Energy and Thermal Management Simulation of an Advanced Powertrain
|
|
|
- Ruby Hodges
- 10 years ago
- Views:
Transcription
1 Energy and Thermal Management Simulation of an Advanced Powertrain Armin Traußnig VIRTUAL VEHICLE Research Center COMET K2 Competence Center - Initiated by the Federal Ministry of Transport, Innovation & Technology (BMVIT) and the Federal Ministry of Economics & Labour (BMWFI). Funded by FFG, Land Steiermark and Steirische Wirtschaftsförderung (SFG)
2 Agenda 1 Introduction and Overview Overview VTMS Simulation System Partitioning for Simulation Simulation environment 2 Co-Simulation Part Models Heat Release and Fuel Consumption Engine Friction Cooling / Lubrication Circuit Engine Thermal Network Vehicle and Drivetrain ECU Model 3 Exemplary Simulation results 4 Summary & Outlook VIRTUAL VEHICLE 2
3 1 Introduction and Overview VIRTUAL VEHICLE 3
4 Overview VTMS Simulation Objectives CO2 Reduction Evaluation of CO2 Reduction measures (El. Auxiliaries, Control Strategies) Proposed Approach Simulation of the complete Vehicle System Co-Simulation of detailed Submodels to consider all interactions Today s Challenges Prediction Quality and accuracy CO2 Reduction Potentials in the range of 1-3% High demands on Simulation model integrity to predict influence of measures Integration of Control Units Major influence on fuel consumption Flexibility in ECU Parameter sets (e.g.: Different countries and stages of development) Static representation is not sufficient Nonlinearities due to switching and hysteresis behavior Physical detailing Accuracy VIRTUAL VEHICLE 4
5 System Partitioning for Simulation F Boundary Conditions Engine Control Unit E A Powertrain B Heat Release & FC C Engine Friction D Cooling and Lubrication Thermal Network VIRTUAL VEHICLE 5
6 Simulation environment Coupling via ViF in-house co-simulation platform ICOS Typically ~100 Simulation variables are exchanged Different time step and solver for each model Engine Friction Engine Control Unit Powertrain Heat Release & FC Cooling and Lubrication Thermal Network VIRTUAL VEHICLE 6
7 2 Co-Simulation Part Models VIRTUAL VEHICLE 7
8 (A) Heat Release and Fuel Consumption Objectives Heat release model Modeling of heat transfer between working gas and combustion chamber walls, outlet channel and turbocharger Separation heat flow calculation for individual components Fuel consumption model Calculation of fuel consumption dependent on engine state Modeling Q Mathematical model fit DoE: Wall f n, IMEP, IGA,, Tcool, Tch _ air, Twall,... VIRTUAL VEHICLE 8
9 (B) Engine Friction Objectives Consideration of all relevant partial friction components Validity of the model in broad speed and temperature range Heat release and FMEP Modeling Empirical model fit (DoE) based on: Strip-Down measurements Engine drag warm-up FMEP, Q f ( T, Torque, n, ) frict part VIRTUAL VEHICLE 9
10 (C) Cooling / Lubrication Circuit Objectives 1D thermohydraulic representation of Fluid network Heatflow: Engine structure coolant, oil Heatrejection oil coolant Heatrejection coolant air Cylinder Head Modeling Heat transfer Fluid<->Solid via empirical correlations Calculation of fluid temperatures via discretization of fluid volumes into lumped masses Crank Case Engine Auxiliaries Engine Bypass HX T fluid f ( Tstructure, Tambient, m fluid ) Coolant Pump Physical modeling of pressure drops p f ( T fluid, m fluid ) Thermostat VIRTUAL VEHICLE 10
11 (D) Engine Thermal Network Objectives Temperature distribution in Engine structure Modeling Discretization of engine structure into lumped masses Discretization: ~20 lumped masses ~25 conduction resistances ~10 heat sources (Heat release model) ~10 heat bridges (Cooling/Lubrication) Physical temperature model based on geometry : T mass f ( Tgas, Tstructure, Tcool, Toil, Tambient, m cool, m oil, m air ) VIRTUAL VEHICLE 11
