A hybrid Approach of Genetic Algorithm and Particle Swarm Technique to Software Test Case Generation
|
|
|
- Marjory Emmeline Barber
- 10 years ago
- Views:
Transcription
1 A hybrid Approach of Genetic Algorithm and Particle Swarm Technique to Software Test Case Generation Abhishek Singh Department of Information Technology Amity School of Engineering and Technology Amity University Noida, Uttar Pradesh, India Naveen Garg Department of Information Technology Amity School of Engineering and Technology Amity University Noida, Uttar Pradesh, India Tajinder Saini Assistant Professor Department of Information Technology JMIT, Radaur, Haryana, India Abstract This paper presents A hybrid Genetic Particle swarm technique algorithm (HGPSTA) which is a technique that combines genetic algorithm (GA) and particle swarm optimization (PSO), which is used for Software Test Case Generation. Research Paper also presents the outcome of the research done in the area of software testing using the soft computing. Different soft computing approaches such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), and hybrid of PSO and GA are used. These are used to compare and find the minimum software test cases for testing the software. Keywords: Software Testing, Genetic Algorithms, Particle Swarm Optimization, Software test cases. I. INTRODUCTION Software Testing is one of the time consuming and costly phases in software development process. It takes lot of time and consumes 55% of the cost of a software development, It requires a lot of effort on developing software testing tools that can reduce time and cost of software development. Generation of test cases depends on the skill of person and consumes a lot of effort. Therefore lots of chances which cause defects at the time of designing of test cases are enormous that leads to the insertion of bugs in the software system. Testing system is essential to make different good (suitable) test data from bad test (unsuitable) data, and so it should be proficient to detect good test data if they are generated. Testing is a means of making sure that the product meets the needs of the customer. Testing a software product is just a mechanism to compare the outputs on a given set of outputs and checking whether the output requirements are met. The software testing process also doesn t ensure that there is no error in the product but may that error is acceptable.[2,3] The application of artificial intelligence (AI) techniques is an emerging area of research in Software Engineering (SE) that focuses across two domains about the cross fertilization. Researchers have done some work in developing genetic algorithms (GA)- based test data generators. In this paper, we have tried to present the results of our research into the application of GA search approach and PSO, identifying those paths of software construct that are error prone.[4] In comparison to genetic search, the particle swarm optimization is a relatively recent optimization technique of the swarm intelligence paradigm. We initialize the system with random particles. Each particle maintains its own current position, its present velocity and its personal best position on the basis of which we generate the test cases. Compared with GA, PSO has some attractive characteristics. PSO has a good memory which helps to retain good solutions by particles. but in GA, all the prior knowledge to problem changes once the population is changed. It has constructive cooperation between particles, particles in the swarm share information between them. Vol. 3 Issue 4 April ISSN:
2 In this paper we develop an algorithm combining the power of GA, PSO, HGPSTA Hybrid Genetic Particle Swarm Technique Algorithm with a new multi objective fitness function. This paper also tries demonstrating the effectiveness of our proposed approach in case of number of generations. II. GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO) 2.1 Genetic Algorithm GA can be classified into five categories: (1) A representation of a guess called a chromosome. (2) An initial pool of chromosomes (3) A fitness function (4) A selection function and (5) A crossover operator and a mutation operator The GAs uses three basic operators (reproduction, crossover, and mutation) to manipulate the genetic composition of a population. Reproduction is a process by which people rated the current generation are reproduced in the new generation.[5][6] The crossover operator produces two-off springs (new candidate solutions) by recombination of the information from both parents. The mutation is a random change value of some of the genes in an individual. Flow Chart of Genetic Algorithm This iterative process goes on till any one possible termination criteria is met or if a known solution level is achieved. Pseudo code for GA is: Figure 1. Genetic Algorithm Flow Chart Initialize (population) Vol. 3 Issue 4 April ISSN:
