Evolution of Software Defined Networking within Cisco s VMDC
|
|
|
- Meagan Kelley
- 10 years ago
- Views:
Transcription
1 Evolution of Software Defined Networking within Cisco s VMDC Software-Defined Networking (SDN) has the capability to revolutionize the current data center architecture and its associated networking model. This new paradigm, with its promised benefits, has the potential to create an inflection point in deploying cloud services. This paper summarizes the key characteristics of SDN as it is applied to data center virtualization, and illustrates how Cisco's Virtualized Multiservice Data Center (VMDC) solutions leverage many of these concepts today, to solve real-world customer problems. Challenges within the Data Center Businesses are increasingly under pressure to respond to the ever-increasing demand from end-users and employees, who demand more from computer systems, networks, and mobile devices than ever before. As a result, service providers and enterprises are constantly exploring ways to keep up with fast evolving technology trends, business and end-user requirements, and to provide innovative applications and services with faster time to market. "Business Agility" is the watchword in this new world where providers are expected to provision and roll out services rapidly. Software Defined Networking provides a new paradigm that attempts to respond to the new requirements of business agility and improved user experience. Many cloud-computing environments operate in an application-centric world, where virtualized applications are hosted within a public or private cloud. As a result, users can access their applications from anywhere, on any device, at any time. Users have access to more applications than ever before (on smartphones, tablets, etc.), and the user-experience of many of these applications has a dependency on the quality of the network. The Open Network Foundation (ONF) defines Software-Defined Networking as follows: The physical separation of the network control plane from the forwarding plane, and where a control plane controls several devices. Figure 1 shows layers of the SDN architecture
2 SDN Architectural Framework and Solution Characteristics Evolution of Software Defined Networking within Cisco s VMDC Figure 1 SDN Architectural Layers Within an SDN infrastructure, applications can request and obtain services from the underlying network infrastructure. This capability leads to the development of more proactive and dynamic applications that improve the user experience. SDN changes the way networks are designed and deployed, where the applications have more control on the configuration of the network infrastructure. SDN offers businesses the chance to build networks with increased application awareness and intelligence about Layer 4 - Layer 7 protocol attributes and delivery requirements. Software-defined networking allows infrastructure become much more automated and therefore adaptive to the needs of the applications performing (or requesting) the automation. SDN Architectural Framework and Solution Characteristics Although centralization of control is a key tenet of SDN, there are a number of other characteristics that vary with different SDN solutions. The following are certain common characteristics that are deployed in most SDN solutions today. Control In conventional networks, control traffic and data traffic are tightly coupled in network devices. Additionally, in conventional networks most control functions are distributed over many devices. In contrast, the SDN paradigm attempts to pull control functions out of the network devices and consolidate them into a centralized location. With this model, once a centralized controller derives the desired forwarding behavior, forwarding instructions for packets are downloaded to the appropriate network devices. The communication between the controller and the network devices can use some form of standardized protocol such as OpenFlow to facilitate standardized network device programming. Not all control functions can or should be centralized. Most SDN solutions still rely upon under-lying network connectivity that employs some form of a distributed routing control mechanism. Legacy, non-packet-switching networks deployed a mostly centralized control functionality that created a number of problems, primarily lack of scale, which provided the impetus for the fast adoption of a decentralized control mechanism found in today's packet switching networks. Most SDN solutions still require some sort of decentralized control functionality, and the degree of control plane centralization varies from one solution to another. 2
3 Evolution of Software Defined Networking within Cisco s VMDC SDN Architectural Framework and Solution Characteristics Overlay Networks The use of overlay networking technologies is another common characteristic to a number of SDN architectures. Overlay networks, provide a construct for the creation of logical networks that can be leveraged by edge devices and applications. Overlay tunneling technologies such as VXLAN, enable the creation of logical networks on top of the existing physical network without having to explicitly involve the underlying physical network. Some of the benefits of overlay networks are as follows: They can provide logical layer-2 adjacency without the need to create physically adjacent layer-2 networks. This is particularly useful for provisioning multi-datacenter environments where logical layer-2 connectivity is needed across layer-3 boundaries. Some tunneling technologies provide much larger numbers of layer-2 networks than VLANs, which generally are limited to 4000 segments. Faster and potentially simpler network provisioning and orchestration since interacting with the physical network is not required. SDN Solution Taxonomy Within any networking solution, one can classify network characteristics within the following broad categories: Control Plane Function In its simplest form, the control plane provides layer-2 MAC reachability and layer-3 routing information to network devices that require this information to make packet forwarding decisions. In the case of firewalls, the control plane would include stateful flow information for inspection. Control plane functionality can implemented as follows: - Conventional routers and switches operate using distributed protocols for control, i.e. where each device makes its own decisions about what to do, and communicate relevant information to other devices for input into their decision making process. For example, the Spanning Tree Protocol (STP), Fabric Path, and routing protocols such as IS-IS and BGP provide distributed control of packet forwarding functionality to networking devices. - In this case, a centralized controller provides the necessary information for a network element to make a decision. For example, these controller(s) instruct networking devices on where to forward packets by explicitly programming their MAC and FIBs. The control plane functionality can be further classified as follows: Layer-2 Reachability Control This control mechanism provides Layer 2 MAC reachability information. It can either be implemented in a distributed manner like bridging and data-plane learning, or in a centralized manner with a controller-based device. Layer-3 Reachability Control The Layer 3 control mechanism provides Layer 3 routing and reachability information to all participating devices. Conventional routing protocols are distributed, while an SDN based system typically involves downloading controller-derived Layer 3 forwarding tables to various devices, using standardized or open protocols. 3