12 (E) Vehicle and Drivetrain Objectives Driver and Driving cycle definition Vehicle driving resistances Engine Torque calculation Gear selection Modeling Longitudinal dynamics in AVL CRUISE Gearbox and auxiliary losses integrated via Temperature dependent models or maps VIRTUAL VEHICLE 12
13 (F) ECU Model Objectives Reproduce thermal management relevant signals Reproduce dynamic behavior of relevant ECU functions Flexible adaption of Soft ECU to new calibration data set Integration into non real-time simulation environment Heat Release & FC Engine Friction Engine Control Unit Cooling and Lubrication Powertrain VIRTUAL VEHICLE 13
14 (F) ECU Model - Modeling SW Docu + calibration data set Engine speed Accelerator pedal position Coolant temperature Oil temperature Vehicle speed Gear Indicated pressure (IMEP) Ambient temperature Ambient pressure Secondary air (on/off) reduced ECU + Engine dynamics Lambda Ignition angle Cam Phaser Mass air flow Fuel pressure Valve lift Multiple injection Internal torque VIRTUAL VEHICLE 14
15 (F) ECU Model Torque path modeling Real ECU Torque Path Very complex ECU function Many involved systems High effort to rebuild Simplified modeling approach: Simulated Powertrain Torque (BMEP) and Friction Torque Powertrain BMEP + IMEP Engine Control Unit FMEP Engine Friction VIRTUAL VEHICLE 15
16 3 Exemplary Simulation Results VIRTUAL VEHICLE 16
17 Exemplary Simulation results NEDC coldstart Measurement Simulation Cylinder head hot side Cylinder head cold side VIRTUAL VEHICLE 17
18 Exemplary Simulation results Overview Fuel consumption VIRTUAL VEHICLE 18
19 Exemplary Simulation results NEDC Start/Stop Investigation: on (red) / off (blue) Simulation VIRTUAL VEHICLE 19
20 Exemplary Simulation results NEDC Start/Stop Investigation: on (red) / off (blue) D= 3% VIRTUAL VEHICLE 20
21 4 Summary & Outlook VIRTUAL VEHICLE 21
22 Summary & Outlook Simulation Quality and accuracy Good accuracy in fuel consumption and Temperature calculation Evaluation of thermal management measures possible One Full vehicle model covers all cycles and boundary conditions ECU model No real time Environment required Representation of all thermal management relevant functions Dynamic behavior is covered sufficiently Exchange of different ECU data sets Outlook Offline precalibration of ECU functions (e.g.: map Thermostat) Evaluation of new Thermal Management functions Evaluation of predictive Thermal Management measures VIRTUAL VEHICLE 22
23 Armin Traußnig VIRTUAL VEHICLE Research Center VIRTUAL VEHICLE 23
24 VIRTUAL VEHICLE 24
From Lifecycle Modelling to Lifecycle Analysis A Framework for Interactive Visualisation of Lifecycle Information
From Lifecycle Modelling to Lifecycle Analysis A Framework for Interactive Visualisation of Lifecycle Information Christian Kaiser VIRTUAL VEHICLE Research Center COMET K2 Competence Center - Initiated
MEASUREMENT OF FRICTION IN INTERNAL COMBUSTION ENGINE
XLI. INTERNATIONAL SCIENTIFIC CONFERENCE OF CZECH AND SLOVAK UNIVERSITY DEPARTMENTS AND INSTITUTIONS DEALING WITH THE RESEARCH OF COMBUSTION ENGINES SEPTEMBER 6-7, 2010 LIBEREC, CZECH REPUBLIC TECHNICAL
Research Report. Impact of Vehicle Weight Reduction on Fuel Economy for Various Vehicle Architectures
Impact of Vehicle Weight Reduction on Fuel Economy for Various Vehicle Architectures Research Report Conducted by Ricardo Inc. for The Aluminum Association 2008-04 Impact of Vehicle Weight Reduction on
Daimler s Super Truck Program; 50% Brake Thermal Efficiency
Daimler s Super Truck Program; 50% Brake Thermal Efficiency 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Marc Allain, David Atherton, Igor Gruden, Sandeep Singh, Kevin
Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1
Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault
Note: This information obtained from internet sources and not verified- use at your own risk!!!!