3 Evaluate (population) While (stopping condition not satisfied) do { 1. Selection (population) 2. Crossover (population) 3. Mutate (population) 4. Evaluate (population) } 2.2 Particle swarm Optimization In comparison to GA, PSO is a relatively recent optimization technique of the swarm intelligence paradigm. The particles are initialized to the system with a population of random solutions [7,8]. Flow Chart for Particle Swarm Optimization Figure 2: Particle Swarm Optimization algorithm Flow Chart Pseudo Code for PSO 1:Procedure PSO 2: repeat 3: for i = 1 to number of individuals do 4: if G(~xi) > G(~pi) then. G () evaluates goodness 5: for d = 1 to dimensions do Vol. 3 Issue 4 April ISSN:
4 6: pid = xid. pid is the best state found so far 7: end for 8: end if 9: g = i. arbitrary 10: for j = indexes of neighbors do 11: if G(~pj) > G(~pg) then 12: g = j. g is the index of the best solution in the neighborhood 13: end if 14: end for 15: for d = 1 to number of dimensions do 16: vid(t) = f(xid(t 1), vid(t 1), pid, pgd). update velocity 17: vid 2 ( Vmax,+Vmax) 18: xid(t) = f(vid(t), xid(t 1)). update position 19: end for 20: end for 21: until stopping criteria 22: end procedure III. PROPOSED APPROACH Hybrid Genetic Particle Swarm Technique algorithm (HGPSTA) Generating test cases is time consuming and also an error-prone task. Evolutionary structural testing (EST), is an automatic test case generation technique, to ease the testing process.[1] EST interprets the task of test case generation as an optimization problem and tries to solve it using a search technique, i.e. a genetic algorithm and particle swarm technique. [9] Vol. 3 Issue 4 April ISSN:
5 Figure 3. Hybrid Genetic Particle Swarm Technique algorithm Flow Graph We combine the Pso and GA techniques to improve the efficiency of the testing process. Proposed hybrid approach is the combination of genetic and particle swarm algorithm to automatic test-data generation for searching test cases. The proposed hybrid system includes 3 main operators: enhancement, crossover, and mutation. The proposed approach has three main operators: enhancement, crossover and mutations Enhancement PSO is used to enhance individuals of the same generation. Once we calculate the fitness value of all individuals belonging to same population the most successful first half are marked. In place of reproducing the individuals to GA S directly we use PSO to enhance individuals. Crossover: To produce successful individuals among parents of the crossing operation are selected from the only people improved. To select parents for crossing operation, the selection scheme roulette wheel is used. Mutation: The mutation is an operator such that the allele of a gene is randomly changed so that new genetic material may be introduced into the population. IV. EXPERIMENT RESULTS In the present work, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and A hybrid Genetic Particle swarm technique algorithm (HGPSTA) have been developed for fitness function which is based on dominance relation between two nodes. The fitness function based on the criteria of data flow coverage. The fitness function that is taken in this research is depending on the dominance relation between nodes of data flow graph. The main goal of research is to combine the power of two algorithms GA and PSO. It proves its power and effectiveness towards solving the testing problems. Initial population for GA, PSO and HGPSTA program is generated randomly. Experiments are conducted 10 times for averaging results. In each attempt, search functions are Iterated for sufficient number of generations for each of ten runs. Experiments are conducted on seven programs they are GTN This is program for finding greatest of three numbers. PRIME this is the simplest program check whether a given number is Prime number or not. RM This program is loop based program which finds remainder of two integer numbers. BS - This program is based on Bubble Sorting algorithm. QE This programs finds the roots of Quadratic Equation. MM this is array and loop based program that find minimum and maximum value from an array. HCF this program accepts two inputs and finds Highest Common Factor between these two integer numbers. Results are analyzed by changing the size of populations with different mutation and crossover probability in GA and HGPSTA. In case of PSO and also the results are determined by changing the number of individuals. The results of the proposed HGPSTA are compared with GA and PSO. As shown in figures 4 HGPSTA performs better than GA and PSO in number of generation. Vol. 3 Issue 4 April ISSN:
6 Figure 4. Comparisons of HGPSTA PSO and GA w. r. t. Number of Generations From figure 5, it can be analy zed easily that number of test cases generated in case of HGPSTA is less than GA and PSO. Figure 5. Comparisons of HGPSTA PSO and GA w. r. t. Number of Test Cases. Vol. 3 Issue 4 April ISSN:
