THE DIFFERENCE BETWEEN COEFFICIENT-OF-FRICTION AND DRAG FACTOR
|
|
|
- Albert Barrett
- 10 years ago
- Views:
Transcription
1 THE DIERECE BETWEE COEICIET-O-RICTIO AD DRAG ACTOR Mark George, Am SAE-A Director, Accident Investigation Services Pty Ltd, Sydney, Australia. May 2005 The terms coeicient-o-riction (µ) and drag actor () are expressions oten used in crash investigation and are commonly associated ith various vehicle speed calculations based upon tyre mark geometry. Accordingly, the deinitions and application o the respective terms are accepted doctrine by the various international educational institutions associated ith crash investigation. Because the terms are closely related, their deinitions and application are oten conused by investigators and can result in misinterpretation, errors and conusion associated ith vehicle speed calculations. This paper briely discusses the speciic scientiic dierences and applications beteen the to terms. The coeicient-o-riction µ is deined as the ratio o the tangential orce (tan) (parallel to the surace) applied to an object sliding across a surace to the normal orce (perpendicular to the surace) o an object. 1 ormal orce µ (tan) (tan) cosθ (tan) / cosθ MOTIO µ (angle o repose) (tan) cos (tan) Tangential orce cos sin igure 1. Graphical deinition o µ. rom the above illustration, it can be seen that the relationship beteen (tan) and is proportional to that o the horizontal orce and eight. Thus, a simpler illustration is shon in igure 2 or a level surace. 1 RICKE L.B. (1990), The Traic Accident Investigation Manual, Vol 2 Traic Accident Reconstruction, orthestern University Traic Institute, 1 st Edition. Topic 862, Drag actor and Coeicient o riction in Traic Accident Reconstruction. -1-
2 µ MOTIO igure 2. Simpliied deinition o µ. Because opposing orces are equal in magnitude and opposite in direction (eton s 3 rd la o motion), the coeicient-o-riction beteen to suraces can be measured by pulling (or dragging) an object across a surace and resolving the orces. or convenience, igure 3 illustrates an object being pulled (ith orce ) across a level surace. µ MOTIO igure 3. Simple method o measuring µ This basic concept is used in crash investigation to measure the coeicient-o-riction beteen vehicle tyres and road pavements and can be achieved in various ays. The most basic orm o measurement is ith a drag sled, here a eighted portion o a vehicle tyre is dragged across the road pavement in a controlled manner hereupon µ is obtained by resolving the orces. I the surace is level, µ is obtained by dividing the horizontal orce required to drag the sled, by its eight. i.e. i 10 kg and 5 kg, then µ I the surace is not level there ill be tangential orces to consider (i.e. less orce is required to drag an object donhill and greater orce or uphill), hoever, as illustrated in igures 1 and 2, resolving these orces ill produce the same µ value as i the surace as level. This eectively means that µ beteen to suraces does not alter ith changes in gradient. -2-
3 DRAG ACTOR Drag actor () is a non-dimensional (no units) number used to represent the acceleration or deceleration o a vehicle. It is deined as the total orce (tot) required or a vehicle s acceleration (or deceleration) in the direction o acceleration, divided by the vehicle s eight. With reerence to igure 4, the equation or is expressed: (tot) (tot) igure angle o repose (tan) Vector diagram o orces associated ith drag actor and coeicient o riction. cos sin It can be seen rom igure 4 that the equation or is similar to the simpliied equation or µ, and hence the to deinitions are oten conused. Hoever there is a distinct dierence beteen the to. When measuring and µ on a level surace, (tot) and, hich produces identical values or and µ. As applicable to a vehicle speed rom skid analysis, this means that µ only hen a vehicle is skidding ith all heels locked on a level surace. It is common knoledge that it is easier to pull something don hill than uphill, and that dongrades make vehicle stopping distances longer than upgrades. Hence, or a skidding vehicle, ill reduce ith a dongrade and increase or an upgrade, but µ remains constant regardless o the grade. Consequently, investigating and µ or a sloped surace ill produce dierent values. It is important that investigators do not conuse these values and understand the dierences. A comparative investigation is illustrated belo. 30 kg 30 kg igure 5. (tot) (tot) 25 angle o repose (tan) cos sin Coeicient-o-riction Drag actor 25 angle o repose (tan) 27.2 ( tot) 14.5 µ (tan) cos sin -3-
