Christian Bettstetter. Mobility Modeling, Connectivity, and Adaptive Clustering in Ad Hoc Networks
|
|
|
- Erica Clark
- 10 years ago
- Views:
Transcription
1 Christian Bettstetter Mobility Modeling, Connectivity, and Adaptive Clustering in Ad Hoc Networks
2 Contents 1 Introduction 1 2 Ad Hoc Networking: Principles, Applications, and Research Issues Fundamental Principles and Challenges Applications Enabling Technologies Research Issues Modeling and Simulation Notation of Random Variables Mobility Modeling Survey and Classification Random Waypoint Model Modifications of the Random Waypoint Model Random Direction Model Smooth Random Direction Model Summary and Further Work Connectivity and Other Topology Properties Wireless Link Model Definitions from Graph Theory Node Degree and Node to Node Distance Connectivity K Connectivity Connectivity with Different Ranges Connectivity in a Shadow Fading Environment Path Probability Hop Distances Related Work Summary and Further Work Adaptive Distributed Clustering Clustering in Ad Hoc Networks Cluster Density and Order iv
3 Contents 5.3 Message and Time Complexity upon Discrete Topology Changes Message and Time Complexity of Mobile Nodes Improvements by Hysteresis Weight Setting Strategies Related Work Summary and Further Work Conclusions 209 A Description of the Simulation Tool 211 B Symbols, Mathematical Notation, and Abbreviations 214 v
4 1 Introduction The last 10 years have seen a tremendous boom in the mobile communications market. People have become accustomed to the convenience of making calls with mobile phones and browsing the Internet with notebooks via wireless connections. Two prime examples of this development are the great success of the Global System for Mobile Communication (GSM) and the recent deployment of Wireless Local Area Networks (WLANs). In the future, more and more mobile devices will become networked, following the trend toward ubiquitous networking. One of the main goals in current research is to design new wireless networks that are flexible, low cost, and require little administration. In this context, the principle of ad hoc networking received much interest during the past five years. In an ad hoc network, mobile devices communicate with each other in a peer to peer fashion (see Fig. 1.1); they establish a self organizing wireless network without the need for base stations or any other pre existing network infrastructure. An outstanding feature of this emerging technology is wireless multihop communication: If two devices cannot establish a direct wireless link (because they are too far away from each other), devices in between act as relays to forward the data from the source to the destination. In other words, each device acts as both a mobile terminal and a node of the network. This feature is not supported in current systems for mobile communications. In this way, ad hoc networking creates a new paradigm for mobile communications, where Figure 1.1: A small ad hoc network 1
5 1 Introduction networks can be established in a spontaneous manner ( on the fly ) without any cost or effort of building up and maintaining a network infrastructure. There are various application scenarios both for stand alone ad hoc networks and wireless multihop extensions to existing, infrastructure based networks. Examples include spontaneous networks among mobile computers at conferences, networks among vehicles, and wireless sensor networks. The particular characteristics of ad hoc networks impose significant challenges in the design of transmission schemes, communication protocols, algorithms, and system architectures. Ad hoc networks do not have dedicated, central network control entities or databases. Thus, functions like location management, medium access, power control, or security support must be accomplished in a distributed manner. Moreover, the fact that all nodes may be mobile along with the changing properties of the radio channel results in a very dynamic network topology. Thus, all network functions must have a high degree of adaptability with respect to mobility and outage of nodes. Although the basic idea of wireless multihop networks goes back to at least the 1970s, there are still several open issues. Existing solutions from cellular networks and the Internet cannot be mapped in a straightforward manner to ad hoc networks; in many cases, completely new approaches are needed. The last few years have therefore seen a huge amount of research and development in this area. For example, the Internet Engineering Task Force (IETF) established a working group with the aim of standardizing new routing protocols that will be suitable for mobile ad hoc networks. This effort started in 1997 and is still in progress. In addition to protocol aspects, several theoretical issues are under investigation. For example, a comprehensive analytical treatment of capacity, connectivity, scalability, and fairness in wireless multihop networks is needed. Last