Bachelorarbeit. Sylvia Sima HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System
|
|
|
- Shannon Whitehead
- 10 years ago
- Views:
Transcription
1 Bachelorarbeit Sylvia Sima HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department of Computer Science
2 Sylvia Sima HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung im Studiengang Technische Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg Betreuender Prüfer : Prof. Dr.-Ing. Wolfgang Fohl Zweitgutachter : Prof. Dr.-Ing. Andreas Meisel Abgegeben am 6. September 2008
3 Sylvia Sima Thema der Bachelorarbeit HRTF Messungen und Implementierung eines Kopfhörerbasierten 3D-Audiosystems Stichworte HRTF, FIR, Kunstkopf, 3D, Digitale Audio Signalverarbeitung Abstract Das menschliche Gehör ist in der Lage die Position und die Entfernung einer Schallquelle zu bestimmen. Auf dem Weg von der Schallquelle zum Ohr erfahren die Schallwellen eine Filterung. Dieser Filterungsprozess ist durch die Head Related Transfer Function(HRTF) beschrieben. Diese Arbeit behandelt die Implementierung eines HRTF-basiertes Systems, welches einen Virtuelles Sound generiert. Sylvia Sima Title of the paper HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System Keywords HRTF, FIR, dummy head, 3D, Digital Audio Signal Processing Abstract Humans are able to determine the position of a sound source by filtering sound waves as they travel from the sound source to the listener s ears. This filtering process is characterized by Head Related Transfer Functions (HRTF s). The purpose of the thesis is to develop a HRTF based system that creates virtual sound. It aims to obtain a set of generalised HRTFs using the anthropomorphic dummy head. The system is expected to synthesize a binaural signal from any acoustic monaural signal using previously obtained HRTFs.
4 Acknowledgments I would like to thank a number of people who supported me during this work. First of all I d like to thank my supervisor Dr. Wolfgang Fohl, who guided me and from whom I have learned a lot in terms of Digital Signal Processing. Many thanks for his assistance and for information he provided me with. Many thank also to Law S. Ming for his technical assistance during measurements. Particularly for his readiness and patience. It is not really comfortable to spend all day in an anechoic chamber without sunshine and fresh air. I m grateful to the laboratory assistants K.D. Hempel and J. Neugebauer for supporting me in measurement setup. Finally,I would like to thank my family and friends for their love and contribution to this work.
5 Contents 1 Introduction Premise Related Work Fundamentals of Spatial Hearing Physical Characteristics of Sound The Hearing Organ Characteristics of Human Hearing Head Related Coordinate System Inter-Aural Differences Inter-Aural Time Differences Inter-Aural Level Differences Cone of Confusion and Monaural cues Precedence Effect (Haas Effect, law of the first wave front) Head Related Transfer Function Measurements Overview Measurement Technique Loudspeaker Measurement Analyzer Settings for Loudspeaker and HRTFs Measurements HRTF Measurements Analysis of HRTF curves Headphones Measurements System Design HRIR Filter Headphone Equalization Test Overview Test Setup and Procedure Test Results
6 5.3.1 Test run with Sennheiser HD 270 and HD 600 for the Horizontal Plane 39 6 Conclusion and Further Development 42 7 References 43 List of Figures 46 List of Tables 48 A Matlab Scripts and Supporting Tool 55
7 1 Introduction 2 1 Introduction For a long time researches have conducted on how people locate sound in a natural hearing environment. Our auditory system modifies the incoming sounds by filtering them depending on their direction. The modified sound involves a set of spatial cues used by the brain to detect the position of a sound. Human hearing is binaural, that means we use both ears to perceive the sound-pressure signals. The term binaural literally means relating to or used with both ears. In 1948, Jeffress proposed the first binaural concept, a technique to detect inter-aural time differences (ITD), one of the most important cues for localization of sound sources. Since then binaural models have attracted the attention of scientists and have become more and more popular as an aid for understanding the human auditory system. The binaural model makes use of cues for sound localization to create virtual sound that can be placed anywhere in the perceptual space(sound field) of a listener. So-called Head Related Transfer Function (HRTF) are used by a binaural model to generate a binaural sound. The HRTF is a frequency response function of the ear. It describes how an acoustic signal is filtered by the reflection properties of the head, shoulders and most notably the pinna before the sound reaches the ear. This transfer function is the fundamental for the generation of threedimensional sound for binaural models. This project uses binaural technology that reproduces a binaural signal from a monaural one using a generalized set of HRTFs. The synthesized signal is then presented to the listener via headphones.