7 V. CONCLUSION AND FUTURE WORK In this paper we have proposed an algorithm for generating test cases using combining the power of GA and PSO, HGPSTA Hybrid of Genetic Particle Swarm Combined Algorithm. Experiments show the effectiveness of the proposed HGPSTA compared to the PSO and GA techniques. The results of our new approach, HGPSTA is better than GA and PSO. HGPSTA achieves 100 percent coverage in less number of iterations. Future work is to analyze the test case generation using hybrid PSO and ACO (Ant colony optimization) and compare its fectiveness with our HGPSTA. REFERENCES ` [1] N. Mansour, and M. Salame, Data Generation for Path Testing, Software Quality Control Vol.12, No.2, pp , [2] J. Lin, and P. Yeh, Automatic test data generation for path testing using Gas, Information Sciences, Vol.131, No.1-4, pp , [3] S. Wappler, and J. Wegener, Evolutionary unit testing of object oriented software using strongly-typed genetic programming, Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA, July 08-12, GECCO '06. ACM, New York, NY, pp , [4] A. Windisch, S. Wappler and J. Wegener, Applying particle swarm optimization to software testing, ACM, GECCO, London, England, United Kingdom, New York, pp , [5] Dr. Velur Rajappa, Arun Biradar, Satanik Panda, Efficient Software Test Case Generation Using Genetic Algorithm Based Graph Theory, First International Conference on Emerging Trends in Engineering and Technology, ICETET '08, pp , [6] M. R. Girgis, Automatic test data generation for data flow testing using genetic algorithm, Journal of Universal Computer Science, Vol. 11, No. 6, pp , [7] K. Agrawal and G. Srivastava, Towards software test data generation using discrete quantum particle swarm optimization, ISEC, Mysore, India, pp , February 2010 [8] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10: , [9] K. Li, Z. Zhang and J. Kou Breading software test data with Genetic-Particle swarm mixed Algorithms, Journal of computers, Vol. 5, No. 2, pp , Vol. 3 Issue 4 April ISSN:
SOFTWARE TESTING STRATEGY APPROACH ON SOURCE CODE APPLYING CONDITIONAL COVERAGE METHOD
SOFTWARE TESTING STRATEGY APPROACH ON SOURCE CODE APPLYING CONDITIONAL COVERAGE METHOD Jaya Srivastaval 1 and Twinkle Dwivedi 2 1 Department of Computer Science & Engineering, Shri Ramswaroop Memorial
International Journal of Software and Web Sciences (IJSWS) www.iasir.net
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International
AN APPROACH FOR SOFTWARE TEST CASE SELECTION USING HYBRID PSO
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 AN APPROACH FOR SOFTWARE TEST CASE SELECTION USING HYBRID PSO 1 Preeti Bala Thakur, 2 Prof. Toran Verma 1 Dept. of
GA as a Data Optimization Tool for Predictive Analytics
GA as a Data Optimization Tool for Predictive Analytics Chandra.J 1, Dr.Nachamai.M 2,Dr.Anitha.S.Pillai 3 1Assistant Professor, Department of computer Science, Christ University, Bangalore,India, [email protected]
International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational
A Hybrid Model of Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithm for Test Case Optimization
A Hybrid Model of Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithm for Test Case Optimization Abraham Kiran Joseph a, Dr. G. Radhamani b * a Research Scholar, Dr.G.R Damodaran
An ACO Approach to Solve a Variant of TSP
An ACO Approach to Solve a Variant of TSP Bharat V. Chawda, Nitesh M. Sureja Abstract This study is an investigation on the application of Ant Colony Optimization to a variant of TSP. This paper presents
Numerical Research on Distributed Genetic Algorithm with Redundant
Numerical Research on Distributed Genetic Algorithm with Redundant Binary Number 1 Sayori Seto, 2 Akinori Kanasugi 1,2 Graduate School of Engineering, Tokyo Denki University, Japan [email protected],
Proposed Software Testing Using Intelligent techniques (Intelligent Water Drop (IWD) and Ant Colony Optimization Algorithm (ACO))
www.ijcsi.org 91 Proposed Software Testing Using Intelligent techniques (Intelligent Water Drop (IWD) and Ant Colony Optimization Algorithm (ACO)) Laheeb M. Alzubaidy 1, Baraa S. Alhafid 2 1 Software Engineering,
14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)
Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,
Alpha Cut based Novel Selection for Genetic Algorithm
Alpha Cut based Novel for Genetic Algorithm Rakesh Kumar Professor Girdhar Gopal Research Scholar Rajesh Kumar Assistant Professor ABSTRACT Genetic algorithm (GA) has several genetic operators that can
ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013
Transistor Level Fault Finding in VLSI Circuits using Genetic Algorithm Lalit A. Patel, Sarman K. Hadia CSPIT, CHARUSAT, Changa., CSPIT, CHARUSAT, Changa Abstract This paper presents, genetic based algorithm