4 Cisco s Virtual Multiservice Data Center Evolution of Software Defined Networking within Cisco s VMDC Data Plane / Control Plane Collocation The main function of network devices and appliances is to forward user-generated data traffic within the network infrastructure; the particular forwarding policies are dependent upon the type of device. Such network elements can be one of the following: Collocated These are devices that use distributed control planes and which have control plan and data plane functions that are collocated, i.e., no external entity is required for the device to make decisions. These appliances can be physical or virtual. All of Cisco s physical devices, the Adaptive Security Appliance (ASA) 1000v, and Cloud Services Router (CSR) 1000v are examples of devices with collocated control plane + data plane. 1 Dislocated The functionality of the device is distributed across multiple elements, under the control of a centralized element, i.e. the data plane and control plane of the device are dislocated. The functionality of the device is dependent on instructions coming from the centralized element. The OpenFlow enabled Cisco 3750-X and 3650-X devices, the Nexus 1000v, and the newly developed Virtual Provider Edge (vpe) solution are examples of devices with dislocated control plane and data plane. Devices that use distributed control planes may have dislocated control plane and data plane functions; devices with centralized controllers implicitly have dislocated control plane and data plane functions. Services Services such as load-balancers or firewalls can be implemented with either autonomous or dependent forwarding decision making capabilities. Examples would include a virtual-autonomous appliance like the ASA 1000v, or a virtual-dependent appliance such as an Open Virtual Switch (OVS) with a centralized firewall controller. stateful service appliances inspect and maintain state machines for traffic flows at each device, where as dependent service appliances employ a centralized control device to externally control the service behavior. The complexity of a centralized services controller is considerable since it needs to process, store, and distribute a large number of traffic flow states associated with stateful inspection of Layer 4 - Layer 7 traffic. Further, some service control functions need to be in the data path, e.g. an application server load balancer, which is monitoring the responsiveness of applications servers. Given this complexity, it is difficult to scale dependent services, and therefore autonomous services will still be required for functions such as stateful firewalls and application server load balancers for the foreseeable future. Overlay Networks Tenant segmentation can be provided by conventional means such as VLANs, or an overlay method such as VXLANs. As outlined previously, an overlay network within a SDN environment is a construct for the creation of logical networks that can be leveraged by edge devices and appliances. Tenant segmentation based on VLANs is normally considered a characteristic of a non-sdn systems, while overlay networks are considered a key component of an SDN-based solution. The adoption of the above mentioned choices for L2/L3 reachability control, services, overlay networks, and data plane characteristics within a solution determines where the solution falls within the range between conventional and SDN-based solutions. Cisco s Virtual Multiservice Data Center The Cisco Virtual Multiservice Data Center (VMDC) reference architecture provides a framework for building a scalable and resilient data center infrastructure. Cisco s VMDC validated designs provide guidelines that demonstrate how customers can integrate Cisco and partner technologies into a data
5 Evolution of Software Defined Networking within Cisco s VMDC Cisco s Virtual Multiservice Data Center center platform that supports virtualization and can lead to significant hardware consolidation. There are several variants of VMDC, each offering certain features and functionality suitable to a variety of customer needs. The following sections describe how the various versions of the VMDC architecture fall within the spectrum of conventional and SDN-based solutions. VMDC 2.x and 3.x The VMDC 2.x and 3.x series of releases is built on conventional, hierarchal-based data center designs. The layers in these releases are Core (optional), Aggregation, Services, Access, and Virtual Access. Compute pods hang off the access layer, while virtual machines connect to the virtual access layer. The Core layer connects to the WAN-PE devices on the operator's IP-NGN network. Figure 2 shows the physical topology of the VMDC 2.2 release. Figure 2 VMDC 2.2 Physical Topology WAN Edge (NGN PE) L3 VPN AS 109 Public Internet Aggregation AS Front-End VRF ASA-FW ASA-FW Firewall Outside VLAN Shared/Public VLAN Service-Core AS Back-End VRF Firewall Inside, ACE Outside VLAN ASA-FW ASA-FW Aggregation Nexus 1000 Virtual Machine VLANs Compute With regards to the solution's placement on the SDN spectrum, the VMDC 2.x and 3.x releases employ several relevant technologies. First, these releases leverage distributed control plane functions for Layer 3 routing, specifically BPG and PF. For Layer 2 bridging, the solution relies on ARP and STP, while VMDC 3.x relies on Cisco's Fabric Path technology. Both solutions rely on VLANs for tenant segmentation. These technologies are more typical of a conventional network rather than an SDN-based solution. At the virtual access layer, the solutions leverage the Nexus 1000v, which has a centralized control element (the Virtual Supervisor Module (VSM)) programming the forwarding behavior of the distributed data-plane elements (the Virtual Ethernet Modules (VEMs)). Likewise, one of the services leveraged by these releases is the Virtual Service Gateway (VSG), which has a centralized component VSG
6 Cisco s Virtual Multiservice Data Center Evolution of Software Defined Networking within Cisco s VMDC performing initial flow inspection via Cisco's vpath technology, and subsequently programs the VEM's action to apply to the flow. These technologies are well aligned with the SDN concepts discussed previously. Figure 3 shows the VMDC 2.x series on the conventional/sdn solution spectrum. Figure 3 VMDC 2.x Spectrum VMDC 2.x, 3.x Conventional SDN-based Tenant Segmentation L2/L3 Data Plane L2 Reachability Control L3 Reachability Control Services Underlay Overlay As shown in Figure 3, while the VMDC 2.x series has some relevant SDN technologies, its foundational concepts are based on conventional architectures VMDC 4.x (vce) The VMDC 4.x series of releases focuses on Cisco's Virtual Service Architecture (VSA), where all network services are virtual, and each tenant network container leverages the Cloud Services Router (CSR) 1000v for container ingress and egress traffic. The CSR 1000v serves a number of functions, including a zone-based perimeter firewall, VPN remote access termination, and the virtual Consumer Edge (vce) device; providing L3 routing for the container and seamlessly extending IP-NGN customers' reach into the data center. Figure 4 shows the representative physical topology of the VMDC 4.0 release. Figure 4 Physical Topology 6