Cummins Engine Diagnostic Fault Codes for 2003 and later engines (generally for 2004 and later Alpines; see page 13 for earlier engine diagnostic codes): Note: This information obtained from internet sources
Electronic Diesel Control EDC 16
Service. Self-Study Programme 304 Electronic Diesel Control EDC 16 Design and Function The new EDC 16 engine management system from Bosch has its debut in the V10-TDI- and R5-TDI-engines. Increasing demands
US Heavy Duty Fleets - Fuel Economy
US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases
Co-Simulation for hybrid vehicle control software development
Co-Simulation for hybrid vehicle control software development Marcus Boumans, Sebastian Wansleben Robert Bosch GmbH GT User Conference 21. October 2013 Frankfurt 1 Contents Scope & Motivation Use cases
Electronic Power Control
Service. Self-Study Programme 210 Electronic Power Control Design and Function With the Electronic Power Control system, the throttle valve is actuated only by an electric motor. This eliminates the need
CONTINUOUSLY VARIABLE TRANSMISSION (CVT)
GROUP 23 CONTINUOUSLY VARIABLE TRANSMISSION (CVT) CONTENTS CVT........................... 23-2 GENERAL INFORMATION............. 23-2 ELECTRONIC CONTROL SYSTEM...... 23-3 EEPROM...........................
ON-Board Diagnostic Trouble Codes
ON-Board Diagnostic Trouble Codes The list below contains standard diagnostic trouble codes (DTC s) that are used by some manufacturers to identify vehicle problems. The codes provide below are generic
EHRS Impact on Engine Warm up and Fuel Economy. Edouard Barrieu
EHRS Impact on Engine Warm up and Fuel Economy Edouard Barrieu Why Consider Exhaust Heat Recovery? Industry Challenges Fuel Economy/CO2 Regulations Real life use Labeling Opportunity Gasoline Diesel Passenger
Engine modelling and optimisation for RDE. Prof. Chris Brace
Engine modelling and optimisation for RDE Prof. Chris Brace Overview The need to consider system influences on engine performance for RDE How can we achieve this? Component selection Simulation requirements
Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA
Automotive Powertrain Controls: Fundamentals and Frontiers Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Julie Buckland Research & Advanced Engineering
M.S Ramaiah School of Advanced Studies - Bangalore. On completion of this session, the delegate will understand and be able to appriciate:
Transmission Control Lecture delivered by: Prof. Ashok C.Meti MSRSAS-Bangalore 1 Session Objectives On completion of this session, the delegate will understand and be able to appriciate: Rl Role of electronic
Electric Coolant Pumps. Always at the Correct Temperature
Electric Coolant Pumps Always at the Correct Temperature Electric coolant pumps Conventional pumps for engine cooling are driven by toothed belts and hence their output is coupled to engine RPM. Coolant
Advanced Engine Cooling Systems for Vehicle Application
Advanced Engine Cooling Systems for Vehicle Application Italo LONGO EMEA Engine Systems Unit Responsible April 2015 Italo Longo Engine Systems Unit Responsible EDUCATION Mechanical Engineering Master Degree
A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles
A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles by Sungjin Park A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical
SAS light Check Engine Malfunction Indicator Lamp
SAS light Check Engine Malfunction Indicator Lamp Here's how to do it: In car ECM Diagnostics/ECM Reset procedure: 1) Sit in the driver's seat. 2) Turn the ignition key to the ON position and wait three
E - THEORY/OPERATION
E - THEORY/OPERATION 1995 Volvo 850 1995 ENGINE PERFORMANCE Volvo - Theory & Operation 850 INTRODUCTION This article covers basic description and operation of engine performance-related systems and components.