A Fast Computational Genetic Algorithm for Economic Load Dispatch
A Fast Computational Genetic Algorithm for Economic Load Dispatch M.Sailaja Kumari 1, M.Sydulu 2 Email: 1 [email protected] 1, 2 Department of Electrical Engineering National Institute of Technology,
CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM
CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,
Optimization and Ranking in Web Service Composition using Performance Index
Optimization and Ranking in Web Service Composition using Performance Index Pramodh N #1, Srinath V #2, Sri Krishna A #3 # Department of Computer Science and Engineering, SSN College of Engineering, Kalavakkam-
A Novel Binary Particle Swarm Optimization
Proceedings of the 5th Mediterranean Conference on T33- A Novel Binary Particle Swarm Optimization Motaba Ahmadieh Khanesar, Member, IEEE, Mohammad Teshnehlab and Mahdi Aliyari Shoorehdeli K. N. Toosi
Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine
Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine V.Hymavathi, B.Abdul Rahim, Fahimuddin.Shaik P.G Scholar, (M.Tech), Department of Electronics and Communication Engineering,
Applying Particle Swarm Optimization to Software Testing
Applying Particle Swarm Optimization to Software Testing Andreas Windisch DaimlerChrysler AG Research and Technology Alt-Moabit 96a, D-559 Berlin, Germany Phone: +49 3 39982 463 Stefan Wappler Technical
A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0
212 International Conference on System Engineering and Modeling (ICSEM 212) IPCSIT vol. 34 (212) (212) IACSIT Press, Singapore A Binary Model on the Basis of Imperialist Competitive Algorithm in Order
Practical Applications of Evolutionary Computation to Financial Engineering
Hitoshi Iba and Claus C. Aranha Practical Applications of Evolutionary Computation to Financial Engineering Robust Techniques for Forecasting, Trading and Hedging 4Q Springer Contents 1 Introduction to
Keywords: Information Retrieval, Vector Space Model, Database, Similarity Measure, Genetic Algorithm.
Volume 3, Issue 8, August 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Effective Information
Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm
, pp. 99-108 http://dx.doi.org/10.1457/ijfgcn.015.8.1.11 Wireless Sensor Networks Coverage Optimization based on Improved AFSA Algorithm Wang DaWei and Wang Changliang Zhejiang Industry Polytechnic College
Dynamic Generation of Test Cases with Metaheuristics
Dynamic Generation of Test Cases with Metaheuristics Laura Lanzarini, Juan Pablo La Battaglia III-LIDI (Institute of Research in Computer Science LIDI) Faculty of Computer Sciences. National University
International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational
Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling
Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling R.G. Babukartik 1, P. Dhavachelvan 1 1 Department of Computer Science, Pondicherry University, Pondicherry, India {r.g.babukarthik,
Research Article Service Composition Optimization Using Differential Evolution and Opposition-based Learning
Research Journal of Applied Sciences, Engineering and Technology 11(2): 229-234, 2015 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted: May 20, 2015 Accepted: June
A resource schedule method for cloud computing based on chaos particle swarm optimization algorithm
Abstract A resource schedule method for cloud computing based on chaos particle swarm optimization algorithm Lei Zheng 1, 2*, Defa Hu 3 1 School of Information Engineering, Shandong Youth University of
A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN PSO ALGORITHM
International Journal of Research in Computer Science eissn 2249-8265 Volume 2 Issue 3 (212) pp. 17-23 White Globe Publications A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN ALGORITHM C.Kalpana
Cellular Automaton: The Roulette Wheel and the Landscape Effect
Cellular Automaton: The Roulette Wheel and the Landscape Effect Ioan Hălălae Faculty of Engineering, Eftimie Murgu University, Traian Vuia Square 1-4, 385 Reşiţa, Romania Phone: +40 255 210227, Fax: +40
A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem
A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem Sayedmohammadreza Vaghefinezhad 1, Kuan Yew Wong 2 1 Department of Manufacturing & Industrial Engineering, Faculty of Mechanical
COMPUTATIONIMPROVEMENTOFSTOCKMARKETDECISIONMAKING MODELTHROUGHTHEAPPLICATIONOFGRID. Jovita Nenortaitė
ISSN 1392 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.3 COMPUTATIONIMPROVEMENTOFSTOCKMARKETDECISIONMAKING MODELTHROUGHTHEAPPLICATIONOFGRID Jovita Nenortaitė InformaticsDepartment,VilniusUniversityKaunasFacultyofHumanities
Optimal PID Controller Design for AVR System
