International Journal of Emerging Technology & Research
|
|
|
- Gabriella May
- 10 years ago
- Views:
Transcription
1 International Journal of Emerging Technology & Research An Implementation Scheme For Software Project Management With Event-Based Scheduler Using Ant Colony Optimization Roshni Jain 1, Monali Kankariya 2, Ashwini Jadhav 3, Dhanvantri Kharade Patil 4 1, 2, 3, 4 Department of Information Technology, BVCOEW, Pune, Maharashtra, India Abstract Ant colony optimization (ACO) is a population-based heuristics that can be used as solutions for difficult optimization problems. In ACO, a set of software agents, called artificial ants, searches for good solution to a given optimization problem research into developing effective computer aided techniques for planning software projects which is important and challenging for software engineering. Different from projects in other fields, software projects are people-intensive activities and their related resources are mainly human resources. Thus, an adequate model for software project planning has to deal with not only the problem of project task scheduling but also the problem of human resource allocation. The basic idea of the EBS is to adjust the allocation of employees at events and keep the allocation unchanged at non-events. With this strategy, the proposed method enables the modeling of resource conflict, task preemption and preserves the exhibition in human resource allocation. To solve the planning problem, an ACO algorithm is further is used. Keywords: Ant colony optimization (ACO), event scheduler, resource allocation, software project planning, project scheduling, workload assignment. 1. Introduction With the rapid development of the software industry, software companies are now facing a highly competitive market. To succeed, companies have to make efficient project plans to reduce the cost of software construction. However, in medium to large-scale projects, the problem of project planning is very complex and challenging. To plan a software project, the project manager needs to estimate the project workload along with its cost and decide the project schedule and resource allocation. For scheduling and staffing management, similarly to other projects (e.g., construction projects), management is usually conducted by project management tools and techniques. For example, traditional project management techniques like the program evaluation and review technique (PERT), the critical path method (CPM), and the resource-constrained project scheduling problem (RCPSP) model have been applied in software project planning. Although these methods are important and helpful, they are increasingly considered to be inadequate for modelling the unique characteristics of today s software projects. The main reason is that, differently from other projects, a software project is a people intensive activity and its related resources are mainly human resources. Different software project tasks require employees with different skills, and skill proficiency of employees significantly influences the efficiency of project execution. As such, assigning employees to the best-fitted tasks is challenging for software project managers, and human resource allocation has become a crucial part in software project planning. The main purpose is that the method takes advantage of ACO to solve the complicated planning problem and also introduces an event-based scheduler. The proposed algorithm manages to yield better plans with lower costs and more stable work-load assignments compared to the other existing approaches. A new method for solving the software project planning problem has been developed. 2. Related Work Done In paper [1] software engineering field, developing software tools is challenging and important. In software Copyright reserved by IJETR (Impact Factor: 0.997) 60
2 project humans are important. Human resources are mainly needed. In software project, planning is important. Since software project is much related to human resource, the human resource allocation is the important problem. A software project planning tool must consider the project planning as well as human resource allocation problem. Also the uncertainty factors can occur. In current approach it develops an event based scheduler and an ant colony optimization. The given system represents a plan by task list and employee allocation matrix. In the EBS, the beginning time of the project, the time when resources are released from accomplished tasks, and the time when employees join or leave the project are regarded as events. For planning and employee allocation ACO is used. In real world projects the uncertain events can occur. Previous models did not consider much about the uncertainty. The uncertainty can be considered as an event in event based scheduler. The existing event based scheduler is modified in order to include the uncertain events such as unexpected absence of employee, termination of employee. Such uncertainty can be handled in the current system. In [2] given that research into