but not least, methods to model and simulate such networks must be rethought. All these research activities are essential to understand and deploy large scale ad hoc networks and to operate them in an efficient manner. This thesis makes contributions to three significant research areas in the field of ad hoc networking. These areas are: Mobility Modeling: For the simulation of ad hoc networks, we must describe the movement behavior of the mobile nodes. As real movement patterns are difficult to obtain, a common approach is to use synthetic mobility models, which resemble the behavior of real mobile entities. These models must be designed, and their impact on simulation results must be understood. Connectivity and Other Topology Properties: The random and dynamic nature of ad hoc networks creates a network topology that shows certain characteristics. The difference between a topology of an ad hoc network and that of a conventional network is especially apparent considering the connectivity among the devices. While a mobile device in a cellular system is connected if it has a wireless link to at least one base station, the situation in a decentralized wireless multihop network is more complicated. Since nodes also act as relays (routers) for other devices, each single mobile node contributes to the connectivity of the 2
6 entire network. If a node fails, the connectivity between two other nodes might be destroyed. If the spatial node density is too low, the multihop principle for communication does not work at all. In other words, the communication among nodes in an ad hoc network is not guaranteed; only probabilistic measures can be given. This raises a number of theoretical questions. Distributed Adaptive Clustering: Algorithms and respective protocols are needed to separate the network nodes into logical groups, so called clusters. Such a cluster structure enables us to set up hierarchies that can be used for address assignment, hierarchical routing, and resource control, to give three examples. Clustering algorithms need to be designed, and their behavior and performance needs to be evaluated. The remainder of this thesis is organized as follows: Chapter 2 explains the basic principles and challenges of ad hoc networking in more detail. We give some potential applications, describe enabling technologies and open research issues, and outline aspects related to modeling and simulation. Chapter 3 investigates mobility modeling. We first give a survey and classification of mobility models found in the literature. Examples include random movement on plain areas, scenario based models with obstacles, and vehicular models on predefined streets. The most commonly used model in the research community on ad hoc networks is a quite simple model denoted as random waypoint model. Despite the popularity of this model, we observe that its behavior and impact on simulation results are not well understood. This is the motivation for us to investigate its stochastic properties in detail; we study, for example, the resulting spatial node distribution and the average speed of a node. Next, we analyze an alternative model denoted as random direction model. We discover that it avoids some of the disadvantages of the random waypoint model. Finally, we present a completely new model that describes the movement behavior of nodes in a more realistic manner. Throughout the chapter we outline pitfalls that might occur when using mobility models without knowing their properties. The results are of interest for researchers to understand the impact of mobility models on the network performance and to conduct meaningful simulations. Chapter 4 presents a detailed study of topology properties of ad hoc networks. As mentioned above, we are especially interested in properties related to the network connectivity. For a given random spatial node distribution and a simple radio channel model, we address questions such as: What is the probability that a node is isolated, i.e., it has no link to any other node? Which node density is required to enable multihop communication between any two nodes in the network? What is the expected number of intermediate nodes from a source to a destination? How does mobility affect the connectivity? These and other questions are addressed by employing probabilistic methods from spatial statistics and random graph theory. We solve some previously unsolved theoretical problems in an analytical manner. For example, we derive the node density that is required to achieve an almost surely connected network with random waypoint mobility. 3