8 1 Introduction Premise This document requires to be familiar with digital signal processing and digital filter design in general. Also it is preferable to read an introduction into basics of sound. 1.2 Related Work There are previous, relative works which have used a binaural technology to implement a 3D simulation of a virtual sound scene over headphones. Two of them, will be presented in this chapter. The term binaural technology is defined as follow. Binaural technology is a body of methods that involves the acoustic input signals to both ears of the listener for achieving practical purposes, for example,by recording, analyzing, synthesizing, processing, presenting, and evaluating such signals [2] A comparable work was done in Massachusetts Institute of Technology (MIT) [13] and in frame of the Listen project [15]. Both projects have performed the HRIR/HRTF measurements but in different ways. MIT project has used the KEMAR dummy head microphone to obtain the left and right impulse response using maximum length(ml) pseudo-random binary sequences. Measurements of the Listen project were done using humans in blocked-meatus conditions which is apparently the common technique to get HRTF data. There, microphones were placed in the listener s ears. As a measurement signal a 8192 points logarithmic sweep was used. This thesis also uses a binaural technology to implement a Headphone-Based 3D-Audio System.
9 2 Fundamentals of Spatial Hearing 4 2 Fundamentals of Spatial Hearing This chapter provides relevant fundamental information pertaining to sound and spatial hearing from the perspective of physical and psycho-acoustics. It is organized as follows. In section 2.1 the basics of sound will be depicted. Section 2.2 is a compact depiction of the Hearing Organ and its components which are decisive for this thesis. Section introduces cues for sound localization. 2.1 Physical Characteristics of Sound The sound is the most important part in the acoustics, hence it is useful to depict the basics first. The sound is referred to as an any pressure variation in an elastic medium such as air, liquid or gases, which can be perceived by humans or animals. Sound waves can be propagated and perceived, if only there is medium between sound source and ear, so that the sound can propagate [14]. The ear differentiates between periodic and non-periodic motions. The periodic ones appear to us as pleasant and the non-periodic ones as bothersome. Particular periodic wave is harmonic and simple. The sine wave is periodic wave and of particular importance. Music and speech waves are complex and differ completely from simple sinusoid. However, mathematically every periodic wave even if it is not like sinusoid can be depicted as a combination of harmonic waves of various frequencies, amplitudes and phases. J.B. Fourier was the one who has invented this theorem, which is called Fourier theorem. In general, humans perceive airborne sound which results from fluctuation of air pressure. The sound pressure p is a variation in the pressure generated by a sound wave and is superposed to constant atmospheric pressure(air pressure in absence of sound). p = F A Thus, the sound pressure is F (force) divided by A(area). According to the SI(Systeme International) the unit of sound pressure is Pascal. 1P a = 1N m 2 In the acoustics sound pressure can be given as root-mean-square or effective(rms). As a mea-
10 2 Fundamentals of Spatial Hearing 5 sured variable for the pressure is usually the sound level SPL which is given in db. SP L = 20 lg p p 0, whereas p is the sound pressure p 0 = = 20µP a The standardized referenced value p 0 is a pressure, which corresponds approximately to the human auditory threshold at 1000 Hz. Loudness level is another term that is related to the characteristics of the human hearing. It measures how humans perceive the loudness of a sound which differs from human to human. Loudness is a subjective term and its unit is Sone. Sone is used to describe the difference in loudness between sounds. 1 Sone represents 40 Phons and is defined as a loudness of a 1 khz tone at 40 db SPL (sound pressure level). Loudness level is a physical term to express the loudness of a sound and its unit is Phon [14]. To get an idea of Phon the Equal-loudness level contours which was refined by Robinson and Dadson is used. Figure 1 depicts the human hearing response as a frequency-loudness level relation. The diagram shows how a pure tone of 1000 Hz must be adjusted(in terms of sound pressure level) until it is equally loud as a sound detected by listeners. Also, it shows, that the sound pressure level of a tone of 1 khz and the loudness level are equal. For tones of frequencies aside from 1 khz other sound pressure level are required to gain the same loudness impression [14]. The sound pressure is measured by a sound level meter. Usually a sound level meter is equipped with a filter whose frequency response is approximately like those of the human ear which is called A - weighting filter and corresponds to the inverse of the 40 db(at 1 khz) equal loudness level contour,see figure 2 (marked blue). A-weighting filter is used for noise measurements in audio systems. The abbreviation for A-weighted decibels is dba. Aside from A-weighting filter there are B,C and D filter which are used for louder noises such as aircraft noise. When we talk about acoustic measurements the db SPL(sound pressure level) is used which is referenced to 20µP a = 0 db SPL. In frame of this thesis the Audio Analyzer R&S UPV was used for the sound pressure level measurement which also provides A-weighting filter.
