13:00 Allowed tools: A standard calculator. Grading criteria: You can get at most 30 points. For an E, 15 points are
C Compiler Targeting the Java Virtual Machine
C Compiler Targeting the Java Virtual Machine Jack Pien Senior Honors Thesis (Advisor: Javed A. Aslam) Dartmouth College Computer Science Technical Report PCS-TR98-334 May 30, 1998 Abstract One of the
Common Data Structures
Data Structures 1 Common Data Structures Arrays (single and multiple dimensional) Linked Lists Stacks Queues Trees Graphs You should already be familiar with arrays, so they will not be discussed. Trees
Stacks and queues. Algorithms and Data Structures, Fall 2011. Rasmus Pagh. Based on slides by Kevin Wayne, Princeton
Algorithms and Data Structures, Fall 2011 Stacks and queues Rasmus Pagh Based on slides by Kevin Wayne, Princeton Algorithms, 4 th Edition Robert Sedgewick and Kevin Wayne Copyright 2002 2011 Stacks and
TECHNICAL UNIVERSITY OF CRETE DATA STRUCTURES FILE STRUCTURES
TECHNICAL UNIVERSITY OF CRETE DEPT OF ELECTRONIC AND COMPUTER ENGINEERING DATA STRUCTURES AND FILE STRUCTURES Euripides G.M. Petrakis http://www.intelligence.tuc.gr/~petrakis Chania, 2007 E.G.M. Petrakis
1 The Java Virtual Machine
1 The Java Virtual Machine About the Spec Format This document describes the Java virtual machine and the instruction set. In this introduction, each component of the machine is briefly described. This
CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions
CS 2112 Spring 2014 Assignment 3 Data Structures and Web Filtering Due: March 4, 2014 11:59 PM Implementing spam blacklists and web filters requires matching candidate domain names and URLs very rapidly
Chapter 3: Restricted Structures Page 1
Chapter 3: Restricted Structures Page 1 1 2 3 4 5 6 7 8 9 10 Restricted Structures Chapter 3 Overview Of Restricted Structures The two most commonly used restricted structures are Stack and Queue Both
Algorithms and Data Structures
Algorithms and Data Structures Part 2: Data Structures PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Summer Term 2016 Overview general linked lists stacks queues trees 2 2
Debugging. Common Semantic Errors ESE112. Java Library. It is highly unlikely that you will write code that will work on the first go
Debugging ESE112 Java Programming: API, Psuedo-Code, Scope It is highly unlikely that you will write code that will work on the first go Bugs or errors Syntax Fixable if you learn to read compiler error
Data Structures Fibonacci Heaps, Amortized Analysis
Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:
Java Software Structures
INTERNATIONAL EDITION Java Software Structures Designing and Using Data Structures FOURTH EDITION John Lewis Joseph Chase This page is intentionally left blank. Java Software Structures,International Edition
Binary search algorithm
Binary search algorithm Definition Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval covering the whole array. If the value of the search key is less than
Software Engineering Techniques
Software Engineering Techniques Low level design issues for programming-in-the-large. Software Quality Design by contract Pre- and post conditions Class invariants Ten do Ten do nots Another type of summary
Cours de C++ Utilisations des conteneurs
Cours de C++ Utilisations des conteneurs Cécile Braunstein [email protected] 1 / 18 Introduction Containers - Why? Help to solve messy problems Provide useful function and data structure Consistency
Learning Outcomes. COMP202 Complexity of Algorithms. Binary Search Trees and Other Search Trees
Learning Outcomes COMP202 Complexity of Algorithms Binary Search Trees and Other Search Trees [See relevant sections in chapters 2 and 3 in Goodrich and Tamassia.] At the conclusion of this set of lecture
Introduction to Data Structures
Introduction to Data Structures Albert Gural October 28, 2011 1 Introduction When trying to convert from an algorithm to the actual code, one important aspect to consider is how to store and manipulate
A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:
Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)
22c:31 Algorithms. Ch3: Data Structures. Hantao Zhang Computer Science Department http://www.cs.uiowa.edu/~hzhang/c31/
22c:31 Algorithms Ch3: Data Structures Hantao Zhang Computer Science Department http://www.cs.uiowa.edu/~hzhang/c31/ Linear Data Structures Now we can now explore some convenient techniques for organizing
Explain the relationship between a class and an object. Which is general and which is specific?
A.1.1 What is the Java Virtual Machine? Is it hardware or software? How does its role differ from that of the Java compiler? The Java Virtual Machine (JVM) is software that simulates the execution of a
D06 PROGRAMMING with JAVA
Cicles Formatius de Grau Superior Desenvolupament d Aplicacions Informàtiques D06 PROGRAMMING with JAVA Ch20 Data Structures I PowerPoint presentation, created by Angel A. Juan - ajuanp(@)gmail.com, for
St S a t ck a ck nd Qu Q eue 1
Stack and Queue 1 Stack Data structure with Last-In First-Out (LIFO) behavior In Out C B A B C 2 Typical Operations Pop on Stack Push isempty: determines if the stack has no elements isfull: determines
For the next three questions, consider the class declaration: Member function implementations put inline to save space.
Instructions: This homework assignment focuses on basic facts regarding classes in C++. Submit your answers via the Curator System as OQ4. For the next three questions, consider the class declaration:
Data Structures and Algorithms
Data Structures and Algorithms CS245-2016S-05 Abstract Data Types and Lists David Galles Department of Computer Science University of San Francisco 05-0: Abstract Data Types Recall that an Abstract Data
Java Collection Framework hierarchy. What is Data Structure? Chapter 20 Lists, Stacks, Queues, and Priority Queues
Chapter 20 Lists, Stacks, Queues, and Priority Queues Objectives q To explore the relationship between interfaces and classes in the Java Collections Framework hierarchy ( 20.2). q To use the common methods
Mobile App Design Project #1 Java Boot Camp: Design Model for Chutes and Ladders Board Game
Mobile App Design Project #1 Java Boot Camp: Design Model for Chutes and Ladders Board Game Directions: In mobile Applications the Control Model View model works to divide the work within an application.
Introduction to Data Structures and Algorithms
Introduction to Data Structures and Algorithms Chapter: Elementary Data Structures(1) Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German) Martensstraße 3, 91058 Erlangen Overview on simple data structures
CSC 2405: Computer Systems II
CSC 2405: Computer Systems II Spring 2013 (TR 8:30-9:45 in G86) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Introductions Mirela Damian Room 167A in the Mendel Science Building [email protected]
CompuScholar, Inc. Alignment to Utah's Computer Programming II Standards
CompuScholar, Inc. Alignment to Utah's Computer Programming II Standards Course Title: TeenCoder: Java Programming Course ISBN: 978 0 9887070 2 3 Course Year: 2015 Note: Citation(s) listed may represent
Data Structures and Algorithms C++ Implementation
BK TP.HCM Ho Chi Minh City University of Technology Faculty of Computer Science and Engineering BK TP.HCM Data Structures and Algorithms C++ Implementation Huỳnh Tấn Đạt Email: [email protected] Home
1 An application in BPC: a Web-Server
1 An application in BPC: a Web-Server We briefly describe our web-server case-study, dwelling in particular on some of the more advanced features of the BPC framework, such as timeouts, parametrized events,