7 1 Introduction Chapter 5 is about distributed, mobility adaptive clustering algorithms for ad hoc networks. After discussing the basic functionality and design choices of clustering, we take an approach to the question What is a good clustering algorithm?. Here, we define a set of criteria that can be used for performance evaluation. In the main part of the chapter, we investigate a promising clustering algorithm in detail. We study basic attributes such as the number of nodes per cluster and performance attributes such as the number of signaling messages required to maintain a cluster structure. From the basic understanding of these results, we give some rules on how to design good clustering algorithms. Most important, we show how the performance can be improved by introducing a hysteresis parameter and making the algorithm more adaptive to mobility. Finally, Chapter 6 summarizes our contributions and gives some directions for further research. Appendix A contains a brief description of the developed simulation tools. Appendix B lists the used symbols, mathematical notation, and abbreviations. Parts of the material treated in this thesis were previously published in [Bet01a, Bet01b, BK01a, BK01b, BX01, KBS + 01, Bet02a, Bet02b, BHPC02, BK02, BW02, BZ02, JB02, KSB02, XB02, Bet03d, BE03, BF03, BH03, BM03, BRS03], have been accepted for publication in [Bet03c, BHPC03], and are currently under review in [Bet03a]. At the same time, new and unpublished results are presented. 4
CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS
137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji
PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS
PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS Reza Azizi Engineering Department, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran [email protected]
[email protected] [email protected]
S. Sumathy 1 and B.Upendra Kumar 2 1 School of Computing Sciences, VIT University, Vellore-632 014, Tamilnadu, India [email protected] 2 School of Computing Sciences, VIT University, Vellore-632 014,
8 Conclusion and Future Work
8 Conclusion and Future Work This chapter concludes this thesis and provides an outlook on future work in the area of mobile ad hoc networks and peer-to-peer overlay networks 8.1 Conclusion Due to the
CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING
CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility
Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen
Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks
OPNET Network Simulator
Simulations and Tools for Telecommunications 521365S: OPNET Network Simulator Jarmo Prokkola Research team leader, M. Sc. (Tech.) VTT Technical Research Centre of Finland Kaitoväylä 1, Oulu P.O. Box 1100,
Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol
Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed Bellman-Ford Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
Customer Specific Wireless Network Solutions Based on Standard IEEE 802.15.4
Customer Specific Wireless Network Solutions Based on Standard IEEE 802.15.4 Michael Binhack, sentec Elektronik GmbH, Werner-von-Siemens-Str. 6, 98693 Ilmenau, Germany Gerald Kupris, Freescale Semiconductor
APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
Intelligent Agents for Routing on Mobile Ad-Hoc Networks
Intelligent Agents for Routing on Mobile Ad-Hoc Networks Y. Zhou Dalhousie University [email protected] A. N. Zincir-Heywood Dalhousie University [email protected] Abstract This paper introduces a new agent-based
SIMULATION STUDY OF BLACKHOLE ATTACK IN THE MOBILE AD HOC NETWORKS
Journal of Engineering Science and Technology Vol. 4, No. 2 (2009) 243-250 School of Engineering, Taylor s University College SIMULATION STUDY OF BLACKHOLE ATTACK IN THE MOBILE AD HOC NETWORKS SHEENU SHARMA
A Graph-Center-Based Scheme for Energy-Efficient Data Collection in Wireless Sensor Networks
A Graph-Center-Based Scheme for Energy-Efficient Data Collection in Wireless Sensor Networks Dajin Wang Department of Computer Science Montclair State University, Upper Montclair, NJ 07043, USA [email protected]
Prediction of DDoS Attack Scheme
Chapter 5 Prediction of DDoS Attack Scheme Distributed denial of service attack can be launched by malicious nodes participating in the attack, exploit the lack of entry point in a wireless network, and
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks *
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks * Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwj oeshanyang.ac.kr Abstract. To satisfy the user requirements
Towards Efficient Routing in Vehicular Ad Hoc Networks
Towards Efficient Routing in Vehicular Ad Hoc Networks Moez Jerbi*, Sidi-Mohammed Senouci* and Yacine Ghamri-Doudane** *France Telecom R&D, Core Network Laboratories, Lannion, France **Networks and Multimedia
Topology Control and Mobility Strategy for UAV Ad-hoc Networks: A Survey
Topology Control and Mobility Strategy for UAV Ad-hoc Networks: A Survey Zhongliang Zhao, Torsten Braun Institute of Computer Science and Applied Mathematics, University of Bern Neubrückstrasse 10, 3012
Energy Optimal Routing Protocol for a Wireless Data Network
Energy Optimal Routing Protocol for a Wireless Data Network Easwar Vivek Colloborator(s): Venkatesh Ramaiyan, Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology, Madras.