DTC Database (OBD-II Trouble Codes)
Auto Consulting S.a.s di Cofano A. & C. Attrezzature diagnostiche Elaborazioni elettroniche Formazione tecnica DTC Database (OBD-II Trouble Codes) Definitions for generic powertrain diagnostic trouble
FEV Parallel Mode Strategy
FEV Parallel Mode Strategy Peter Janssen MSc. Dipl.-Ing Glenn Haverkort FEV Motorentechnik As the automotive industry has to react to the global concern about climate change related to CO2 emissions and
Engine Heat Transfer. Engine Heat Transfer
Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel
MECHANICAL ENGINEERING EXPERIMENTATION AND LABORATORY II EXPERIMENT 490.07 ENGINE PERFORMANCE TEST
MECHANICAL ENGINEERING EXPERIMENTATION AND LABORATORY II EXPERIMENT 490.07 ENGINE PERFORMANCE TEST 1. Objectives To determine the variation of the brake torque, brake mean effective pressure, brake power,
Real Time Simulation for Off-Road Vehicle Analysis. Dr. Pasi Korkealaakso Mevea Ltd., May 2015
Real Time Simulation for Off-Road Vehicle Analysis Dr. Pasi Korkealaakso Mevea Ltd., May 2015 Contents Introduction Virtual machine model Machine interaction with environment and realistic environment
Signature and ISX CM870 Electronics
Signature and ISX CM870 Electronics Cummins West Training Center System Description General Information The Signature and ISX CM870 engine control system is an electronically operated fuel control system
Diagnostic Fault Codes For Cummins Engines
Section - Diagnostic Fault Codes For Cummins Engines Applies to Engine Models T, T, QSL T, QSM, QS, QSK9, QSK, QST, QSK//8 Note: These fault codes are current at date of publication. Always refer to engine
Driveability Simulation in the continuous development process. Dr. Josef Zehetner, DI Matthias Dank, Dr. Peter Schöggl, AVL List GmbH, Graz
Driveability Simulation in the continuous development process Dr. Josef Zehetner, DI Matthias Dank, Dr. Peter Schöggl, AVL List GmbH, Graz Target: Objective Driveability Assessment and Simulation throughout
Turbo Tech 101 ( Basic )
Turbo Tech 101 ( Basic ) How a Turbo System Works Engine power is proportional to the amount of air and fuel that can get into the cylinders. All things being equal, larger engines flow more air and as
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
48V: How much hybridization is possible with the new vehicle power?
48V: How much hybridization is possible with the new vehicle power? 14th International VDI Congress, Friedrichshafen Uli Christian Blessing Chief Engineer Hybrid Agenda 1. Motivation 2. 7DCT300 Base Transmission
Wynn s Extended Care
Wynn s Extended Care Every car deserves to receive the very best care... especially yours. How Do You Keep Your Reliable Transportation Reliable? Count on Wynn s Because Wynn s has been caring for cars
Effect of GTL Diesel Fuels on Emissions and Engine Performance
Rudolf R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2, 2004 Coronado,
Gasoline engines. Diesel engines. Hybrid fuel cell vehicles. Model Predictive Control in automotive systems R. Scattolini, A.
Model Predictive Control in automotive systems R. Scattolini, A. Miotti Dipartimento di Elettronica e Informazione Outline Gasoline engines Diesel engines Hybrid fuel cell vehicles Gasoline engines 3 System
USER MANUAL OPERATION AND USE OF CAR WITH. Diego G3 / NEVO SEQUENTIAL GAS INJECTION SYSTEM
USER MANUAL OPERATION AND USE OF CAR WITH Diego G3 / NEVO SEQUENTIAL GAS INJECTION SYSTEM Page 2 z 7 Table of contents 1. STARTING THE ENGINE... 3 2. CONTROL PANEL... 3 2.1 Indication of the current level
R.A.Giannelli and E.Nam U.S. EPA NVFEL Ann Arbor, MI MEDIUM AND HEAVY DUTY DIESEL VEHICLE MODELING USING A FUEL CONSUMPTION METHODOLOGY
RAGiannelli and ENam US EPA NVFEL Ann Arbor, MI MEDIUM AND HEAVY DUTY DIESEL VEHICLE MODELING USING A FUEL CONSUMPTION METHODOLOGY Abstract Recent efforts of the EPA MOVES emission modeling team include
Fuel Economy Simulation for the Vehicle Fleet
COVER STORY Simulation and Visualisation Fuel Economy Simulation for the Vehicle Fleet Forecasting the fuel consumption of an entire vehicle fleet has become a crucial challenge for all car manufacturers.