4 It is sometimes necessary to reer to published charts or estimating a range o µ or a given surace, i.e. dry/et concrete, asphalt, gravel, sno, ice etc. I this inormation is to be applied to a sloped roaday, then a range or needs to be investigated. I the case in question involves a speed rom skid analysis, then can be provisionally solved i the grade is knon, but ill only be relevant i the vehicle is skidding ith all heels locked. I not all heels are locked, urther investigations are necessary to solve or the vehicle s resultant drag actor R. RESULTAT DRAG ACTOR - R During harsh braking, a car experiences orard load shit, increasing the load on its ront axle and reducing the load proportionally on its rear axle. I all heels are locked during the skid, as discussed earlier the vehicle s deceleration ill equal µ and i the surace is level, or just i on a sloped surace. I not all heels lock during the skid, particularly on an axle group, it cannot be assumed that the vehicle has decelerated ith a drag actor equal to locked heel conditions. Where a vehicle has unequal axle drag actors, the vehicle s resultant drag actor R is expressed: R x ( 1 z( r ) r ) here: R resultant vehicle drag actor drag actor on ront axle r drag actor on rear axle x horizontal distance o the centre o mass rom the ront axle as a decimal raction o heelbase z height o the centre o mass as a decimal raction o the heelbase. Analysis o unequal axle drag actors on a vehicle thereore requires a more detailed investigation o the subject vehicle s mass and careul consideration o the variables in question. COCLUSIO The coeicient-o-riction µ beteen to suraces does not alter ith changes in gradient. Drag actor changes proportionally to the gradient. As applicable to crash investigation, µ only hen a vehicle is skidding ith all heels locked on a level surace. -4-
5 REERECES 1. RICKE L.B. (1990), The Traic Accident Investigation Manual, Vol 2 Traic Accident Reconstruction, orthestern University Traic Institute, 1 st Edition. 2. Britannica Macropaedia Vol. 23, Edition 15, 1992 Mechanics. ACKOWLEDGEMETS George Bonnett JD, Reconstruction Technology, Rockledge, L USA or peer revie o the article. AUTHOR Mark H. George Am SAE-A Director/Principal Investigator Accident Investigation Services Pty Ltd P.O. Box 695, Kingsood SW Australia Tel: accidentinvestigation.com.au [email protected] -5-
Solving Newton s Second Law Problems
Solving ewton s Second Law Problems Michael Fowler, Phys 142E Lec 8 Feb 5, 2009 Zero Acceleration Problems: Forces Add to Zero he Law is F ma : the acceleration o a given body is given by the net orce
There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction
2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes
Labor Demand. 1. The Derivation of the Labor Demand Curve in the Short Run:
CON 361: Labor conomics 1. The Derivation o the Curve in the Short Run: We ill no complete our discussion o the components o a labor market by considering a irm s choice o labor demand, beore e consider
Work, Energy & Power. AP Physics B
ork, Energy & Power AP Physics B There are many dierent TYPES o Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed more speciically by using the term ORK() ork = The Scalar
Newton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law
Recitation Week 4 Chapter 5
Recitation Week 4 Chapter 5 Problem 5.5. A bag of cement whose weight is hangs in equilibrium from three wires shown in igure P5.4. wo of the wires make angles θ = 60.0 and θ = 40.0 with the horizontal.
Chapter 5 Force and Motion I
Chapter 5 orce and Motion I I. ewton s irst law. II. ewton s second law. III. Particular orces: -Gravitational - Weight -ormal -riction - ension IV. ewton s third law. ewton mechanics laws cannot be applied
Serway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
Problem Set 5 Work and Kinetic Energy Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on
NATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENI CERTIFICATE GRADE 1 PHYSICAL SCIENCES: PHYSICS (P1) NOVEMBER 010 MEMANDUM MARKS: 150 This memorandum consists o 3 pages. NOTE: Marking rule 1.5 was changed according to decisions taken at
Longitudinal and lateral dynamics
Longitudinal and lateral dynamics Lecturer dr. Arunas Tautkus Kaunas University of technology Powering the Future With Zero Emission and Human Powered Vehicles Terrassa 2011 1 Content of lecture Basic
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
1. What data might a car leave behind at the scene of an accident?
Bellwork 2-10-15 It takes 8,460 bolts to assemble an automobile, and one nut to scatter it all over the road. Author Unknown 1. What data might a car leave behind at the scene of an accident? 1 5 9 ACCIDENT
The Geometry of Perspective Projection
The Geometry o Perspective Projection Pinhole camera and perspective projection - This is the simplest imaging device which, however, captures accurately the geometry o perspective projection. -Rays o
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
Chapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t
Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are
Physics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following
5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
M1. (a) (i) 4.5 allow 1 mark for correct substitution i.e. 9 2 2
M. (a) (i) 4.5 allow mark for correct substitution i.e. 9 (ii) m/s accept answer given in (a)(i) if not contradicted here (iii) (iv) speed straight line from the origin passing through (s, 9m/s) allow
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in
B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.
CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass
Chapter 4 DEFENSIVE DRIVING
Chapter 4 DEFENSIVE DRIVING Chapter 4 Table of Contents Chapter 4 DEFENSIVE DRIVING... 4-1 DEFENSIVE DRIVING... 4-3 Positioning The Bus... 4-3 When Making a Turn at an Intersection... 4-3 Making the perfect
A Road Crash Reconstruction Technique
A Road Crash Reconstruction Technique Mukherjee S, non-member Chawla A 1, member Lalaram Patel, non-member Abstract The purpose of reconstruction is to identify the critical factors involved in a road
F f v 1 = c100(10 3 ) m h da 1h 3600 s b =
14 11. The 2-Mg car has a velocity of v 1 = 100km>h when the v 1 100 km/h driver sees an obstacle in front of the car. It takes 0.75 s for him to react and lock the brakes, causing the car to skid. If
Difference between a vector and a scalar quantity. N or 90 o. S or 270 o
Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has
THE EFFECT OF THE SPINDLE SYSTEM ON THE POSITION OF CIRCULAR SAW TEETH A STATIC APPROACH
TRIESKOVÉ A BEZTRIESKOVÉ OBRÁBANIE DREVA 2006 12. - 14. 10. 2006 305 THE EFFECT OF THE SPINDLE SYSTEM ON THE POSITION OF CIRCULAR SAW TEETH A STATIC APPROACH Roman Wasielewski - Kazimierz A. Orłowski Abstract
Chapter 7: Acceleration and Gravity
Chapter 7: Acceleration and Gravity 7.1 The Principle o Equivalence We saw in the special theory o relativity that the laws o physics must be the same in all inertial reerence systems. But what is so special
AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.
1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies
Rick Galdos, Forensic Engineering 1
Impact and Damage Analyses of Motor Vehicle Accidents Commonly Asked Questions P.O. Box 10635 Tampa, Florida 33679 [email protected] General Overview Basic Terms in accident reconstruction and injury
The Analysis of Two-Phase Condensation Heat Transfer Models Based on the Comparison of the Boundary Condition
Acta Polytechnica Hungarica Vol. 9, No. 6, 2012 The Analysis o Two-Phase Condensation Heat Transer Models Based on the Comparison o the Boundary Condition Róbert Sánta College o Applied Sciences Subotica
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
University Physics 226N/231N Old Dominion University. Getting Loopy and Friction
University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) [email protected] http://www.toddsatogata.net/2012-odu Friday, September 28 2012 Happy
Physics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
FIXED INCOME ATTRIBUTION
Sotware Requirement Speciication FIXED INCOME ATTRIBUTION Authors Risto Lehtinen Version Date Comment 0.1 2007/02/20 First Drat Table o Contents 1 Introduction... 3 1.1 Purpose o Document... 3 1.2 Glossary,
HW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 4-50 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Appendix C White Paper to Support Bicycle Facility Design Toolkit on Lane Width Design Modifications DRAFT
Appendix C White Paper to Support Bicycle Facility Design Toolkit on Lane Width Design Modiications MEMORANDUM Date: December 31, 2012 Project #: 11080.03 To: Washington County From: Hermanus Steyn, Pr.
What You ll Learn Why It s Important Rock Climbing Think About This physicspp.com 118
What You ll Learn You will represent vector quantities both graphically and algebraically. You will use Newton s laws to analyze motion when friction is involved. You will use Newton s laws and your knowledge
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.
4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional
Midterm Exam 1 October 2, 2012
Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should
Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
DRAG FACTOR AND COEFFICIENT OF FRICTION IN TRAFFIC ACCIDENT RECONSTRUCTION
DRAG FACTOR AND COEFFICIENT OF FRICTION IN TRAFFIC ACCIDENT RECONSTRUCTION Topic 862 of the Traffic Accident Investigation Manual by Lynn B. Fricke and J. Stannard Baker 1. Introduction..................................