developing effective computer aided techniques for planning software projects is important and challenging for software engineering. Different from projects in other fields, software projects are people intensive activities and their related resources are mainly human resources. Thus, an adequate model for software project planning has to deal with not only the problem of project task scheduling but also the problem of human resource allocation. But as both of these two problems are difficult, existing models either suffer from a very large search space or have to restrict the flexibility of human resource allocation to simplify the model. To develop a flexible and effective model for software project planning, this paper proposes a novel approach with an ant colony optimization (ACO) algorithm. The given approach represents a plan by a task list and a planned employee allocation matrix. In this way, both the issues of task scheduling and employee allocation can be taken into account. In [3] given that Ant colony optimization (ACO) is a population-based met heuristic that can be used to find approximate solutions for difficult optimization problems. In ACO, a set of software agents called artificial ants searches for good solutions for a given optimization problem research into developing effective computer aided techniques for planning software projects is important and challenging for software engineering. Different from projects in other fields, software projects are peopleintensive activities and their related resources are mainly human resources. Thus, an adequate model for software project planning has to deal with not only the problem of project task scheduling but also the problem of human resource allocation. But as both of these two problems are difficult, the basic idea of the EBS is introduced to adjust the allocation of employees at events and keep the allocation unchanged at non-events. With this strategy, the proposed method enables the modeling of resource conflict, task pre-emption and preserves the flexibility in human resource allocation. To solve the planning problem, an ACO algorithm is further is used. 3. Proposed System Architecture Fig.1 System Architecture As shown in fig.1 we are going to implement the following algorithm in our system. We are taking ontology files from database process it at server using ACO-EBS and return the result of the server process to the browser. 3.1 Event Based Scheduler (EBS) The basic idea of the EBS is to adjust the allocation of employees at events and keep the allocation unchanged at nonevents. With this strategy, the proposed method enables the modeling of resource conflict and task preemption and preserves the flexibility in human resource allocation. Following explanation show the studied pseudo code for EBS implementation: Copyright reserved by IJETR (Impact Factor: 0.997) 61
3 1. Initialize number of available employees & time t=1 2. Set beginning time & joining and leaving times of employees as events 3. While the project is not over: If t is an event: o Make a queue of tasks to be performed at t according to priorities in task list o While the queue is not empty: Select t j as the first task and remove it from the queue For every employee (i=1 to m): If planned working hours of i th employee for j th task is not larger than remaining working hours of i th employee: Set working hours spent by i th employee on j th task to planned working hours of i th employee for j th task. Else: Set working hours spent by i th employee on j th task to remaining working hours of i th employee. Else: o Workloads are same as those at t-1 4. If some tasks are complete at t: Set t+1 as an event, for eliminating redundant working hours and reset the queue. 5. t=t+1 End 3.2 Ant Colony Optimization (ACO) An ACO algorithm works by dispatching a group of artificial ants to build solutions to the problem iteratively. In general, an ACO algorithm can be viewed as the interplay and the repeated execution of the following three main procedures: 1] Solution construction: During each iteration of the algorithm, a group of the ants set out to build solutions to the problem. 2] Pheromone management: Along with the solution construction procedure, pheromone values are updated according to the performance of the solutions built by ants. 3] Daemon actions: Daemon actions mean the centralized operations that cannot be done by single ants. 1] Input module: The following data pertaining to the problem are given as input: Number of Tasks (n), number of machines in the shop (m), number of operations Ji of each task i. 2] Initialization module: The number of ants is defined, and the pheromone trails used by them for constructing solutions are initialized. This problem uses two pheromone trails: pheromone trail intensity for route selection gives information about the desirability of choosing route r for operation Oij at iteration tn and pheromone trail intensity, which indicates the desirability of choosing operation Oij directly after the operation Oi j is loaded on machine k, is used for task conflict resolution while generating feasible schedule. 