Tamkang Journal of Science and Engineering, Vol. 2, No. 3, pp. 259 270 (2009) 259 Optimal PID Controller Design for AVR System Ching-Chang Wong*, Shih-An Li and Hou-Yi Wang Department of Electrical Engineering,
Web Service Selection using Particle Swarm Optimization and Genetic Algorithms
Web Service Selection using Particle Swarm Optimization and Genetic Algorithms Simone A. Ludwig Department of Computer Science North Dakota State University Fargo, ND, USA [email protected] Thomas
Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm
24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic
A Review And Evaluations Of Shortest Path Algorithms
A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing
Stock price prediction using genetic algorithms and evolution strategies
Stock price prediction using genetic algorithms and evolution strategies Ganesh Bonde Institute of Artificial Intelligence University Of Georgia Athens,GA-30601 Email: [email protected] Rasheed Khaled Institute
A Robust Method for Solving Transcendental Equations
www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,
An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment
IJCSC VOLUME 5 NUMBER 2 JULY-SEPT 2014 PP. 110-115 ISSN-0973-7391 An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment 1 Sourabh Budhiraja,
Extraction of Satellite Image using Particle Swarm Optimization
Extraction of Satellite Image using Particle Swarm Optimization Er.Harish Kundra Assistant Professor & Head Rayat Institute of Engineering & IT, Railmajra, Punjab,India. Dr. V.K.Panchal Director, DTRL,DRDO,
New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem
New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem Radovic, Marija; and Milutinovic, Veljko Abstract One of the algorithms used for solving Traveling Salesman
Research on the Performance Optimization of Hadoop in Big Data Environment
Vol.8, No.5 (015), pp.93-304 http://dx.doi.org/10.1457/idta.015.8.5.6 Research on the Performance Optimization of Hadoop in Big Data Environment Jia Min-Zheng Department of Information Engineering, Beiing
Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com
A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms
A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms MIGUEL CAMELO, YEZID DONOSO, HAROLD CASTRO Systems and Computer Engineering Department Universidad de los
Implementing Ant Colony Optimization for Test Case Selection and Prioritization
Implementing Ant Colony Optimization for Test Case Selection and Prioritization Bharti Suri Assistant Professor, Computer Science Department USIT, GGSIPU Delhi, India Shweta Singhal Student M.Tech (IT)
Performance Evaluation of Task Scheduling in Cloud Environment Using Soft Computing Algorithms
387 Performance Evaluation of Task Scheduling in Cloud Environment Using Soft Computing Algorithms 1 R. Jemina Priyadarsini, 2 Dr. L. Arockiam 1 Department of Computer science, St. Joseph s College, Trichirapalli,
LOAD BALANCING IN CLOUD COMPUTING
LOAD BALANCING IN CLOUD COMPUTING Neethu M.S 1 PG Student, Dept. of Computer Science and Engineering, LBSITW (India) ABSTRACT Cloud computing is emerging as a new paradigm for manipulating, configuring,
Optimization of PID parameters with an improved simplex PSO
Li et al. Journal of Inequalities and Applications (2015) 2015:325 DOI 10.1186/s13660-015-0785-2 R E S E A R C H Open Access Optimization of PID parameters with an improved simplex PSO Ji-min Li 1, Yeong-Cheng
Effect of Using Neural Networks in GA-Based School Timetabling
Effect of Using Neural Networks in GA-Based School Timetabling JANIS ZUTERS Department of Computer Science University of Latvia Raina bulv. 19, Riga, LV-1050 LATVIA [email protected] Abstract: - The school
Minimizing Response Time for Scheduled Tasks Using the Improved Particle Swarm Optimization Algorithm in a Cloud Computing Environment
Minimizing Response Time for Scheduled Tasks Using the Improved Particle Swarm Optimization Algorithm in a Cloud Computing Environment by Maryam Houtinezhad, Department of Computer Engineering, Artificial
EA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks
2 EA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks Dac-Nhuong Le, Hanoi University of Science, Vietnam National University, Vietnam Optimizing location of controllers
A New Software Data-Flow Testing Approach via Ant Colony Algorithms
Universal Journal of Computer Science and Engineering Technology 1 (1), 64-72, Oct. 2010. 2010 UniCSE, ISSN: 2219-2158 A New Software Data-Flow Testing Approach via Ant Colony Algorithms Ahmed S. Ghiduk
International Journal of Emerging Technology & Research
International Journal of Emerging Technology & Research An Implementation Scheme For Software Project Management With Event-Based Scheduler Using Ant Colony Optimization Roshni Jain 1, Monali Kankariya
A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN)