Powertrain DTC (P000-P0999) for EOBD Vehicles (Directive 98/69/EC of the European Parliament)
Powertrain DTC (P000-P0999) for EOBD Vehicles (Directive 98/69/EC of the European Parliament) 1 Trouble Fault location Probable cause code 1 P0000 No fault found - P0001 Fuel volume regulator control -
Service Information Trucks
Service Information Trucks Group 28 Release2 Engine Control Module (ECM), Diagnostic Trouble Code (DTC), Guide 2010 Emissions CHU CXU GU TD 89047073 Foreword The descriptions and service procedures contained
Section 11 - System Diagrams
Section 11 System Diagrams Page 11-1 Section 11 - System Diagrams Section Contents Page Overview...11-3 Flow Diagram, Fuel System...11-4 Flow Diagrams, Lubricating Oil System...11-5 Flow Diagrams, Cooling
Introduction to Electronic Signals
Introduction to Electronic Signals Oscilloscope An oscilloscope displays voltage changes over time. Use an oscilloscope to view analog and digital signals when required during circuit diagnosis. Fig. 6-01
Application of FEM-Tools in the Engine Development Process
Application of FEM-Tools in the Engine Development Process H. Petrin, B. Wiesler e-mail: [email protected], [email protected] AVL List GmbH Graz, Austria Abstract The requirements for the development
Section 6 - System Diagrams
Section 6 System Diagrams Page 6-1 Section 6 - System Diagrams Section Contents Page Overview...6-3 Flow Diagram, Fuel System...6-4 Flow Diagrams, Lubricating Oil System...6-5 Flow Diagrams, Cooling System...6-8
1. SYSTEM OVERVIEW. 1) Basic Theory of ABS Function 10-3 4891-01
10-3 1. SYSTEM OVERVIEW When braking suddenly or braking on slippery roads, the vehicle keeps moving forward but the wheels are locking and not rotating. If these happen, the vehicle may lose stability
Continuous flow direct water heating for potable hot water
Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial
AGENDA STAFF REPORT. Budgeted: Yes Current Year Cost: $695,000 Annual Cost: N/A
AGENDA STAFF REPORT Agenda Item ASR Control 13-001267 MEETING DATE: 10/22/13 LEGAL ENTITY TAKING ACTION: Board of Supervisors BOARD OF SUPERVISORS DISTRICT(S): 2 SUBMITTING AGENCY/DEPARTMENT: John Wayne
THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE
--8 THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE Copyright 998 Society of Automotive Engineers, Inc. Tim Lancefield Mechadyne International
The Yachtmans Choice...
Ref: 1740, Nov 2015 The Yachtmans Choice... A competitive price 10 to 150 hp, engineered in the UK Advanced, compact, quiet reliable engines Easy engine replacement, with our special feet option Amazing
TOYOTA ELECTRONIC CONTROL TRANSMISSION
Electronic Control Transmission (ECT) The Electronic Control Transmission is an automatic transmission which uses modern electronic control technologies to control the transmission. The transmission itself,
Hydrogen as a fuel for internal combustion engines
Hydrogen as a fuel for internal combustion engines Contents: Introduction External mixture formation for hydrogen operated engines Experimental engine for hydrogen in Stralsund Internal mixture formation
Eaton 9-Speed Synchronized Transmissions Double H Shift Control Configuration TRDR0070
Driver Instructions Eaton 9-Speed Synchronized Transmissions Double H Shift Control Configuration TRDR0070 February 2008 FS(O) 6109 FS(O) 6209 FS(O) 6309 FS(O) 8209 FS(O) 8309 FS(O) 10209 FS(O) 10309 Warnings
Presentation of Vehicle Energy consumption Calculation TOol (VECTO)
Presentation of Vehicle Energy consumption Calculation TOol (VECTO) Dimitrios Savvidis DG CLIMA Transport and Ozone Unit C2 Stakeholder Meeting Brussels, 16 th of September 2014 Simulation tool to calculate
NVH Challenges in context of ECO vehicles Automotive Testing Expo 2010. 1 Automotive Testing Expo 2010 ECO-vehicle
NVH Challenges in context of ECO vehicles Automotive Testing Expo 2010 1 Automotive Testing Expo 2010 ECO-vehicle ECOLOGICAL Vehicle Engineering > 170 Hybrid and Electrical vehicles Government support