7 Evolution of Software Defined Networking within Cisco s VMDC Cisco s Virtual Multiservice Data Center Relative to the VMDC 2.x series of releases, the VMDC 4.x series adds a significant SDN concept to the architecture by deploying VXLAN-based overlay networks for tenant segmentation, while continuing to leverage distributed control functions for switching (STP or Fabric Path) and routing (BGP). It also adds more vpath enabled virtual services like the virtual Wide Area Application Services (vwaas) appliance and the Adaptive Security Appliance (ASA) 1000v. Figure 5 shows the VMDC 4.x series on the conventional/sdn solution spectrum. Figure 5 VMDC 4.x Spectrum VMDC 4.x Conventional SDN-based Tenant Segmentation Underlay Overlay L2/L3 Data Plane L2 Reachability Control L3 Reachability Control Services Cisco vpe Cisco s Virtual Provider Edge (vpe) solution leverages all of the SDN concepts 1 described earlier in this document. Figure 6 shows the high-level vpe architecture. Figure 6 vpe High-level Architecture
8 Conclusion Evolution of Software Defined Networking within Cisco s VMDC The vpe controller and the vpe forwarder represent the key tenet of SDN, i.e., the decoupling of the control-plane and data-plane. The vpe controller computes the appropriate forwarding tables for both Layer 2 and Layer 3, and subsequently programs these tables into the vpe forwarders that reside in the hypervisor hosts. Packet forwarding and service chaining are accomplished using the tables programmed by the controller, while utilizing an encapsulation, e.g., VXLAN or MPLS to create an overlay network through the data center. The vpe solution can be used over many different physical topologies, as the majority of network functions occur in the software based controllers, forwarders, and services. Similar to the vce architecture, all the services for the vpe solution are virtual, with some being autonomous (e.g., Citrix VPX) and others dependent (VSG, ASA 1000v, vwaas). Figure 7 shows the vpe solution on the conventional/sdn solution spectrum. Figure 7 vpe Spectrum vpe Conventional SDN-based Tenant Segmentation L2/L3 Data Plane L2 Reachability Control L3 Reachability Control Services Underlay Overlay As shown in Figure 7, Cisco's vpe solution includes at least one piece of functionality from all the main SDN concepts discussed in this document. At the time of this writing, Cisco's vpe solution is scheduled to become generally available in Q1CY2014, and will become an official VMDC release shortly thereafter Conclusion Cisco sees SDN as an opportunity for the company and a benefit for customers. SDN is nothing new to Cisco-we have been delivering SDN-related technologies for some time. For example, Cisco's Nexus 1000V software switch, in production since 2009, uses separated control-data plane architecture and is currently licensed by more than 5000 customers. Cisco has also long-provided open programmatic interfaces to our operating systems to enable scalable application integration to underlying network infrastructures and access to third-party management and orchestration tools. As described in this document, the VMDC Cisco Validated Designs are proof points of Cisco's utilization of SDN concepts in data center infrastructure that exposes Cisco's best of breed hardware to operators, applications, and ultimately, end-users. Cisco is continuously evolving its technology portfolio to evolve with our customer's requirements. In some cases, those requirements will benefit from SDN technologies, and in other cases, conventional mechanisms will prove optimum. In either case, Cisco has solutions to meet those needs. 8
9 Evolution of Software Defined Networking within Cisco s VMDC Conclusion Axel Nadimi Alex Nadimi, Solutions Architect, Systems Development Unit (SDU), Cisco Systems Alex has been with Cisco for the past 15 years and is currently working as a Solutions Architect in Cisco s Systems Development Unit. Prior to this role, he worked as a Technical Marketing Engineer in the Cisco Central Marketing Organization. He has developed solutions and technical guidance on various technologies such as security, VPN networks, WAN transport technologies, data center solutions, and virtualization. Prior to Cisco, he has worked at Hughes LAN Systems and Northern Telecom. He holds a masters of science in electrical engineering from Louisiana State University Brian Davis Brian Davis, Principal Engineer, Systems Development Unit (SDU), Cisco Systems Brian is a 15-year Cisco veteran, specializing in Service Provider solution architectures for the duration of his tenure. Previous to his current assignment, he specialized in DOCSIS High Speed Data, voice over IP (VoIP), and 3-Screen video architectures and deployments. Brian's latest focus in on network orchestration of Cisco's Virtual Multiservice Data Center solution, which leverages both conventional and SDN concepts and technologies. Brian graduated from Rensselaer Polytechnic Institute with a BS in Electrical and Computer Systems Engineering in When he's not thinking about networking, Brian enjoys spending time at home with his wife, 7 and 5 year old daughters, and newborn son. His latest hobby is maintaining his lawn and flowerbeds to be the envy of the neighborhood. 9
10 Conclusion Evolution of Software Defined Networking within Cisco s VMDC 10
Transform Your Business and Protect Your Cisco Nexus Investment While Adopting Cisco Application Centric Infrastructure
White Paper Transform Your Business and Protect Your Cisco Nexus Investment While Adopting Cisco Application Centric Infrastructure What You Will Learn The new Cisco Application Centric Infrastructure
Virtualization, SDN and NFV
Virtualization, SDN and NFV HOW DO THEY FIT TOGETHER? Traditional networks lack the flexibility to keep pace with dynamic computing and storage needs of today s data centers. In order to implement changes,
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS Matt Eclavea ([email protected]) Senior Solutions Architect, Brocade Communications Inc. Jim Allen ([email protected]) Senior Architect, Limelight
White Paper. SDN 101: An Introduction to Software Defined Networking. citrix.com
SDN 101: An Introduction to Software Defined Networking citrix.com Over the last year, the hottest topics in networking have been software defined networking (SDN) and Network ization (NV). There is, however,
White Paper. Juniper Networks. Enabling Businesses to Deploy Virtualized Data Center Environments. Copyright 2013, Juniper Networks, Inc.