ISSN: 2278 1323 All Rights Reserved 2014 IJARCET 3910 A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) Miss: KIRTI JOSHI Abstract A Genetic Algorithm (GA) is an intelligent search
College of information technology Department of software
University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/2011-2012 ***************************************************************************
Genetic Algorithm Evolution of Cellular Automata Rules for Complex Binary Sequence Prediction
Brill Academic Publishers P.O. Box 9000, 2300 PA Leiden, The Netherlands Lecture Series on Computer and Computational Sciences Volume 1, 2005, pp. 1-6 Genetic Algorithm Evolution of Cellular Automata Rules
Application of GA for Optimal Location of FACTS Devices for Steady State Voltage Stability Enhancement of Power System
I.J. Intelligent Systems and Applications, 2014, 03, 69-75 Published Online February 2014 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijisa.2014.03.07 Application of GA for Optimal Location of Devices
Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling
Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling Vivek Kurien1, Rashmi S Nair2 PG Student, Dept of Computer Science, MCET, Anad, Tvm, Kerala, India
Manjeet Kaur Bhullar, Kiranbir Kaur Department of CSE, GNDU, Amritsar, Punjab, India
Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Multiple Pheromone
A Parallel Processor for Distributed Genetic Algorithm with Redundant Binary Number
A Parallel Processor for Distributed Genetic Algorithm with Redundant Binary Number 1 Tomohiro KAMIMURA, 2 Akinori KANASUGI 1 Department of Electronics, Tokyo Denki University, [email protected]
Comparing Algorithms for Search-Based Test Data Generation of Matlab R Simulink R Models
Comparing Algorithms for Search-Based Test Data Generation of Matlab R Simulink R Models Kamran Ghani, John A. Clark and Yuan Zhan Abstract Search Based Software Engineering (SBSE) is an evolving field
Correspondence should be addressed to Chandra Shekhar Yadav; [email protected]
So ware Engineering, Article ID 284531, 6 pages http://dx.doi.org/10.1155/2014/284531 Research Article Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer
SEARCH-BASED SOFTWARE TEST DATA GENERATION USING EVOLUTIONARY COMPUTATION
SEARCH-BASED SOFTWARE TEST DATA GENERATION USING EVOLUTIONARY COMPUTATION P. Maragathavalli 1 1 Department of Information Technology, Pondicherry Engineering College, Puducherry [email protected] ABSTRACT
Keywords revenue management, yield management, genetic algorithm, airline reservation
Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Revenue Management
DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES
DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES Vijayalakshmi Mahanra Rao 1, Yashwant Prasad Singh 2 Multimedia University, Cyberjaya, MALAYSIA 1 [email protected]
Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware
Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid Al-Ars, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology
Computational intelligence in intrusion detection systems
Computational intelligence in intrusion detection systems --- An introduction to an introduction Rick Chang @ TEIL Reference The use of computational intelligence in intrusion detection systems : A review
Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm
Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm 1 Parita Vinodbhai Desai, 2 Jignesh Patel, 3 Sangeeta Jagdish Gurjar 1 Department of Electrical Engineering,
International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
DOI: 10.15662/ijareeie.2014.0307061 Economic Dispatch of Power System Optimization with Power Generation Schedule Using Evolutionary Technique Girish Kumar 1, Rameshwar singh 2 PG Student [Control system],
Méta-heuristiques pour l optimisation
Méta-heuristiques pour l optimisation Differential Evolution (DE) Particle Swarm Optimization (PSO) Alain Dutech Equipe MAIA - LORIA - INRIA Nancy, France Web : http://maia.loria.fr Mail : [email protected]
Projects - Neural and Evolutionary Computing
Projects - Neural and Evolutionary Computing 2014-2015 I. Application oriented topics 1. Task scheduling in distributed systems. The aim is to assign a set of (independent or correlated) tasks to some
Optimised Realistic Test Input Generation
Optimised Realistic Test Input Generation Mustafa Bozkurt and Mark Harman {m.bozkurt,m.harman}@cs.ucl.ac.uk CREST Centre, Department of Computer Science, University College London. Malet Place, London
Comparative Analysis of Load Balancing Algorithms in Cloud Computing
Comparative Analysis of Load Balancing Algorithms in Cloud Computing Anoop Yadav Department of Computer Science and Engineering, JIIT, Noida Sec-62, Uttar Pradesh, India ABSTRACT Cloud computing, now a
D A T A M I N I N G C L A S S I F I C A T I O N
D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.