Cat Electronic Technician 2015C v1.0 Product Status Report 2/20/2016 4:34 PM
Cat Electronic Technician 2015C v1.0 Product Status Report 2/20/2016 4:34 PM Product Status Report Parameter Product ID Equipment ID Comments Value JGB00714 NOT PROGRAMMED Machine Control 345D (JGB00714)
INTEGRATED OPEN DEVELOPMENT PLATTFORM FÜR TEIL- UND VOLLAUTOMATISIERTE FAHRZEUGANTRIEBE
INTEGRATED OPEN DEVELOPMENT PLATTFORM FÜR TEIL- UND VOLLAUTOMATISIERTE FAHRZEUGANTRIEBE PETER PRENNINGER A3PS MV - Peter Prenninger 2014-12-11 1 SUSTAINABILITY REQUIRES AN EFFICIENT MOBILITY SYSTEM Infrastructure
The 02E Direct Shift Gearbox Design and Function
The 02E Direct Shift Gearbox Design and Function Self-Study Program Course Number 851403 Volkswagen of America, Inc. Service Training Printed in U.S.A. Printed 05/2004 Course Number 851403 2004 Volkswagen
OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS
UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate
Diagnostic Trouble Code (DTC) Charts
Diagnostic Trouble Code (DTC) Charts Note: Before proceeding to the Pinpoint Test, refer to the Diagnostic Trouble Code (DTC) Descriptions for additional information to assist in diagnosis. 6.0L Diesel
CONVERGE Features, Capabilities and Applications
CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE
Computational Fluid Dynamics in Automotive Applications
Computational Fluid Dynamics in Automotive Applications Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 1/15 Outline Objective Review the adoption of Computational
Pushing the limits. Turbine simulation for next-generation turbochargers
Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for
Typical ECM/PCM Inputs
Typical ECM/PCM Inputs The computer system components fall into two categories: sensors (inputs) and controlled components (outputs). Each system has sensors. Not every system has all the ones listed,
Adjustment Data MAZDA - 626-2.0 Comprex D - RF-CX
Adjustment Data MAZDA - 626-2.0 Comprex D - RF-CX Engine (general) Engine code RF Capacity 1998 (cc) Idle speed 725 ± 25 Valve clearance Valve clearance Cold Inlet 0.25 (mm) Exhaust 0.35 (mm) Compression
Wiring diagrams 14 1. Component key for wiring diagrams 1 to 29 Note: Not all the items listed will be fitted to all models
Wiring diagrams 14 1 Component key for wiring diagrams 1 to 29 Note: Not all the items listed will be fitted to all models No Description 00200 Alternator with built-in regulator 00500 Battery 01001 Starter
Turbocharger system components, servicing
21-1 Turbocharger system components, servicing Engine codes: AAZ, 1Z, AHU Observe rules of cleanliness Page 21-10 Turbocharger hoses and lines, connecting Page 21-11 WARNING! Do not re-use any fasteners
TYPE APPROVAL CERTIFICATION SCHEME MASS PRODUCED DIESEL ENGINES
1. Introduction TYPE APPROVAL CERTIFICATION SCHEME MASS PRODUCED DIESEL ENGINES 1.1 This scheme details the tests and inspection of diesel engines manufactured by mass production system for use in marine
REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR
FISITA2010-SC-P-24 REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR Sándor, Vass Budapest University of Technology and Economics, Hungary KEYWORDS valvetrain, camshaft, cam, Formula Student,
A/C refrigerant system, overview
Page 1 of 19 87-18 A/C refrigerant system, overview A/C refrigerant system, identification Typical A/C refrigerant system with expansion valve and receiver drier 1 - Evaporator 2 - Expansion valve 3 -
How To Powertrain A Car With A Hybrid Powertrain
ELECTRIFICATION OF VEHICLE DRIVE TRAIN THE DIVERSITY OF ENGINEERING CHALLENGES A3PS Conference, Vienna Dr. Frank Beste AVL List GmbH 1 Motivation for Powertrain Electrification Global Megatrends: Urbanization
Nissan Figaro - Fuel Consumption
Nissan Figaro - Fuel Consumption First of all what sort of fuel consumption should you achieve in a Figaro?... A realistic overall figure is 32 35 MPG but there are, of course, many factors that will influence