11 2 Fundamentals of Spatial Hearing 6 Figure 1: Equal-Loudness Contours of the Human Ear [1] 2.2 The Hearing Organ The human hearing organ can be considered as an amazing signal processor due to its complex construction. It is divided into three sections the outer, middle and inner ear. Specific functions are assigned to each section. In this project however, the outer ear is of particular interest because it imposes filtering that helps to differentiate the direction of the sound source. The outer ear includes the pinna and ear canal,see figure 3. The pinna is decisive in terms of localization of a sound. It transmits sound through the ear canal to the ear drum. This process is very dependent on frequency, direction and distance of the incident sound. The pinna acts as a filter and causes distortions of a sound, which means that the amplitude and a phase spectrum of a sound are modified [3]. The pinna can be seen as a sound-gathering device. Not only the pinna but also physical effects such as shadowing, reflection and diffraction of the head causes linear distortions. Furthermore, there are resonances in the pinna - ear canal - ear drum system. In technical terms these alteration effects can be described as Head Related Transfer Function s (HRTF) for the left and right ear respectively. The detailed description of HRTF will be presented in the section 2.9. The transfer function is mostly affected by the terminating impedance of the ear canal which is the impedance of the ear drum [3]. Section 3.3 will take a closer look on how the certain sections of the outer ear and the head affect a transfer
12 2 Fundamentals of Spatial Hearing 7 Figure 2: Weighting Filter Curves [26] function. The middle ear has a bunch of purposes such as a propagating the sound waves from the outer ear to the inner ear. The propagation occurs due to the eardrum which is contained in the middle ear. If the air pressure in the compressed area of air molecules increases, the eardrum arches inwards and outwards, if the air pressure decreases. During the propagation alterations in sound-conducting media occur that cause changes of the magnitude of the impedance. The outer ear is filled with air and the inner ear with fluids. Due to the changes in media about 98 percent of a sound waves are reflected. In order to avoid the reflections,the low impedance in air must be transformed into the higher one of the fluids. This is actually the major function of the outer ear of such a transformer [4]. In terms of inner ear it is sufficient to mention that it includes the organ of hearing(cochlea). The inner ear converts mechanical vibrations into neural pulses. At this point the conversion between the time domain and frequency domain of the signal takes place.
13 2 Fundamentals of Spatial Hearing 8 Figure 3: The Human Ear [28] 2.3 Characteristics of Human Hearing Humans audible range involves frequencies from 20 Hz - 20 khz. Figure 4depicts the limits of human hearing. The sound pressure of 140 db is referred as the threshold of pain. In contrary to the threshold of pain, the threshold of hearing is strongly frequency dependent. For each frequency there is another auditory threshold. The human ear is most sensitive around 3 khz. For higher and lower frequencies the auditory threshold increases rapidly. To hear a sound of low frequency of 30 Hz the sound pressure must be around 50 db. 2.4 Head Related Coordinate System Before going into the details about spatial cues, some notes should be made on the head-related coordinate system,see figure 5, which is being used throughout the following sections. The system is used to represent the position of an acoustic noise in space. There are three distinct planes: Horizontal, Median and Frontal. The origin of the system is placed on the inter-aural
14 2 Fundamentals of Spatial Hearing 9 Figure 4: Human Hearing Range [2] axis. It is the centre between the entrances to the ear canals. The inter-aural axis divides both eardrums. Figure 5: Head Related Coordinate System [14] The position of the sound source is specified by: Azimuth φ, Elevation δ and Distance r, see Figure 5. The incident angle of the sound produced in the horizontal plane corresponding to the head is described by its azimuth φ. It defines the movement of the sound anti- or clockwise through the horizontal plane. The position of the sound in the median plane is described by elevation δ. The median plane lies orthogonally on the horizontal plane as well as on the frontal plane. The frontal plane is vertical to the horizontal lane too. For example if φ = 180 and delta = δ, the sound source is directly behind the listener.