3] Solution construction and Evaluation module: Each ant constructs a solution in two stages. In the I stage, an ant, at each construction step, allocates an operation of a particular task to one of its available resources. The ants use a probabilistic choice rule which is a function of the pheromone trail and heuristic information based on processing time. In the II stage, on allocation of all operations to the machines, each ant generates a schedule based on algorithm. 4] Sorting module: The best solution of the current iteration and the global best are sorted and stored separately. 5] Termination Check module: A specified number of iterations is estimated to terminate the algorithm depending on the size of the problem. Termination directs to the output module; otherwise, continue to the pheromone updating module. 6] Pheromone updating module: At the end of iteration, the pheromone trails corresponding to only one single ant is updated. This ant may be the one which found the best solution in the current iteration or the one which found the best solution from the beginning of the trial. 7] Output Module: This module prints the best solution of the optimal route choices of all operations and schedule for minimum make span time criterion. Following fig.2 shows the flowchart of ACO Algorithm and diagrammatically the algorithm is explained stepwise. The different modules of the proposed Ant Colony Optimization approach are described below. Copyright reserved by IJETR (Impact Factor: 0.997) 62
4 In agile methodology client requirement is considered first. All the allocation of resources for project will be dependent on client requirement. In future, during project development, if there are some changes in requirement then whole process of project management will be changed or modified. But in our proposed scheme the allocation of resources is done very well, by which company gets the perfect analysis of money, resources and required time Ant colony Methodology Ant colony Methodology Fig.2 Flowchart of ACO Algorithm Fig.4 Graph showing system efficiency 4. Advantages 1. Reduces the size of the search space and thus accelerates the search process. 2. Lower costs and more stable workload assignments 3. It is used to reduce the flexibility of the resource allocation Above graph shows the efficiency of project resource management. Our methodology will give overall efficiency for better management. According to the time line or budget of the project how many people will work in that project as well as how much salary will be given to those people for completing project, all such issues will be resolved easily by our scheme. 5. Result Analysis Following are some graphical analysis of our methodology with existing methodology. Fig.3 Graph showing comparative study 6. Conclusion ACO is a recently proposed heuristic approach for solving hard combinatorial optimization problems. Artificial ants implement a randomized construction heuristic which makes probabilistic decisions. The accumulated search experience is taken into account by the adaptation of the pheromone trail. ACO Shows great performance with the structured problems like network routing. In ACO Local search is extremely important to obtain good results. The proposed algorithm will manage to yield better plans with lower costs and more stable workload assignments compared with other existing approaches. In addition, since the model proposed in this paper provides a flexible and effective way for managing human resources, it is Copyright reserved by IJETR (Impact Factor: 0.997) 63
5 promising to apply the proposed approach to other complex human-centric projects like consulting projects. References [1] Lowe and A. R. Webb, Optimized feature extraction and Bayes decision in feed-forward classifier networks, IEEE Trans. Pattern Anal.Machine Intell, vol. 13, pp , [2] P. H. Winston, Artificial Intelligence, 3rd ed. Reading, MA: Addison-Wesley, [3] Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling, International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization Volume 3, Special Issue 5, July 2014 International Conference On Innovations & Advances In Science, Engineering And Technology [IC - IASET 2014]. [4] Ants and reinforcement learning: A case study in routing in dynamic networks (1997) by Devika Subramanian, Peter Druschel, Johnny Chen Proceedings of the Fifteenth International Joint Conf. on Arti Intelligence. [5] Review of Solving Software Project Scheduling Problem with Ant Colony Optimization, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2, Issue 4, April [6] Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems.Oxford. University code,1. [7] M. Dorigo, M. Birattari, and T. Stutzle, Ant Colony Optimization-Arti_cial Ants as Computational Intelligence Technique, IEEE Comput. Intel. Mag., vol. 1, no. 4, pp , [8] = B6V CT- 4S5FJCY [9] O. Bellenguez and E. Ne ron, A Branch-and-Bound Method for Solving Multi-Skill Project Scheduling Problem, RAIRO- Operations Research, [10] L.Ozdamar, A Genetic Algorithm Approach to a General Category Project Scheduling Problem, IEEE Trans. Systems, Man, and Cybernetics-Part C: Applications and Rev., Feb [11] W.N Chen and J Zhang, Ant Colony Optimization for Software Project Scheduling and Staffing with an Event-Based Scheduler, IEEE Trans. Software Engineering, Jan Copyright reserved by IJETR (Impact Factor: 0.997) 64