Introductory Study of Variable Valve Actuation for Pneumatic Hybridization
2007-01-0288 Introductory Study of Variable Valve Actuation for Pneumatic Hybridization Copyright 2007 SAE International Sasa Trajkovic, Per Tunestål and Bengt Johansson Division of Combustion Engines,
Engine, Drive Train, and Hydraulic Repair Indicator Quick Reference Guide
Engine, Drive Train, and Hydraulic Repair Indicator Quick Reference Guide Planned Indicators Planned Indicators SM provide the best insight Service Meter Hours CAT Engine Repair Indicators Description
A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)
A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics
Vehicle Engine Management Systems
Unit 11: Vehicle Engine Management Systems NQF level 3: Guided learning hours: 60 BTEC National Unit abstract Modern motor vehicles continue to make use of the rapid advances in electronics technology
48V eco-hybrid Systems
48V eco-hybrid Systems Jean-Luc MATE Vice President Continental Engineering Services France President Automotech cluster www.continental-corporation.com Division Naming European Conference on Nanoelectronics
Cooling system components, removing and installing
Engine BHW Cooling system components, removing and installing Page 1 / 24 19-1 Cooling system components, removing and installing Warning! When doing any repair work, especially in the engine compartment,
Automotive Technician-Advanced
Job Ready Assessment Blueprint Automotive Technician-Advanced Test Code: 4008 / Version: 01 Copyright 2006. All Rights Reserved. General Assessment Information Automotive Technician-Advanced Blueprint
6. VVT-i (Variable Valve Timing-intelligent) System
38 ENGE 1ZZ-FE ENGE 6. VVT-i (Variable Valve Timing-intelligent) System General This system controls the intake camshaft valve timing so as to obtain balance between the engine output, fuel consumption
TRITON V. Cylinder Pressure Monitoring CPM 500. Replaces mechanical indicators on diesel engines. Improves combustion
TRITON V Cylinder Pressure Monitoring CPM 500 Replaces mechanical indicators on diesel engines Improves combustion Reduces fuel consumption and emissions Optimises engine settings Engine & Turbine Management
Fuller Heavy Duty Transmissions TRDR0700 EN-US
Driver Instructions Fuller Heavy Duty Transmissions TRDR0700 EN-US June 2014 RT, RTX 1X615 Series RT, RTX 1X715 Series RT, RTO 1X915 Series RTO 1X615 Series RTO 1X715 Series Introduction Warnings and
LMS Imagine.Lab AMESim Powertrain Transmission
LMS Imagine.Lab AMESim Powertrain Transmission LMS Imagine.Lab Powertrain Transmission LMS Imagine.Lab Powertrain Transmission provides a generic platform for analyzing and designing optimal transmission
Cat Electronic Technician 2015A v1.0 Product Status Report 4/20/2016 2:49 PM
Page 1 of 19 Cat Electronic Technician 2015A v1.0 Product Status Report 2:49 PM Product Status Report Parameter Value Product ID WRK00337 Equipment ID WRK00337 Comments A01-52 C9 330D (THX37891) Parameter
HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM
8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline
Overview. 1. Introduction 2. Simulation Background 3. Investigated Vehicles 4. Split of loss calculation in the NEDC 5. Conclusion.
NEDC Simulation with GT-Drive Dipl.-Ing. R. Kuberczyk Prof. Dr.-Ing. M. Bargende 12 Geschwindigkeit [km/h] 1 8 6 2 2 6 8 1 12 Zeit [s] Slide 1 Overview 1. Introduction 2. Simulation Background 3. Investigated
Specifications for Volkswagen Industrial Engine
Volkswagen 1 industrial engine Specifications for Volkswagen Industrial Engine AFD 1.9 ltr. TDI diesel engine EURO 2 Volkswagen AG, Wolfsburg Volkswagen AG reserves the right to introduce amendments or
Powertrain DTC Summaries EOBD
Powertrain DTC Summaries Quick Reference Diagnostic Guide Jaguar XJ Range V6, V8 N/A and V8 SC 2003.5 Model Year Refer to pages 2 9 for important information regarding the use of Powertrain DTC Summaries.