15 2 Fundamentals of Spatial Hearing Inter-Aural Differences According to the Duplex Theory which was invented by John Strutt, who is better known as Lord Rayleigh, there are two most important cues for sound localization in the horizontal plane: Inter-aural time Differences (or ITD) and Inter-aural level Difference (or ILD) [4] In the following these cues will be examined in detail Inter-Aural Time Differences The time differences occur due to the difference in distance between the sound source and the two ears of the head. This difference is referred to as inter-aural time difference, ITD. It is the difference in time that it takes for a sound wave to reach both ears. When the sound source is located to the right side of the head, it will reach the right ear earlier than the left one. The signal has further to travel the distance s to reach the left ear, see Figure 6. Figure 6: Inter-Aural Time Differences [28] The ITD s are decisive in the low frequency range (< 1,5 khz). This is due to the relation between the wavelength and proportions of the head. In this case a wave length is larger than the diameter of the head. Sound waves then are not reflected by the head, see Figure 7. This effect can be explained as follow, the formula for the wave length is: α = c f
16 2 Fundamentals of Spatial Hearing 11 Figure 7: Waves of Low Frequencies The distance a wave travels during one cycle period is a wavelength. Sound travels at a speed c of 343 m/s. The wave length for a frequency of 900 Hz is then 38,11 cm,which is larger than a diameter of the head (18,5-23 cm). Due to the physical dimensions of the head the maximum ITD is 0.63 ms when the sound source is placed at the azimuth -90 or +90, left and right ear respectively [28]. Sound waves strikes a head at the certain angle. The incident angle of a sound alpha is specified by the azimuth φ according to the head related coordinate system, see figure 5. The ITD which is specified by delta s can be calculated as follow. IT D = sin α d Inter-Aural Level Differences The head is an attenuation factor that leads to interaural level differences of both ear signals. ILD (also frequently referred to as interaural intensity differences) is denoted as an amplitude difference between left and right ear by the sound s wave front. The hearing organ is able to perceive level differences in the whole audible frequency range to detect a direction of a sound waves. In the previous model for ILD estimation it has been alleged that the ILD is more decisive in the high-frequency range. The ILD becomes effective approximately above 1.5 khz where the wave length is less than the diameter of the head. Due to diffraction of the head there are no perceptible level differences approx. below 500 Hz. This is called the head-shadow
17 2 Fundamentals of Spatial Hearing 12 effect, where the far ear is in the shadow of the head, see Figure 8. Figure 8: Waves of High Frequencies According to Rayleigh s Duplex Theory ILD and ITD taken together contribute to sound localization throughout the audible frequency range. Also this modes asserts that there are no perceptible ITD and ILD when the sound arrives at the azimuth of 0. However it has lately been disclosed that ITDs are important in the high-frequency range as well as ILDs [4]. Although the Duplex Theory is quite simple, it only asserts the perception of azimuth. There are situations where a sound has the same ILD and ITD for two points, which have equal distance from the listener s head. This is so-called Cone of Confusion and is explained in the next section. 2.6 Cone of Confusion and Monaural cues The Cone-of-Confusion is critical in the median plane, see figure 4. From any point in this plane the interaural differences are at a minimum or zero for a perfect symmetrical head. Nevertheless the listener can distinguish sounds from points in the median plane, because the head is not perfectly symmetrical. The interaural differences can be identified, these are individual and dependent on elevation angle and in which half space the sound occurs(back or front) [3]. Figure 9 illustrates the concept of the Cone of Confusion. Here, points 1 and 4, and points 2 and 3 have identical ITD and IID. Several authors have supposed that monaural cues are used to locate sound sources in the median plane. For the monaural cues only one ear is sufficient to perceive them. Monaural cues are