White Paper Juniper Networks Solutions for VMware NSX Enabling Businesses to Deploy Virtualized Data Center Environments Copyright 2013, Juniper Networks, Inc. 1 Table of Contents Executive Summary...3
SOFTWARE-DEFINED NETWORKING AND OPENFLOW
SOFTWARE-DEFINED NETWORKING AND OPENFLOW Freddie Örnebjär TREX Workshop 2012 2012 Brocade Communications Systems, Inc. 2012/09/14 Software-Defined Networking (SDN): Fundamental Control
Cisco Prime Network Services Controller. Sonali Kalje Sr. Product Manager Cloud and Virtualization, Cisco Systems
Cisco Prime Network Services Controller Sonali Kalje Sr. Product Manager Cloud and Virtualization, Cisco Systems Agenda Cloud Networking Challenges Prime Network Services Controller L4-7 Services Solutions
Cisco-Citrix Alliance
Cisco-Citrix Alliance Mobile Workstyles Cisco- Citrix Cloud Networking Cloud Services Agenda Partnership overview Joint Solution areas Netscaler review 2 The Internet of Everything Amazing Things Happen
Datacenter Networking. Joy ABOIM Consulting System Engineer
Datacenter Networking Joy ABOIM Consulting System Engineer Typical journey to a new Target Operating Model Standardise Vendors, architectures, devices (network, compute, storage) & their configurations
SDN PARTNER INTEGRATION: SANDVINE
SDN PARTNER INTEGRATION: SANDVINE SDN PARTNERSHIPS SSD STRATEGY & MARKETING SERVICE PROVIDER CHALLENGES TIME TO SERVICE PRODUCT EVOLUTION OVER THE TOP THREAT NETWORK TO CLOUD B/OSS AGILITY Lengthy service
What is SDN all about?
What is SDN all about? Emil Gągała Juniper Networks Piotr Jabłoński Cisco Systems In the beginning there was a chaos CLOUD BUILDING BLOCKS CAN I VIRTUALIZE MY Compute Network? Storage Where is my money?
WHITE PAPER. Network Virtualization: A Data Plane Perspective
WHITE PAPER Network Virtualization: A Data Plane Perspective David Melman Uri Safrai Switching Architecture Marvell May 2015 Abstract Virtualization is the leading technology to provide agile and scalable
SDN CONTROLLER. Emil Gągała. PLNOG, 30.09.2013, Kraków
SDN CONTROLLER IN VIRTUAL DATA CENTER Emil Gągała PLNOG, 30.09.2013, Kraków INSTEAD OF AGENDA 2 Copyright 2013 Juniper Networks, Inc. www.juniper.net ACKLOWLEDGEMENTS Many thanks to Bruno Rijsman for his
Cisco Unified Network Services: Overcome Obstacles to Cloud-Ready Deployments
Cisco Unified Network Services: Overcome Obstacles to Cloud-Ready Deployments What You Will Learn Deploying network services in virtual data centers is extremely challenging. Traditionally, such Layer
Defining SDN. Overview of SDN Terminology & Concepts. Presented by: Shangxin Du, Cisco TAC Panelist: Pix Xu Jan 2014
Defining SDN Overview of SDN Terminology & Concepts Presented by: Shangxin Du, Cisco TAC Panelist: Pix Xu Jan 2014 2013 Cisco and/or its affiliates. All rights reserved. 2 2013 Cisco and/or its affiliates.
SOFTWARE DEFINED NETWORKING: INDUSTRY INVOLVEMENT
BROCADE SOFTWARE DEFINED NETWORKING: INDUSTRY INVOLVEMENT Rajesh Dhople Brocade Communications Systems, Inc. [email protected] 2012 Brocade Communications Systems, Inc. 1 Why can t you do these things
Network Virtualization Solutions
Network Virtualization Solutions An Analysis of Solutions, Use Cases and Vendor and Product Profiles October 2013 The Independent Community and #1 Resource for SDN and NFV Tables of Contents Introduction
Network Virtualization and Software-defined Networking. Chris Wright and Thomas Graf Red Hat June 14, 2013
Network Virtualization and Software-defined Networking Chris Wright and Thomas Graf Red Hat June 14, 2013 Agenda Problem Statement Definitions Solutions She can't take much more of this, captain! Challenges
Cisco Nexus 1000V Switch for Microsoft Hyper-V
Data Sheet Cisco Nexus 1000V Switch for Microsoft Hyper-V Product Overview Cisco Nexus 1000V Switches provide a comprehensive and extensible architectural platform for virtual machine and cloud networking.