Technology White Paper Capacity Constrained Smart Grid Design
Capacity Constrained Smart Grid Design Smart Devices Smart Networks Smart Planning EDX Wireless Tel: +1-541-345-0019 I Fax: +1-541-345-8145 I [email protected] I www.edx.com Mark Chapman and Greg Leon EDX Wireless
INTERNET FOR VANET NETWORK COMMUNICATIONS -FLEETNET-
ABSTRACT INTERNET FOR VANET NETWORK COMMUNICATIONS -FLEETNET- Bahidja Boukenadil¹ ¹Department Of Telecommunication, Tlemcen University, Tlemcen,Algeria Now in the world, the exchange of information between
IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks
IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks Zhibin Wu, Sachin Ganu and Dipankar Raychaudhuri WINLAB, Rutgers University 2006-11-16 IAB Research Review, Fall 2006 1 Contents
LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS
LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS Saranya.S 1, Menakambal.S 2 1 M.E., Embedded System Technologies, Nandha Engineering College (Autonomous), (India)
Research Article ISSN 2277 9140 Copyright by the authors - Licensee IJACIT- Under Creative Commons license 3.0
INTERNATIONAL JOURNAL OF ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY An international, online, open access, peer reviewed journal Volume 2 Issue 2 April 2013 Research Article ISSN 2277 9140 Copyright
OPNET - Network Simulator
Simulations and Tools for Telecommunications 521365S: OPNET - Network Simulator Jarmo Prokkola Project Manager, M. Sc. (Tech.) VTT Technical Research Centre of Finland Kaitoväylä 1, Oulu P.O. Box 1100,
Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs
Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs As a head of the campus network department in the Deanship of Information Technology at King Abdulaziz University for more
Wireless Sensor Networks Chapter 3: Network architecture
Wireless Sensor Networks Chapter 3: Network architecture António Grilo Courtesy: Holger Karl, UPB Goals of this chapter Having looked at the individual nodes in the previous chapter, we look at general
Comparison of WCA with AODV and WCA with ACO using clustering algorithm
Comparison of WCA with AODV and WCA with ACO using clustering algorithm Deepthi Hudedagaddi, Pallavi Ravishankar, Rakesh T M, Shashikanth Dengi ABSTRACT The rapidly changing topology of Mobile Ad hoc networks
CHAPTER 1 INTRODUCTION
21 CHAPTER 1 INTRODUCTION 1.1 PREAMBLE Wireless ad-hoc network is an autonomous system of wireless nodes connected by wireless links. Wireless ad-hoc network provides a communication over the shared wireless
CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs
CHAPTER 6 VOICE COMMUNICATION OVER HYBRID MANETs Multimedia real-time session services such as voice and videoconferencing with Quality of Service support is challenging task on Mobile Ad hoc Network (MANETs).
8/27/2014. What is a computer network? Introduction. Business Applications (1) Uses of Computer Networks. Business Applications (2)
What is a computer network? Introduction Chapter 1 A number of separate but interconnected computers A collection of autonomous computers interconnected by a single technology COURSE FOCUS: design and
WIRELESS communication channels have the characteristic
512 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, MARCH 2009 Energy-Efficient Decentralized Cooperative Routing in Wireless Networks Ritesh Madan, Member, IEEE, Neelesh B. Mehta, Senior Member,
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network Chandrakant N Bangalore, India [email protected] Abstract Energy efficient load balancing in a Wireless Sensor
A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS
A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS Sumanta Saha, Md. Safiqul Islam, Md. Sakhawat Hossen School of Information and Communication Technology The Royal Institute of Technology (KTH) Stockholm,
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341 Multinode Cooperative Communications in Wireless Networks Ahmed K. Sadek, Student Member, IEEE, Weifeng Su, Member, IEEE, and K.