Hydraulically actuated clutches and spring-applied brakes clutch/brake combined units
왎 Hydraulically actuated clutches and spring-applied brakes clutch/brake combined units Or tlinghaus Plates. Clutches. Brakes. Systems. Hydraulically actuated clutches and spring-applied brakes clutch/brake
CHAPTER 3 EXPERIMENTAL SET UP
CHAPTER 3 EXPERIMENTAL SET UP 3.1 INTRODUCTION The emission tests were conducted on an Izusu, four stroke, 4 cylinder petrol engine test-rig with hydraulic dynamometer loading system. The specifications
Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines
36 Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines KEIICHI SHIRAISHI *1 YOSHIHISA ONO *2 YUKIO YAMASHITA *3 MUSASHI SAKAMOTO *3 The extremely slow steaming of ships has become
ELECTRICAL WIRING (R.H. DRIVE VEHICLES)
C-1 ELECTRICAL WIRING (R.H. DRIVE VEHICLES) CONTENTS GENERAL.......................... 3 WIRING HARNESS CONFIGURATION DIAGRAMS......................... 4 ENGINE COMPARTMENT................ 4 DASH PANEL...........................
THERMAL ANALYSIS. Overview
W H I T E P A P E R THERMAL ANALYSIS Overview In this white paper we define and then outline the concept of thermal analysis as it relates to product design. We discuss the principles of conduction, convection,
BRAKE SYSTEMS 101. Energy Conversion Management. Presented by Paul S. Gritt
Energy Conversion Management Presented by Paul S. Gritt Topics To Be Presented The Basic Concepts Hydraulic layouts Component functions Brake Balance Stopping Distance and Fade Formula SAE vs. Mini Baja
Signature and ISX CM870 Fuel System
Signature and ISX CM870 Fuel System Cummins Ontario Training Center HPI-TP Fuel System Heavy Duty High Pressure Injection - Time Pressure Fuel System The fuel system developed for the Signature and ISX
Lotus Service Notes Section EMR
ENGINE MANAGEMENT SECTION EMR Sub-Section Page Diagnostic Trouble Code List EMR.1 3 Component Function EMR.2 7 Component Location EMR.3 9 Diagnostic Guide EMR.4 11 CAN Bus Diagnostics; Lotus TechCentre
AMESim = Advanced Modeling Environment for performing Simulations of engineering systems.
AMESim AMESim = Advanced Modeling Environment for performing Simulations of engineering systems. AMESim is a 1D lumped parameter time domain simulation platform. AMESim uses symbols to represent individual
VC Series Zone Valves BALANCED 2-WAY AND 3-WAY HYDRONIC VALVES
VC Series Zone Valves BALANCED 2-WAY AND 3-WAY HYDRONIC VALVES PRODUCT DATA Design VC Series zone valves consist of: 2-way or 3-way valve housing available with various connection ends Spindle and cartridge
The 2.0l FSI engine with 4-valve technology
Service Training Self-study programme 322 The 2.0l FSI engine with 4-valve technology Design and function The 2.0l engine is based on the tried and tested 827/113 series. Thanks to FSI technology (Fuel
32:(5#5$7,1* 4833#USP283#+] 4;33#USP293#+] 3ULPH 113 kva, 90 kw 124 kva, 99 kw 6WDQGE\ 114 kva, 91 kw 125 kva, 100 kw
,1'8675,$/#*(16(7 6HULHV#'9#448 32:(5#5$7,1* 4833#USP283#+] 4;33#USP293#+] 3ULPH 113 kva, 90 kw 124 kva, 99 kw 6WDQGE\ 114 kva, 91 kw 125 kva, 100 kw Generator set consisting of engine and alternator mounted
Automotive Sensor Simulator. Automotive sensor simulator. Operating manual. AutoSim
Automotive sensor simulator Operating manual AutoSim Contents Introduction.. page 3 Technical specifications.... page 4 Typical application of AutoSim simulator..... page 4 Device appearance... page 5