CLOUD NETWORKING FOR ENTERPRISE CAMPUS APPLICATION NOTE
CLOUD NETWORKING FOR ENTERPRISE CAMPUS APPLICATION NOTE EXECUTIVE SUMMARY This application note proposes Virtual Extensible LAN (VXLAN) as a solution technology to deliver departmental segmentation, business
Why Software Defined Networking (SDN)? Boyan Sotirov
Why Software Defined Networking (SDN)? Boyan Sotirov Agenda Current State of Networking Why What How When 2 Conventional Networking Many complex functions embedded into the infrastructure OSPF, BGP, Multicast,
2013 ONS Tutorial 2: SDN Market Opportunities
2013 ONS Tutorial 2: SDN Market Opportunities SDN Vendor Landscape and User Readiness Jim Metzler, Ashton, Metzler & Associates [email protected] April 15, 2013 1 1 Goals & Non-Goals Goals: Describe
SOFTWARE-DEFINED NETWORKING AND OPENFLOW
SOFTWARE-DEFINED NETWORKING AND OPENFLOW Eric Choi < [email protected]> Senior Manager, Service Provider Business Unit, APJ 2012 Brocade Communications Systems, Inc. EPF 7 2012/09/17 Software-Defined Networking
Deliver the Next Generation Intelligent Datacenter Fabric with the Cisco Nexus 1000V, Citrix NetScaler Application Delivery Controller and Cisco vpath
Citrix NetScaler for Cisco Nexus 1000v White Paper Deliver the Next Generation Intelligent Datacenter Fabric with the Cisco Nexus 1000V, Citrix NetScaler Application Delivery Controller and Cisco vpath
Testing Software Defined Network (SDN) For Data Center and Cloud VERYX TECHNOLOGIES
Testing Software Defined Network (SDN) For Data Center and Cloud VERYX TECHNOLOGIES Table of Contents Introduction... 1 SDN - An Overview... 2 SDN: Solution Layers and its Key Requirements to be validated...
Network Virtualization Network Admission Control Deployment Guide
Network Virtualization Network Admission Control Deployment Guide This document provides guidance for enterprises that want to deploy the Cisco Network Admission Control (NAC) Appliance for their campus
Software Defined Networks Virtualized networks & SDN
Software Defined Networks Virtualized networks & SDN Tony Smith Solution Architect HPN 2 What is Software Defined Networking Switch/Router MANAGEMENTPLANE Responsible for managing the device (CLI) CONTROLPLANE
Cisco and Canonical: Cisco Network Virtualization Solution for Ubuntu OpenStack
Solution Overview Cisco and Canonical: Cisco Network Virtualization Solution for Ubuntu OpenStack What You Will Learn Cisco and Canonical extend the network virtualization offered by the Cisco Nexus 1000V
Data Center Network Virtualisation Standards. Matthew Bocci, Director of Technology & Standards, IP Division IETF NVO3 Co-chair
Data Center Network Virtualisation Standards Matthew Bocci, Director of Technology & Standards, IP Division IETF NVO3 Co-chair May 2013 AGENDA 1. Why standardise? 2. Problem Statement and Architecture
Software defined networking. Your path to an agile hybrid cloud network
Software defined networking Your path to an agile hybrid cloud network Is your enterprise network ready for the latest business and consumer trends? Cloud How easily can your users connect to cloud resources?
Understanding Cisco Cloud Fundamentals CLDFND v1.0; 5 Days; Instructor-led
Understanding Cisco Cloud Fundamentals CLDFND v1.0; 5 Days; Instructor-led Course Description Understanding Cisco Cloud Fundamentals (CLDFND) v1.0 is a five-day instructor-led training course that is designed
Analysis of Network Segmentation Techniques in Cloud Data Centers
64 Int'l Conf. Grid & Cloud Computing and Applications GCA'15 Analysis of Network Segmentation Techniques in Cloud Data Centers Ramaswamy Chandramouli Computer Security Division, Information Technology
Cisco Virtual Topology System: Data Center Automation for Next-Generation Cloud Architectures
White Paper Cisco Virtual Topology System: Data Center Automation for Next-Generation Cloud Architectures 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information.