A Proposed Scheme for Software Project Scheduling and Allocation with Event Based Scheduler using Ant Colony Optimization
A Proposed Scheme for Software Project Scheduling and Allocation with Event Based Scheduler using Ant Colony Optimization Arjita sharma 1, Niyati R Bhele 2, Snehal S Dhamale 3, Bharati Parkhe 4 NMIET,
An Application of Ant Colony Optimization for Software Project Scheduling with Algorithm In Artificial Intelligence
An Application of Ant Colony Optimization for Software Project Scheduling with Algorithm In Artificial Intelligence 1 Ms.Minal C.Toley, 2 Prof.V.B.Bhagat 1 M.E.First Year CSE P.R.Pote COET, Amravati, Maharashtra,
An Improved Ant Colony Optimization Algorithm for Software Project Planning and Scheduling
An Improved Ant Colony Optimization Algorithm for Software Project Planning and Scheduling Avinash Mahadik Department Of Computer Engineering Alard College Of Engineering And Management,Marunje, Pune [email protected]
Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling
Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling Vivek Kurien1, Rashmi S Nair2 PG Student, Dept of Computer Science, MCET, Anad, Tvm, Kerala, India
An Implementation of Software Project Scheduling and Planning using ACO & EBS
An Implementation of Software Project Scheduling and Planning using ACO & EBS 1 Prof. DadaramJadhav, 2 Akshada Paygude, 3 Aishwarya Bhosale, 4 Rahul Bhosale SavitribaiPhule Pune University, Dept. Of Computer
A Jumper Based Ant Colony Optimization for Software Project Scheduling and Staffing with an Event-Based Scheduler
A Jumper Based Ant Colony Optimization for Software Project Scheduling and Staffing with an Event-Based Scheduler Nithya.G 1, Dhivya priya R 2, Harini S 3, Menakapriya S 4 1,2,3,4 Sri Krishna College of
STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1
STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 [email protected],
An ACO Approach to Solve a Variant of TSP
An ACO Approach to Solve a Variant of TSP Bharat V. Chawda, Nitesh M. Sureja Abstract This study is an investigation on the application of Ant Colony Optimization to a variant of TSP. This paper presents
ANT COLONY OPTIMIZATION FOR SOFTWARE PROJECT SCHEDULING AND STAFFING WITH AN EVENT-BASED SCHEDULER
ANT COLONY OPTIMIZATION FOR SOFTWARE PROJECT SCHEDULING AND STAFFING WITH AN EVENT-BASED SCHEDULER Seema S. Gaikwad, Prof. Sandeep U. Kadam, Computer Department, Dr.D.Y.Patil College Of Engg. Ambi,Talegaon-Dabhade,
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)
Review of Ant Colony Optimization for Software Project Scheduling and Staffing with an Event Based Scheduler
International Journal of Computer Sciences and Engineering s and Engineering Open Access Research Paper Volume-2, Issue-5 E-ISSN: 2347-2693 Review of Ant Colony for Software Project Scheduling and Staffing
Journal of Theoretical and Applied Information Technology 20 th July 2015. Vol.77. No.2 2005-2015 JATIT & LLS. All rights reserved.
EFFICIENT LOAD BALANCING USING ANT COLONY OPTIMIZATION MOHAMMAD H. NADIMI-SHAHRAKI, ELNAZ SHAFIGH FARD, FARAMARZ SAFI Department of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad,
Review of Solving Software Project Scheduling Problem with Ant Colony Optimization
Review of Solving Software Project Scheduling Problem with Ant Colony Optimization K.N.Vitekar 1, S.A.Dhanawe 2, D.B.Hanchate 3 ME 2 nd Year, Dept. of Computer Engineering, VPCOE, Baramati, Pune, Maharashtra,
Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection
Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection Abirami.R 1, Sujithra.S 2, Sathishkumar.P 3, Geethanjali.N 4 1, 2, 3 Student, Department of Computer Science and Engineering,
. 1/ CHAPTER- 4 SIMULATION RESULTS & DISCUSSION CHAPTER 4 SIMULATION RESULTS & DISCUSSION 4.1: ANT COLONY OPTIMIZATION BASED ON ESTIMATION OF DISTRIBUTION ACS possesses
An Improved ACO Algorithm for Multicast Routing
An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China [email protected]
Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm
Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm 1 N. Sasikala and 2 Dr. D. Ramesh PG Scholar, Department of CSE, University College of Engineering (BIT Campus), Tiruchirappalli,
HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS
HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya
Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling
Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling R.G. Babukartik 1, P. Dhavachelvan 1 1 Department of Computer Science, Pondicherry University, Pondicherry, India {r.g.babukarthik,
Modified Ant Colony Optimization for Solving Traveling Salesman Problem