AN EFFICIENT STRATEGY OF AGGREGATE SECURE DATA TRANSMISSION
INTERNATIONAL JOURNAL OF REVIEWS ON RECENT ELECTRONICS AND COMPUTER SCIENCE AN EFFICIENT STRATEGY OF AGGREGATE SECURE DATA TRANSMISSION K.Anusha 1, K.Sudha 2 1 M.Tech Student, Dept of CSE, Aurora's Technological
TOPOLOGIES NETWORK SECURITY SERVICES
TOPOLOGIES NETWORK SECURITY SERVICES 1 R.DEEPA 1 Assitant Professor, Dept.of.Computer science, Raja s college of Tamil Studies & Sanskrit,Thiruvaiyaru ABSTRACT--In the paper propose about topology security
mlab: A Mobile Ad Hoc Network Test Bed
mlab: A Mobile Ad Hoc Network Test Bed A. Karygiannis and E. Antonakakis National Institute of Standards and Technology {karygiannis, manos}@nist.gov Abstract Over the last few years, research in the area
EE6390. Fall 1999. Research Report. Mobile IP in General Packet Radio System
EE6390 Introduction to Wireless Communications Systems Fall 1999 Research Report Mobile IP in General Packet Radio System Kelvin K. W. Wong Ramzi Hamati Date: Dec. 6, 1999 1.0 Abstract Tunneling is one
NetworkPathDiscoveryMechanismforFailuresinMobileAdhocNetworks
Global Journal of Computer Science and Technology: E Network, Web & Security Volume 14 Issue 3 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals
The Monitoring of Ad Hoc Networks Based on Routing
The Monitoring of Ad Hoc Networks Based on Routing Sana Ghannay, Sonia Mettali Gammar, Farouk Kamoun CRISTAL Laboratory ENSI, University of Manouba 21 Manouba - Tunisia {chnnysn,sonia.gammar}@ensi.rnu.tn,
A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks
A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks Didem Gozupek 1,Symeon Papavassiliou 2, Nirwan Ansari 1, and Jie Yang 1 1 Department of Electrical and Computer Engineering
G.Vijaya kumar et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1413-1418
An Analytical Model to evaluate the Approaches of Mobility Management 1 G.Vijaya Kumar, *2 A.Lakshman Rao *1 M.Tech (CSE Student), Pragati Engineering College, Kakinada, India. [email protected]
Network Architecture and Topology
1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches and routers 6. End systems 7. End-to-end
SBSCET, Firozpur (Punjab), India
Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based
Overview of Network Hardware and Software. CS158a Chris Pollett Jan 29, 2007.
Overview of Network Hardware and Software CS158a Chris Pollett Jan 29, 2007. Outline Scales of Networks Protocol Hierarchies Scales of Networks Last day, we talked about broadcast versus point-to-point
Node Mobility Tracking In Mobile Ad-Hoc Networks in their Geographical Position (Dynamic Networks)
Node Mobility Tracking In Mobile Ad-Hoc Networks in their Geographical Position (Dynamic Networks) A. Subramani, A. Krishnan Abstract In mobile ad-hoc network, nodes of position change due to dynamic nature.