SINGLE-TOUCH ORCHESTRATION FOR PROVISIONING, END-TO-END VISIBILITY AND MORE CONTROL IN THE DATA CENTER
SINGLE-TOUCH ORCHESTRATION FOR PROVISIONING, END-TO-END VISIBILITY AND MORE CONTROL IN THE DATA CENTER JOINT SDN SOLUTION BY ALCATEL-LUCENT ENTERPRISE AND NEC APPLICATION NOTE EXECUTIVE SUMMARY Server
CoIP (Cloud over IP): The Future of Hybrid Networking
CoIP (Cloud over IP): The Future of Hybrid Networking An overlay virtual network that connects, protects and shields enterprise applications deployed across cloud ecosystems The Cloud is Now a Critical
VMDC 3.0 Design Overview
CHAPTER 2 The Virtual Multiservice Data Center architecture is based on foundation principles of design in modularity, high availability, differentiated service support, secure multi-tenancy, and automated
The Road to SDN: Software-Based Networking and Security from Brocade
WHITE PAPER www.brocade.com SOFTWARE NETWORKING The Road to SDN: Software-Based Networking and Security from Brocade Software-Defined Networking (SDN) presents a new approach to rapidly introducing network
Leveraging SDN and NFV in the WAN
Leveraging SDN and NFV in the WAN Introduction Software Defined Networking (SDN) and Network Functions Virtualization (NFV) are two of the key components of the overall movement towards software defined
Software Defined Network (SDN)
Georg Ochs, Smart Cloud Orchestrator ([email protected]) Software Defined Network (SDN) University of Stuttgart Cloud Course Fall 2013 Agenda Introduction SDN Components Openstack and SDN Example Scenario
Business Benefits. Cisco Virtual Networking solutions offer the following benefits:
Solution Overview Cisco Virtual Networking: Extend Advanced Networking for Microsoft Hyper-V Environments What You Will Learn For enterprise and service provider customers who want to extend Cisco networking
Software Defined Network (SDN) for Service Providers
Software Defined Network (SDN) for Service Providers Santanu Dasgupta Sr. Consulting Engineer Global Service Provider HQ SANOG 21 January 28th, 2013 2011 2010 Cisco and/or its affiliates. All rights Cisco
What is SDN? And Why Should I Care? Jim Metzler Vice President Ashton Metzler & Associates
What is SDN? And Why Should I Care? Jim Metzler Vice President Ashton Metzler & Associates 1 Goals of the Presentation 1. Define/describe SDN 2. Identify the drivers and inhibitors of SDN 3. Identify what
TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems
for Service Provider Data Center and IXP Francois Tallet, Cisco Systems 1 : Transparent Interconnection of Lots of Links overview How works designs Conclusion 2 IETF standard for Layer 2 multipathing Driven
Extending Networking to Fit the Cloud
VXLAN Extending Networking to Fit the Cloud Kamau WangŨ H Ũ Kamau Wangũhgũ is a Consulting Architect at VMware and a member of the Global Technical Service, Center of Excellence group. Kamau s focus at
Network Virtualization
Network Virtualization What is Network Virtualization? Abstraction of the physical network Support for multiple logical networks running on a common shared physical substrate A container of network services
Avaya VENA Fabric Connect
Avaya VENA Fabric Connect Executive Summary The Avaya VENA Fabric Connect solution is based on the IEEE 802.1aq Shortest Path Bridging (SPB) protocol in conjunction with Avaya extensions that add Layer
SDN and NFV in the WAN
WHITE PAPER Hybrid Networking SDN and NFV in the WAN HOW THESE POWERFUL TECHNOLOGIES ARE DRIVING ENTERPRISE INNOVATION rev. 110615 Table of Contents Introduction 3 Software Defined Networking 3 Network
How To Extend Security Policies To Public Clouds
What You Will Learn Public sector organizations without the budget to build a private cloud can consider public cloud services. The drawback until now has been tenants limited ability to implement their
SDN Applications in Today s Data Center
SDN Applications in Today s Data Center Harry Petty Director Data Center & Cloud Networking Cisco Systems, Inc. Santa Clara, CA USA October 2013 1 Customer Insights: Research/ Academia OpenFlow/SDN components
Panel: Cloud/SDN/NFV 黃 仁 竑 教 授 國 立 中 正 大 學 資 工 系 2015/12/26
Panel: Cloud/SDN/NFV 黃 仁 竑 教 授 國 立 中 正 大 學 資 工 系 2015/12/26 1 Outline Cloud data center (CDC) Software Defined Network (SDN) Network Function Virtualization (NFV) Conclusion 2 Cloud Computing Cloud computing
the Data Center Connecting Islands of Resources Within and Across Locations with MX Series Routers White Paper
White Paper Integrating SDN into the Data Center Connecting Islands of Resources Within and Across Locations with MX Series Routers Copyright 2013, Juniper Networks, Inc. 1 Table of Contents Executive
HAWAII TECH TALK SDN. Paul Deakin Field Systems Engineer
HAWAII TECH TALK SDN Paul Deakin Field Systems Engineer SDN What Is It? SDN stand for Software Defined Networking SDN is a fancy term for: Using a controller to tell switches where to send packets SDN
SOFTWARE DEFINED NETWORKING
SOFTWARE DEFINED NETWORKING Bringing Networks to the Cloud Brendan Hayes DIRECTOR, SDN MARKETING AGENDA Market trends and Juniper s SDN strategy Network virtualization evolution Juniper s SDN technology
Qualifying SDN/OpenFlow Enabled Networks