International Journal of Engineering & Computer Science IJECS-IJENS Vol:3 No:0 Modified Ant Colony Optimization for Solving Traveling Salesman Problem Abstract-- This paper presents a new algorithm for
Multi-Objective Supply Chain Model through an Ant Colony Optimization Approach
Multi-Objective Supply Chain Model through an Ant Colony Optimization Approach Anamika K. Mittal L. D. College of Engineering, Ahmedabad, India Chirag S. Thaker L. D. College of Engineering, Ahmedabad,
ACO Hypercube Framework for Solving a University Course Timetabling Problem
ACO Hypercube Framework for Solving a University Course Timetabling Problem José Miguel Rubio, Franklin Johnson and Broderick Crawford Abstract We present a resolution technique of the University course
ANT COLONY OPTIMIZATION ALGORITHM FOR RESOURCE LEVELING PROBLEM OF CONSTRUCTION PROJECT
ANT COLONY OPTIMIZATION ALGORITHM FOR RESOURCE LEVELING PROBLEM OF CONSTRUCTION PROJECT Ying XIONG 1, Ya Ping KUANG 2 1. School of Economics and Management, Being Jiaotong Univ., Being, China. 2. College
Implementing Ant Colony Optimization for Test Case Selection and Prioritization
Implementing Ant Colony Optimization for Test Case Selection and Prioritization Bharti Suri Assistant Professor, Computer Science Department USIT, GGSIPU Delhi, India Shweta Singhal Student M.Tech (IT)
Evaluation of Test Cases Using ACO and TSP Gulwatanpreet Singh, Sarabjit Kaur, Geetika Mannan CTITR&PTU India
Evaluation of Test Cases Using ACO and TSP Gulwatanpreet Singh, Sarabjit Kaur, Geetika Mannan CTITR&PTU India Abstract: A test case, in software engineering is a set of conditions or variables under which
An ACO/VNS Hybrid Approach for a Large-Scale Energy Management Problem
An ACO/VNS Hybrid Approach for a Large-Scale Energy Management Problem Challenge ROADEF/EURO 2010 Roman Steiner, Sandro Pirkwieser, Matthias Prandtstetter Vienna University of Technology, Austria Institute
ACO Based Dynamic Resource Scheduling for Improving Cloud Performance
ACO Based Dynamic Resource Scheduling for Improving Cloud Performance Priyanka Mod 1, Prof. Mayank Bhatt 2 Computer Science Engineering Rishiraj Institute of Technology 1 Computer Science Engineering Rishiraj
AN APPROACH FOR SOFTWARE TEST CASE SELECTION USING HYBRID PSO
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 AN APPROACH FOR SOFTWARE TEST CASE SELECTION USING HYBRID PSO 1 Preeti Bala Thakur, 2 Prof. Toran Verma 1 Dept. of
THE ACO ALGORITHM FOR CONTAINER TRANSPORTATION NETWORK OF SEAPORTS
THE ACO ALGORITHM FOR CONTAINER TRANSPORTATION NETWORK OF SEAPORTS Zian GUO Associate Professor School of Civil and Hydraulic Engineering Dalian University of Technology 2 Linggong Road, Ganjingzi District,
Web Mining using Artificial Ant Colonies : A Survey
Web Mining using Artificial Ant Colonies : A Survey Richa Gupta Department of Computer Science University of Delhi ABSTRACT : Web mining has been very crucial to any organization as it provides useful
A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN PSO ALGORITHM
International Journal of Research in Computer Science eissn 2249-8265 Volume 2 Issue 3 (212) pp. 17-23 White Globe Publications A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN ALGORITHM C.Kalpana
Using Ant Colony Optimization for Infrastructure Maintenance Scheduling
Using Ant Colony Optimization for Infrastructure Maintenance Scheduling K. Lukas, A. Borrmann & E. Rank Chair for Computation in Engineering, Technische Universität München ABSTRACT: For the optimal planning
Optimization and Ranking in Web Service Composition using Performance Index
Optimization and Ranking in Web Service Composition using Performance Index Pramodh N #1, Srinath V #2, Sri Krishna A #3 # Department of Computer Science and Engineering, SSN College of Engineering, Kalavakkam-
ACO FOR OPTIMAL SENSOR LAYOUT
Stefka Fidanova 1, Pencho Marinov 1 and Enrique Alba 2 1 Institute for Parallel Processing, Bulgarian Academy of Science, Acad. G. Bonchev str. bl.25a, 1113 Sofia, Bulgaria 2 E.T.S.I. Informatica, Grupo
On-line scheduling algorithm for real-time multiprocessor systems with ACO
International Journal of Intelligent Information Systems 2015; 4(2-1): 13-17 Published online January 28, 2015 (http://www.sciencepublishinggroup.com/j/ijiis) doi: 10.11648/j.ijiis.s.2015040201.13 ISSN:
IMPROVING RESOURCE LEVELING IN AGILE SOFTWARE DEVELOPMENT PROJECTS THROUGH AGENT-BASED APPROACH
IMPROVING RESOURCE LEVELING IN AGILE SOFTWARE DEVELOPMENT PROJECTS THROUGH AGENT-BASED APPROACH Constanta Nicoleta BODEA PhD, University Professor, Economic Informatics Department University of Economics,
Optimal Service Pricing for a Cloud Cache
Optimal Service Pricing for a Cloud Cache K.SRAVANTHI Department of Computer Science & Engineering (M.Tech.) Sindura College of Engineering and Technology Ramagundam,Telangana G.LAKSHMI Asst. Professor,
ACO ALGORITHM FOR LOAD BALANCING IN SIMPLE NETWORK
ACO ALGORITHM FOR LOAD BALANCING IN SIMPLE NETWORK Mrs Minal.Nerkar Faculty of Dept of Computer Engineering. Bhagyashree Kale,Shivani Bhutada,Chetan Darshale,Poonam Patil Dept of Computer Engineering.