Software Framework for Vehicle Routing Problem with Hybrid Metaheuristic Algorithms
Software Framework for Vehicle Routing Problem with Hybrid Metaheuristic Algorithms S.MASROM 1, A.M. NASIR 2 Malaysia Institute of Transport (MITRANS) Faculty of Computer and Mathematical Science Universiti
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)
Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm
Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm 1 N. Sasikala and 2 Dr. D. Ramesh PG Scholar, Department of CSE, University College of Engineering (BIT Campus), Tiruchirappalli,
LOAD BALANCING IN CLOUD USING ACO AND GENETIC ALGORITHM
724 LOAD BALANCING IN CLOUD USING ACO AND GENETIC ALGORITHM *Parveen Kumar Research Scholar Guru Kashi University, Talwandi Sabo ** Er.Mandeep Kaur Assistant Professor Guru Kashi University, Talwandi Sabo
The Applications of Genetic Algorithms in Stock Market Data Mining Optimisation
The Applications of Genetic Algorithms in Stock Market Data Mining Optimisation Li Lin, Longbing Cao, Jiaqi Wang, Chengqi Zhang Faculty of Information Technology, University of Technology, Sydney, NSW
Flexible Neural Trees Ensemble for Stock Index Modeling
Flexible Neural Trees Ensemble for Stock Index Modeling Yuehui Chen 1, Ju Yang 1, Bo Yang 1 and Ajith Abraham 2 1 School of Information Science and Engineering Jinan University, Jinan 250022, P.R.China
BMOA: Binary Magnetic Optimization Algorithm
International Journal of Machine Learning and Computing Vol. 2 No. 3 June 22 BMOA: Binary Magnetic Optimization Algorithm SeyedAli Mirjalili and Siti Zaiton Mohd Hashim Abstract Recently the behavior of
QoS Guaranteed Intelligent Routing Using Hybrid PSO-GA in Wireless Mesh Networks
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No 1 Sofia 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2015-0007 QoS Guaranteed Intelligent Routing
Schedule Risk Analysis Simulator using Beta Distribution
Schedule Risk Analysis Simulator using Beta Distribution Isha Sharma Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, Haryana (INDIA) [email protected] Dr. P.K.
Designing a Linear FIR filter
Designing a Linear FIR filter implement the transfer function which can be in the form Leena Darsena, Himani of a program Agrawal or form of a circuit diagram. Abstract- Digital filtering has a very important
Stock Market Index Prediction by Hybrid Neuro- Genetic Data Mining Technique
Stock Market Index Prediction by Hybrid Neuro- Genetic Data Mining Technique Ganesh V. Kumbhar 1, Rajesh V. Argiddi 2 Research Scholar, Computer Science & Engineering Department, WIT, Sholapur, India 1
Search Algorithm in Software Testing and Debugging
Search Algorithm in Software Testing and Debugging Hsueh-Chien Cheng Dec 8, 2010 Search Algorithm Search algorithm is a well-studied field in AI Computer chess Hill climbing A search... Evolutionary Algorithm
HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS
HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya
Resource Provisioning in Single Tier and Multi-Tier Cloud Computing: State-of-the-Art
Resource Provisioning in Single Tier and Multi-Tier Cloud Computing: State-of-the-Art Marwah Hashim Eawna Faculty of Computer and Information Sciences Salma Hamdy Mohammed Faculty of Computer and Information
Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk
BMAS 2005 VHDL-AMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk Outline Introduction and system
Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms
Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms Daniil Chivilikhin PhD student ITMO University Vladimir Ulyantsev PhD student ITMO University Anatoly Shalyto Dr.Sci.,
Genetic algorithms for changing environments
Genetic algorithms for changing environments John J. Grefenstette Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC 375, USA [email protected] Abstract
New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers
Proceedings of the 5th WSEAS Int Conf on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 0-, 006 363 New binary representation in Genetic Algorithms for solving