Qualifying SDN/OpenFlow Enabled Networks Dean Lee Senior Director, Product Management Ixia Santa Clara, CA USA April-May 2014 1 Agenda SDN/NFV a new paradigm shift and challenges Benchmarking SDN enabled
Zenoss for Cisco ACI: Application-Centric Operations
Zenoss for Cisco ACI: Application-Centric Operations Introduction Zenoss is a systems management software company focused on the challenges of operating and helping ensure the delivery of large-scale IT
A Look at the New Converged Data Center
Organizations around the world are choosing to move from traditional physical data centers to virtual infrastructure, affecting every layer in the data center stack. This change will not only yield a scalable
VMware vcloud Networking and Security
VMware vcloud Networking and Security Efficient, Agile and Extensible Software-Defined Networks and Security BROCHURE Overview Organizations worldwide have gained significant efficiency and flexibility
Carrier/WAN SDN. SDN Optimized MPLS Demo
Carrier/WAN SDN SDN Optimized MPLS Demo Problem Statement! Service Providers around the world have large investments in highly sophisticated and feature rich IP/MPLS network infrastructures for providing
STRATEGIC WHITE PAPER. Securing cloud environments with Nuage Networks VSP: Policy-based security automation and microsegmentation overview
STRATEGIC WHITE PAPER Securing cloud environments with Nuage Networks VSP: Policy-based security automation and microsegmentation overview Abstract Cloud architectures rely on Software-Defined Networking
Stretched Active- Active Application Centric Infrastructure (ACI) Fabric
Stretched Active- Active Application Centric Infrastructure (ACI) Fabric May 12, 2015 Abstract This white paper illustrates how the Cisco Application Centric Infrastructure (ACI) can be implemented as
Introduction to Software Defined Networking (SDN) and how it will change the inside of your DataCentre
Introduction to Software Defined Networking (SDN) and how it will change the inside of your DataCentre Wilfried van Haeren CTO Edgeworx Solutions Inc. www.edgeworx.solutions Topics Intro Edgeworx Past-Present-Future
Data Center Networking Designing Today s Data Center
Data Center Networking Designing Today s Data Center There is nothing more important than our customers. Data Center Networking Designing Today s Data Center Executive Summary Demand for application availability
Using SDN-OpenFlow for High-level Services
Using SDN-OpenFlow for High-level Services Nabil Damouny Sr. Director, Strategic Marketing Netronome Vice Chair, Marketing Education, ONF [email protected] Open Server Summit, Networking Applications
Data Center Infrastructure of the future. Alexei Agueev, Systems Engineer
Data Center Infrastructure of the future Alexei Agueev, Systems Engineer Traditional DC Architecture Limitations Legacy 3 Tier DC Model Layer 2 Layer 2 Domain Layer 2 Layer 2 Domain Oversubscription Ports
Networking in the Era of Virtualization
SOLUTIONS WHITEPAPER Networking in the Era of Virtualization Compute virtualization has changed IT s expectations regarding the efficiency, cost, and provisioning speeds of new applications and services.
Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心
Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 1 SDN Introduction Decoupling of control plane from data plane
Simplify Your Data Center Network to Improve Performance and Decrease Costs
Simplify Your Data Center Network to Improve Performance and Decrease Costs Summary Traditional data center networks are struggling to keep up with new computing requirements. Network architects should
Cloud, SDN and the Evolution of
Cloud, SDN and the Evolution of Enterprise Networks Neil Rickard Gartner is a registered trademark of Gartner, Inc. or its affiliates. This publication may not be reproduced or distributed in any form
BRINGING NETWORKS TO THE CLOUD ERA
BRINGING NETWORKS TO THE CLOUD ERA SDN enables new business models Aruna Ravichandran VICE PRESIDENT, MARKETING AND STRATEGY [email protected] SOFTWARE DEFINED NETWORKING (SDN), JUNIPER NETWORKS
Roman Hochuli - nexellent ag / Mathias Seiler - MiroNet AG
Roman Hochuli - nexellent ag / Mathias Seiler - MiroNet AG North Core Distribution Access South North Peering #1 Upstream #1 Series of Tubes Upstream #2 Core Distribution Access Cust South Internet West
Outline. Why Neutron? What is Neutron? API Abstractions Plugin Architecture
OpenStack Neutron Outline Why Neutron? What is Neutron? API Abstractions Plugin Architecture Why Neutron? Networks for Enterprise Applications are Complex. Image from windowssecurity.com Why Neutron? Reason
Brocade One Data Center Cloud-Optimized Networks
POSITION PAPER Brocade One Data Center Cloud-Optimized Networks Brocade s vision, captured in the Brocade One strategy, is a smooth transition to a world where information and applications reside anywhere
Simplify IT. With Cisco Application Centric Infrastructure. Roberto Barrera [email protected]. VERSION May, 2015
Simplify IT With Cisco Application Centric Infrastructure Roberto Barrera [email protected] VERSION May, 2015 Content Understanding Software Definded Network (SDN) Why SDN? What is SDN and Its Benefits?