TEST CASE SELECTION & PRIORITIZATION USING ANT COLONY OPTIMIZATION
TEST CASE SELECTION & PRIORITIZATION USING ANT COLONY OPTIMIZATION Bharti Suri Computer Science Department Assistant Professor, USIT, GGSIPU New Delhi, India [email protected] Shweta Singhal Information
CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM
CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,
Performance Evaluation of Task Scheduling in Cloud Environment Using Soft Computing Algorithms
387 Performance Evaluation of Task Scheduling in Cloud Environment Using Soft Computing Algorithms 1 R. Jemina Priyadarsini, 2 Dr. L. Arockiam 1 Department of Computer science, St. Joseph s College, Trichirapalli,
Comparison of Ant Colony and Bee Colony Optimization for Spam Host Detection
International Journal of Engineering Research and Development eissn : 2278-067X, pissn : 2278-800X, www.ijerd.com Volume 4, Issue 8 (November 2012), PP. 26-32 Comparison of Ant Colony and Bee Colony Optimization
A hybrid Approach of Genetic Algorithm and Particle Swarm Technique to Software Test Case Generation
A hybrid Approach of Genetic Algorithm and Particle Swarm Technique to Software Test Case Generation Abhishek Singh Department of Information Technology Amity School of Engineering and Technology Amity
Achieve Better Ranking Accuracy Using CloudRank Framework for Cloud Services
Achieve Better Ranking Accuracy Using CloudRank Framework for Cloud Services Ms. M. Subha #1, Mr. K. Saravanan *2 # Student, * Assistant Professor Department of Computer Science and Engineering Regional
Public Cloud Partition Balancing and the Game Theory
Statistics Analysis for Cloud Partitioning using Load Balancing Model in Public Cloud V. DIVYASRI 1, M.THANIGAVEL 2, T. SUJILATHA 3 1, 2 M. Tech (CSE) GKCE, SULLURPETA, INDIA [email protected] [email protected]
International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015
RESEARCH ARTICLE OPEN ACCESS Ensuring Reliability and High Availability in Cloud by Employing a Fault Tolerance Enabled Load Balancing Algorithm G.Gayathri [1], N.Prabakaran [2] Department of Computer
An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups
Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 19 An ant colony optimization for single-machine weighted tardiness
A novel ACO technique for Fast and Near Optimal Solutions for the Multi-dimensional Multi-choice Knapsack Problem
A novel ACO technique for Fast and Near Optimal Solutions for the Multi-dimensional Multi-choice Knapsack Problem Shahrear Iqbal, Md. Faizul Bari, Dr. M. Sohel Rahman AlEDA Group Department of Computer
RESEARCH PAPER International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009
An Algorithm for Dynamic Load Balancing in Distributed Systems with Multiple Supporting Nodes by Exploiting the Interrupt Service Parveen Jain 1, Daya Gupta 2 1,2 Delhi College of Engineering, New Delhi,
American International Journal of Research in Science, Technology, Engineering & Mathematics
American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-349, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629
Survey of Load Balancing Techniques in Cloud Computing
Survey of Load Balancing Techniques in Cloud Computing Nandkishore Patel 1, Ms. Jasmine Jha 2 1, 2 Department of Computer Engineering, 1, 2 L. J. Institute of Engineering and Technology, Ahmedabad, Gujarat,
Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO) Exploits foraging behavior of ants Path optimization Problems mapping onto foraging are ACO-like TSP, ATSP QAP Travelling Salesman Problem (TSP) Why? Hard, shortest path problem
Multi-Robot Traffic Planning Using ACO
Multi-Robot Traffic Planning Using ACO DR. ANUPAM SHUKLA, SANYAM AGARWAL ABV-Indian Institute of Information Technology and Management, Gwalior INDIA [email protected] Abstract: - Path planning is
A Survey on Load Balancing Techniques Using ACO Algorithm