The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w
Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration
Wheeled Vehicle Design For Science Olympiad By Carey I. Fisher
Wheeled Vehicle Design For Science Olympiad By Carey I. Fisher The Wheeled Vehicle competition requires that the vehicle travel a specific distance set by the judge at the time of the contest. So the problem
Two Car Collision at City Intersection
Two Car Collision at City Intersection by Frank Owen, Alpha Omega Engineering, Inc. (www.aoengr.com), all rights reserved August 2012 This example is taken from the book Technische Analyse von Verkehrsunfällen
PHYSICAL QUANTITIES AND UNITS
1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
!!! Technical Notes : The One-click Installation & The AXIS Internet Dynamic DNS Service. Table of contents
Technical Notes: One-click Installation & The AXIS Internet Dynamic DNS Service Rev: 1.1. Updated 2004-06-01 1 Table o contents The main objective o the One-click Installation...3 Technical description
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
The momentum of a moving object has a magnitude, in kg m/s, and a... (1)
Q. (a) Complete the following sentence. The momentum of a moving object has a magnitude, in kg m/s, and a.... () (b) A car being driven at 9.0 m/s collides with the back of a stationary lorry. The car
Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
Work-Energy Bar Charts
Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:
Measuring the 2D Vector Aspect of Momentum Using Only One Dimension. Andrew Ferstl and Nathan Moore Winona State University, Winona, MN
Measuring the D Vector Aspect o Momentum Using Only One Dimension Andrew Ferstl and Nathan Moore Winona State University, Winona, MN Without the use o cameras to record D motion and an appropriate analysis
2.1: The Derivative and the Tangent Line Problem
.1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position
Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
Experiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
Vectors Math 122 Calculus III D Joyce, Fall 2012
Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be
Performance Characteristics of Two-Wheeled Push-Type Razor Scooters. Timothy J. Reust Accident Science
Performance Characteristics of Two-Wheeled Push-Type Razor Scooters Timothy J. Reust Accident Science Abstract This paper will outline the results of dynamic tests conducted with two-wheeled push-type
Lesson 7 -- Forensic Engineering - Vehicular accident reconstruction
Lesson 7 -- Forensic Engineering - Vehicular accident reconstruction Pre-lesson Reading: Introduction Vehicular accident reconstruction is the scientific process of investigating, analysing, and drawing
(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its
(1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:
Calibration and Uncertainties of Pipe Roughness Height
9 th IWA/IAHR Conerence on Urban Drainage Modelling Calibration and Uncertainties o Pipe Roughness Height Kailin Yang, Yongxin Guo, Xinlei Guo,Hui Fu and Tao Wang China Institute o Water Resources and
TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR
Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant
Resistance in the Mechanical System. Overview
Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when
How To Solve The Pythagorean Triangle
Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use
If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ
Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces
The Grange School Maths Department. Mechanics 1 OCR Past Papers
The Grange School Maths Department Mechanics 1 OCR Past Papers June 2005 2 1 A light inextensible string has its ends attached to two fixed points A and B. The point A is vertically above B. A smooth ring
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction
Forces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
DISPLACEMENT & VELOCITY
PHYSICS HOMEWORK #1 DISPLACEMENT & VELOCITY KINEMATICS d v average t v ins d t verysmall / error d t d t v a ave t 1. You walk exactly 50 steps North, turn around, and then walk exactly 400 steps South.
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite
4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN
Mechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
The Effects of Wheelbase and Track on Vehicle Dynamics. Automotive vehicles move by delivering rotational forces from the engine to
The Effects of Wheelbase and Track on Vehicle Dynamics Automotive vehicles move by delivering rotational forces from the engine to wheels. The wheels push in the opposite direction of the motion of the
Determination of the Influence of Vehicles Weight Ratio on the Initial Velocity Using the Accident Reconstruction Engineering Principles
Determination of the Influence of Vehicles Ratio on the Velocity Using the Accident Reconstruction Engineering Principles Robert M. Brooks 1, Mehmet Cetin 2 1,2 College of Engineering, Temple University,
8-3 Dot Products and Vector Projections
8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
Chapter #7 Giancoli 6th edition Problem Solutions
Chapter #7 Giancoli 6th edition Problem Solutions ü Problem #8 QUESTION: A 9300 kg boxcar traveling at 5.0 m/s strikes a second boxcar at rest. The two stick together and move off with a speed of 6.0 m/s.
TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003
Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
REDUCING RISK OF HAND-ARM VIBRATION INJURY FROM HAND-HELD POWER TOOLS INTRODUCTION
Health and Safety Executive Information Document HSE 246/31 REDUCING RISK OF HAND-ARM VIBRATION INJURY FROM HAND-HELD POWER TOOLS INTRODUCTION 1 This document contains internal guidance hich has been made
Chapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
SIMPLIFIED CBA CONCEPT AND EXPRESS CHOICE METHOD FOR INTEGRATED NETWORK MANAGEMENT SYSTEM
SIMPLIFIED CBA CONCEPT AND EXPRESS CHOICE METHOD FOR INTEGRATED NETWORK MANAGEMENT SYSTEM Mohammad Al Rawajbeh 1, Vladimir Sayenko 2 and Mohammad I. Muhairat 3 1 Department o Computer Networks, Al-Zaytoonah