White Paper. SDN 102: Software Defined Networks and the Role of Application Delivery Network Services. citrix.com
White Paper SDN 102: Software Defined Networks and the Role of Application Delivery Network Services In the competitive business world IT organizations need to respond rapidly to the ever-changing needs
How To Orchestrate The Clouddusing Network With Andn
ORCHESTRATING THE CLOUD USING SDN Joerg Ammon Systems Engineer Service Provider 2013-09-10 2013 Brocade Communications Systems, Inc. Company Proprietary Information 1 SDN Update -
A Coordinated. Enterprise Networks Software Defined. and Application Fluent Programmable Networks
A Coordinated Virtual Infrastructure for SDN in Enterprise Networks Software Defined Networking (SDN), OpenFlow and Application Fluent Programmable Networks Strategic White Paper Increasing agility and
The Role of Virtual Routers In Carrier Networks
The Role of Virtual Routers In Carrier Networks Sterling d Perrin Senior Analyst, Heavy Reading Agenda Definitions of SDN and NFV Benefits of SDN and NFV Challenges and Inhibitors Some Use Cases Some Industry
Business Case for Open Data Center Architecture in Enterprise Private Cloud
Business Case for Open Data Center Architecture in Enterprise Private Cloud Executive Summary Enterprise IT organizations that align themselves with their enterprise s overall goals help the organization
Securing Virtual Applications and Servers
White Paper Securing Virtual Applications and Servers Overview Security concerns are the most often cited obstacle to application virtualization and adoption of cloud-computing models. Merely replicating
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling Release: 1 ICTTEN6172A Design and configure an IP-MPLS network with virtual private network tunnelling Modification
Palo Alto Networks. Security Models in the Software Defined Data Center
Palo Alto Networks Security Models in the Software Defined Data Center Christer Swartz Palo Alto Networks CCIE #2894 Network Overlay Boundaries & Security Traditionally, all Network Overlay or Tunneling
Scalable Approaches for Multitenant Cloud Data Centers
WHITE PAPER www.brocade.com DATA CENTER Scalable Approaches for Multitenant Cloud Data Centers Brocade VCS Fabric technology is the ideal Ethernet infrastructure for cloud computing. It is manageable,
Mock RFI for Enterprise SDN Solutions
Mock RFI for Enterprise SDN Solutions Written By Sponsored By Table of Contents Background and Intended Use... 3 Introduction... 3 Definitions and Terminology... 7 The Solution Architecture... 10 The SDN
Conference. Smart Future Networks THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF EVERYTHING
Conference THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF Smart Future Networks www.internet-of-things.no EVERYTHING Patrick Waldemar Vice President Telenor Research and Future
Cisco Virtualization Experience Infrastructure: Secure the Virtual Desktop
White Paper Cisco Virtualization Experience Infrastructure: Secure the Virtual Desktop What You Will Learn Cisco Virtualization Experience Infrastructure (VXI) delivers a service-optimized desktop virtualization
The Advantages of Cloud Services
Cloud-Based Services: Assure Performance, Availability, and Security What You Will Learn Services available from the cloud offer cost and efficiency benefits to businesses, but until now many customers
Data Center Network Evolution: Increase the Value of IT in Your Organization
White Paper Data Center Network Evolution: Increase the Value of IT in Your Organization What You Will Learn New operating demands and technology trends are changing the role of IT and introducing new
U s i n g S D N - and NFV-based Servi c e s to M a x i m iz e C SP Reve n u e s a n d I n c r e ase
I D C T E C H N O L O G Y S P O T L I G H T U s i n g S D N - and NFV-based Servi c e s to M a x i m iz e C SP Reve n u e s a n d I n c r e ase Operational Efficiency March 2013 Adapted from Will New SDN
VXLAN Overlay Networks: Enabling Network Scalability for a Cloud Infrastructure
W h i t e p a p e r VXLAN Overlay Networks: Enabling Network Scalability for a Cloud Infrastructure Table of Contents Executive Summary.... 3 Cloud Computing Growth.... 3 Cloud Computing Infrastructure
RIDE THE SDN AND CLOUD WAVE WITH CONTRAIL
RIDE THE SDN AND CLOUD WAVE WITH CONTRAIL Pascal Geenens CONSULTING ENGINEER, JUNIPER NETWORKS [email protected] BUSINESS AGILITY Need to create and deliver new revenue opportunities faster Services
Cisco Virtual Security Gateway for Nexus 1000V Series Switch
Data Sheet Cisco Virtual Security Gateway for Nexus 1000V Series Switch Product Overview Cisco Virtual Security Gateway (VSG) for Nexus 1000V Series Switch is a virtual appliance that provides trusted
Implementing and Troubleshooting the Cisco Cloud Infrastructure **Part of CCNP Cloud Certification Track**
Course: Duration: Price: $ 4,295.00 Learning Credits: 43 Certification: Implementing and Troubleshooting the Cisco Cloud Infrastructure Implementing and Troubleshooting the Cisco Cloud Infrastructure**Part
Cisco Dynamic Workload Scaling Solution
Cisco Dynamic Workload Scaling Solution What You Will Learn Cisco Application Control Engine (ACE), along with Cisco Nexus 7000 Series Switches and VMware vcenter, provides a complete solution for dynamic
THE THINKING NETWORK. Software Defined Networks will provide the intelligence the network needs to keep up in a cloud centric world. WWW.WIPRO.
WWW.WIPRO.COM THE THINKING NETWORK Software Defined Networks will provide the intelligence the network needs to keep up in a cloud centric world. Nirmalan Arumugam Solution Architect - Data Practice, Global
The Evolving Data Center. Past, Present and Future Scott Manson CISCO SYSTEMS
The Evolving Data Center Past, Present and Future Scott Manson CISCO SYSTEMS Physical» Virtual» Cloud Journey in Compute Physical Workload Virtual Workload Cloud Workload HYPERVISOR 1 VDC- VDC- 2 One App
Network Virtualization for Large-Scale Data Centers
Network Virtualization for Large-Scale Data Centers Tatsuhiro Ando Osamu Shimokuni Katsuhito Asano The growing use of cloud technology by large enterprises to support their business continuity planning
Software Defined Environments
November 2015 Software Defined Environments 2015 Cloud Lecture, University of Stuttgart Jochen Breh, Director Architecture & Consulting Cognizant Global Technology Office Agenda Introduction New Requirements