A Survey on Load Balancing Techniques Using ACO Algorithm Preeti Kushwah Department of Computer Science & Engineering, Acropolis Institute of Technology and Research Indore bypass road Mangliya square
COMPUTATIONIMPROVEMENTOFSTOCKMARKETDECISIONMAKING MODELTHROUGHTHEAPPLICATIONOFGRID. Jovita Nenortaitė
ISSN 1392 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.3 COMPUTATIONIMPROVEMENTOFSTOCKMARKETDECISIONMAKING MODELTHROUGHTHEAPPLICATIONOFGRID Jovita Nenortaitė InformaticsDepartment,VilniusUniversityKaunasFacultyofHumanities
Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm
, pp. 99-108 http://dx.doi.org/10.1457/ijfgcn.015.8.1.11 Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm Wang DaWei and Wang Changliang Zhejiang Industry Polytechnic College
A SIMULATION MODEL FOR RESOURCE CONSTRAINED SCHEDULING OF MULTIPLE PROJECTS
A SIMULATION MODEL FOR RESOURCE CONSTRAINED SCHEDULING OF MULTIPLE PROJECTS B. Kanagasabapathi 1 and K. Ananthanarayanan 2 Building Technology and Construction Management Division, Department of Civil
Manjeet Kaur Bhullar, Kiranbir Kaur Department of CSE, GNDU, Amritsar, Punjab, India
Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Multiple Pheromone
An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing
An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing 1 Sudha.C Assistant Professor/Dept of CSE, Muthayammal College of Engineering,Rasipuram, Tamilnadu, India Abstract:
Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm
www.ijcsi.org 54 Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm Linan Zhu 1, Qingshui Li 2, and Lingna He 3 1 College of Mechanical Engineering, Zhejiang
vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK
vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES
AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION
AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION Shanmuga Priya.J 1, Sridevi.A 2 1 PG Scholar, Department of Information Technology, J.J College of Engineering and Technology
EA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks
2 EA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks Dac-Nhuong Le, Hanoi University of Science, Vietnam National University, Vietnam Optimizing location of controllers
THE LEAN-RESOURCES BASED CONSTRUCTION PROJECT PLANNING AND CONTROL SYSTEM
THE LEAN-RESOURCES BASED CONSTRUCTION PROJECT PLANNING AND CONTROL SYSTEM Tzu-An Chiang Department of Business Administration, National Taipei University of Business, Taipei (100), Taiwan [email protected]
A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING
A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING Harshada Raut 1, Kumud Wasnik 2 1 M.Tech. Student, Dept. of Computer Science and Tech., UMIT, S.N.D.T. Women s University, (India) 2 Professor,
Research on the Performance Optimization of Hadoop in Big Data Environment
Vol.8, No.5 (015), pp.93-304 http://dx.doi.org/10.1457/idta.015.8.5.6 Research on the Performance Optimization of Hadoop in Big Data Environment Jia Min-Zheng Department of Information Engineering, Beiing
ADAPTIVE LOAD BALANCING FOR CLUSTER USING CONTENT AWARENESS WITH TRAFFIC MONITORING Archana Nigam, Tejprakash Singh, Anuj Tiwari, Ankita Singhal
ADAPTIVE LOAD BALANCING FOR CLUSTER USING CONTENT AWARENESS WITH TRAFFIC MONITORING Archana Nigam, Tejprakash Singh, Anuj Tiwari, Ankita Singhal Abstract With the rapid growth of both information and users
Efficient Detection of Ddos Attacks by Entropy Variation
IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727 Volume 7, Issue 1 (Nov-Dec. 2012), PP 13-18 Efficient Detection of Ddos Attacks by Entropy Variation 1 V.Sus hma R eddy,
Inductive QoS Packet Scheduling for Adaptive Dynamic Networks
Inductive QoS Packet Scheduling for Adaptive Dynamic Networks Malika BOURENANE Dept of Computer Science University of Es-Senia Algeria [email protected] Abdelhamid MELLOUK LISSI Laboratory University
Resource Provisioning in Single Tier and Multi-Tier Cloud Computing: State-of-the-Art