Unit 3 - Advanced Internet Architectures
Unit 3 - Advanced Internet Architectures Carlos Borrego Iglesias, Sergi Robles [email protected],[email protected] Departament d Enginyeria de la Informació i de les Comunicacions Universitat Autònoma
An Implementation of Secure Wireless Network for Avoiding Black hole Attack
An Implementation of Secure Wireless Network for Avoiding Black hole Attack Neelima Gupta Research Scholar, Department of Computer Science and Engineering Jagadguru Dattaray College of Technology Indore,
From reconfigurable transceivers to reconfigurable networks, part II: Cognitive radio networks. Loreto Pescosolido
From reconfigurable transceivers to reconfigurable networks, part II: Cognitive radio networks Loreto Pescosolido Spectrum occupancy with current technologies Current wireless networks, operating in either
Wireless Home Networks based on a Hierarchical Bluetooth Scatternet Architecture
Wireless Home Networks based on a Hierarchical Bluetooth Scatternet Architecture W. Lilakiatsakun'. 2, A. Seneviratne' I School of Electrical Engineering and Telecommunication University of New South Wales,
Network Simulator: A Learning Tool for Wireless Technologies
Current Developments in Technology-Assisted Education (2006) 1979 Network Simulator: A Learning Tool for Wireless Technologies A. Triviño Cabrera, E. Casilari Dpto. Tecnología Electrónica, University of
Politecnico di Milano Advanced Network Technologies Laboratory
Politecnico di Milano Advanced Network Technologies Laboratory Energy and Mobility: Scalable Solutions for the Mobile Data Explosion Antonio Capone TIA 2012 GreenTouch Open Forum June 6, 2012 Energy consumption
PERFORMANCE ANALYSIS OF AD-HOC ON DEMAND DISTANCE VECTOR FOR MOBILE AD- HOC NETWORK
http:// PERFORMANCE ANALYSIS OF AD-HOC ON DEMAND DISTANCE VECTOR FOR MOBILE AD- HOC NETWORK Anjali Sahni 1, Ajay Kumar Yadav 2 1, 2 Department of Electronics and Communication Engineering, Mewar Institute,
Step by Step Procedural Comparison of DSR, AODV and DSDV Routing protocol
th International Conference on Computer Engineering and Technology (ICCET ) IPCSIT vol. () () IACSIT Press, Singapore Step by Step Procedural Comparison of DSR, AODV and DSDV Routing protocol Amith Khandakar
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering
An Empirical Approach - Distributed Mobility Management for Target Tracking in MANETs
An Empirical Approach - Distributed Mobility Management for Target Tracking in MANETs G.Michael Assistant Professor, Department of CSE, Bharath University, Chennai, TN, India ABSTRACT: Mobility management
Traffic Prediction in Wireless Mesh Networks Using Process Mining Algorithms
Traffic Prediction in Wireless Mesh Networks Using Process Mining Algorithms Kirill Krinkin Open Source and Linux lab Saint Petersburg, Russia [email protected] Eugene Kalishenko Saint Petersburg
An Extended AODV Protocol to Support Mobility in Hybrid Networks
An Extended AODV Protocol to Support Mobility in Hybrid Networks Sèmiyou A. Adédjouma* Polytechnic School of Abomey-Calavi (EPAC) University of Abomey-Calavi (UAC) Cotonou, Benin *semiyou.adedjouma {at}
Tactical Service Bus: The flexibility of service oriented architectures in constrained theater environments
Tactical Bus: The flexibility of service oriented architectures in constrained theater environments Tactical Edge in NATO Context Tactical still very much under control of national forces: Zone of Operations
LIST OF FIGURES. Figure No. Caption Page No.
LIST OF FIGURES Figure No. Caption Page No. Figure 1.1 A Cellular Network.. 2 Figure 1.2 A Mobile Ad hoc Network... 2 Figure 1.3 Classifications of Threats. 10 Figure 1.4 Classification of Different QoS
ECE/CS 372 introduction to computer networks. Lecture 13
ECE/CS 372 introduction to computer networks Lecture 13 Announcements: HW #4 hard copy due today Lab #5 posted is due Tuesday June 4 th HW #5 posted is due Thursday June 6 th Pickup midterms Acknowledgement:
Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks
Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks Kiruthiga S PG student, Coimbatore Institute of Engineering and Technology Anna University, Chennai,
Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR
Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR GUIDOUM AMINA University of SIDI BEL ABBES Department of Electronics Communication Networks,
Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA
CASE STUDY Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA Stephen Yablonski and Steven Spreizer Globecomm Systems,
A Well-organized Dynamic Bandwidth Allocation Algorithm for MANET
A Well-organized Dynamic Bandwidth Allocation Algorithm for MANET S.Suganya Sr.Lecturer, Dept. of Computer Applications, TamilNadu College of Engineering, Coimbatore, India Dr.S.Palaniammal Prof.& Head,
Ad hoc and Sensor Networks Chapter 1: Motivation & Applications
Ad hoc and Sensor Networks Chapter 1: Motivation & Applications Holger Karl Computer Networks Group Universität Paderborn Goals of this chapter Give an understanding what ad hoc & sensor networks are good
Security Sensor Network. Biswajit panja
Security Sensor Network Biswajit panja 1 Topics Security Issues in Wired Network Security Issues in Wireless Network Security Issues in Sensor Network 2 Security Issues in Wired Network 3 Security Attacks
EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK
EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK S.Abarna 1, R.Padmapriya 2 1 Mphil Scholar, 2 Assistant Professor, Department of Computer Science,
A Novel Pathway for Portability of Networks and Handing-on between Networks
A Novel Pathway for Portability of Networks and Handing-on between Networks D. S. Dayana #1, S. R. Surya #2 Department of Computer Applications, SRM University, Chennai, India 1 [email protected]
EPL 657 Wireless Networks
EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing
Security in Ad Hoc Network
Security in Ad Hoc Network Bingwen He Joakim Hägglund Qing Gu Abstract Security in wireless network is becoming more and more important while the using of mobile equipments such as cellular phones or laptops
Simulation of wireless ad-hoc sensor networks with QualNet
Advanced Seminar Embedded Systems 2008/2009 Simulation of wireless ad-hoc sensor networks with QualNet Documentation by Tobias Doerffel Chemnitz, April 9, 2009 Contents Contents 1 Introduction 3 1.1 The
Lecture 14: Data transfer in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 6, Thursday
Lecture 14: Data transfer in multihop wireless networks Mythili Vutukuru CS 653 Spring 2014 March 6, Thursday Data transfer over multiple wireless hops Many applications: TCP flow from a wireless node
Humayun Bakht School of Computing and Mathematical Sciences Liverpool John Moores University Email:[email protected]
Applications of mobile ad-hoc networks my article applications of mobile ad-hoc networks at http://www.computingunplugged.com/issues/issue2004 09/00001371001.html Humayun Bakht School of Computing and
Propsim enabled Mobile Ad-hoc Network Testing
www.anite.com Propsim enabled Mobile Ad-hoc Network Testing Anite is now part of Keysight Technologies Lab-based, end-to-end performance testing of systems using Propsim MANET channel emulation A Mobile
Proposition of a new approach to adapt SIP protocol to Ad hoc Networks
, pp.133-148 http://dx.doi.org/10.14257/ijseia.2014.8.7,11 Proposition of a new approach to adapt SIP protocol to Ad hoc Networks I. Mourtaji, M. Bouhorma, M. Benahmed and A. Bouhdir Computer and Communication
Comparative Study of Performance Evaluation for Mobile Ad hoc networks using a proxy node
Comparative Study of Performance Evaluation for Mobile Ad hoc networks using a proxy node G. E. RIZOS [email protected] D. C. VASILIADIS [email protected] E. STERGIOU [email protected] Abstract: In this paper,
SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS)
SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS) Neha Maurya, ASM S IBMR ABSTRACT: Mobile Ad hoc networks (MANETs) are a new paradigm of wireless network, offering unrestricted mobility without any underlying
A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks
A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran [email protected]
APPENDIX - A. Tools Used. 1. Qualnet Simulator. 2. TRMSim-WSN Simulator. 3. SnetSim Simulator. 4. EDX SignalPro. 5.
160 APPENDIX - A Tools Used 1. Qualnet Simulator 2. TRMSim-WSN Simulator 3. SnetSim Simulator 4. EDX SignalPro 5. MATLAB Software 161 Qualnet Simulator The QualNet communications simulation platform (QualNet)
UNIT 8:- Mobile Ad-Hoc Networks, Wireless Sensor Networks
UNIT 8:- Mobile Ad-Hoc Networks, Wireless Sensor Networks a Mobile Ad hoc NETwork (MANET) is one that comes together as needed, not necessarily with any support from the existing infrastructure or any