Resource Provisioning in Single Tier and Multi-Tier Cloud Computing: State-of-the-Art Marwah Hashim Eawna Faculty of Computer and Information Sciences Salma Hamdy Mohammed Faculty of Computer and Information
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
Karthi M,, 2013; Volume 1(8):1062-1072 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EFFICIENT MANAGEMENT OF RESOURCES PROVISIONING
A Comparative Study of Scheduling Algorithms for Real Time Task
, Vol. 1, No. 4, 2010 A Comparative Study of Scheduling Algorithms for Real Time Task M.Kaladevi, M.C.A.,M.Phil., 1 and Dr.S.Sathiyabama, M.Sc.,M.Phil.,Ph.D, 2 1 Assistant Professor, Department of M.C.A,
Solving Traveling Salesman Problem by Using Improved Ant Colony Optimization Algorithm
Solving Traveling Salesman Problem by Using Improved Ant Colony Optimization Algorithm Zar Chi Su Su Hlaing and May Aye Khine, Member, IACSIT Abstract Ant colony optimization () is a heuristic algorithm
Effective Load Balancing Based on Cloud Partitioning for the Public Cloud
Effective Load Balancing Based on Cloud Partitioning for the Public Cloud 1 T.Satya Nagamani, 2 D.Suseela Sagar 1,2 Dept. of IT, Sir C R Reddy College of Engineering, Eluru, AP, India Abstract Load balancing
LOAD BALANCING STRATEGY BASED ON CLOUD PARTITIONING CONCEPT
Journal homepage: www.mjret.in ISSN:2348-6953 LOAD BALANCING STRATEGY BASED ON CLOUD PARTITIONING CONCEPT Ms. Shilpa D.More 1, Prof. Arti Mohanpurkar 2 1,2 Department of computer Engineering DYPSOET, Pune,India
Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *
Send Orders for Reprints to [email protected] 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network
Ant colony optimization techniques for the vehicle routing problem
Advanced Engineering Informatics 18 (2004) 41 48 www.elsevier.com/locate/aei Ant colony optimization techniques for the vehicle routing problem John E. Bell a, *, Patrick R. McMullen b a Department of
Performance Analysis of Cloud Computing using Ant Colony Optimization Approach
Performance Analysis of Cloud Computing using Ant Colony Optimization Approach Ranjan Kumar 1, G. Sahoo 2, K. Muherjee 3 P.G. Student, Department of Computer Science & Engineering, Birla Institute of Technology,
Swarm Intelligence Algorithms Parameter Tuning
Swarm Intelligence Algorithms Parameter Tuning Milan TUBA Faculty of Computer Science Megatrend University of Belgrade Bulevar umetnosti 29, N. Belgrade SERBIA [email protected] Abstract: - Nature inspired
Development of Resource-Driven Scheduling Model for Mass Housing Construction Projects
Development of Resource-Driven Scheduling Model for Mass Housing Construction Projects Ar. A. Cindrela Devi and K. Ananthanarayanan Abstract Resource continuity is a key issue for Mass housing construction
International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational
Distributed and Dynamic Load Balancing in Cloud Data Center
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.233
MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines
MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines Daniil Chivilikhin and Vladimir Ulyantsev National Research University of IT, Mechanics and Optics St.
A UPS Framework for Providing Privacy Protection in Personalized Web Search
A UPS Framework for Providing Privacy Protection in Personalized Web Search V. Sai kumar 1, P.N.V.S. Pavan Kumar 2 PG Scholar, Dept. of CSE, G Pulla Reddy Engineering College, Kurnool, Andhra Pradesh,
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,
Ant Colony Optimization and Constraint Programming
Ant Colony Optimization and Constraint Programming Christine Solnon Series Editor Narendra Jussien WILEY Table of Contents Foreword Acknowledgements xi xiii Chapter 1. Introduction 1 1.1. Overview of the
LOAD BALANCING IN CLOUD COMPUTING
LOAD BALANCING IN CLOUD COMPUTING Neethu M.S 1 PG Student, Dept. of Computer Science and Engineering, LBSITW (India) ABSTRACT Cloud computing is emerging as a new paradigm for manipulating, configuring,
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