18 2 Fundamentals of Spatial Hearing 13 Figure 9: The Cone of Confusion based on the spectral coloration of a sound caused by the head, torso and outer ear, or pinna. The determination whether the sound came from the behind, front or above relies on differences in power in all frequency bands [4]. Monaural cues are essential even if there are significant interaural differences in sound. It is sure that for spatial hearing in free field monaural as well as binaural cues are present at the same time [3]. 2.7 Precedence Effect (Haas Effect, law of the first wave front) In a natural and reverberant listening environment humans are faced with multiple concurrent sound sources. The Precedence Effect indicates that if two identical signals are coming from different directions, only the first incoming signal is used by the human auditory system to determine the position of the sound. This event occurs when the delay between the two successively coming signals is above 1 ms. 2.8 Head Related Transfer Function Because of diffraction and interference the outer ear produces a directionally dependent filter process of incoming sound waves. This action is described by the so-called Head Related Transfer Function (HRTF). Other scientific terms for this action are head transfer function, pinnae transform, outer ear transfer function, and directional transfer function [6]. HRTF is a direction dependent frequency response of the ear and the Fourier transform of the head-related impulse response (HRIR). The HRTF describes how an acoustic signal is filtered by the re-
19 2 Fundamentals of Spatial Hearing 14 flection properties of the head, shoulders and most notably the pinna before the sound reaches the ear. The outer ear has directional and nondirectional properties of spectral alterations in a certain frequency range. The torso and the head causes directional, the pinna and ear canal nondirectional modifications, which will be discussed in the Section 3.3 in detail. HRTFs are used to synthesize a monaural into binaural sound which will sound as if it comes from desired location. All linear characteristics of the sound transmission are contained in the HRTF. Localization cues such as ITD, ILD as well as monaural cues are included. They can be extracted from the HRTF, but the opposite is not the case [4]. Every human has his individual HRTFs dependent on his physical shape and his outer ear. To achieve the authentic auditory perception, an individualized set of HRTF should be used. Another way to synthesize a virtual sound is by using generalized set of HRTF acquired by measuring with the Dummy Head. Figure 10 depicts the HRTF in the frequency domains for the azimuth angle 90 and elevation 0. Figure 10: Frequency Response for Azimuth 90 and Elevation 0. x[hz], y[db], left = blue, right = green It is obvious that the sound reaches the ipsilateral ear(which is close to the sound-source) is stronger than the sound that reaches the opposite ear. In the frequency domain, the frequency response for the contra-lateral ear(left microphone of the dummy head) looks like a low-pass filter due to the shadowing effect of the head. The detailed description of the HRTF obtained in frame of this thesis is presented in the section 3.3. Measurements of HRTF are often done from a fixed radius around the dummy head or listener s
20 2 Fundamentals of Spatial Hearing 15 head in an anechoic chamber. They are measured from different azimuths and elevations. Even when the measurements take place in an anechoic chamber errors can occur, because of unintended reflections of the equipment. Hence, it is desirable to reduce the amount of the equipment. The measurement setup for this thesis is described in the section 3.2. A conventional technique for measurement is to place microphones into a subject s ear and then playing a sweep signal through the speaker. As mentioned in the section before instead of using a person it is more convenient to use an artificial head to perform the HRTF measurements. The dummy head is an approximate reproduction of the human head which has almost identical acoustical properties of a human. It is used to perform binaural recordings, whereas spatial effects of a sound are transformed into two electrical signals(also referred to as binaural signals ), which stand for the input of the right and left ear respectively. The recorded signals are not equivalent to those of the ear signals that the subject would have in the given situation. However, dummy head recordings are a good way to reproduce those signals authentically, even if individual deviations exist. Using the obtained HRTFs of a dummy head or of others, listeners are still capable of doing a correct localization assumptions.
21 3 Measurements 16 3 Measurements 3.1 Overview In this thesis a system has to be implemented which is based on existing methods and a newly obtained HRTF database. The aim was to simulate the transfer function of the outer ear as good as possible, using the dummy head and digital filters. The detailed description of the essential measurements gives section 3.2. In section 3.4 the implementation of the system will be examined. All required measurements were made at University of Applied Sciences in the anechoic chamber. 3.2 Measurement Technique Loudspeaker Measurement A loudspeaker converts an electrical signal into sound pressure. As an initial step, the frequency response of the sound source in free field (a surroundings where no reflections exist) was measured. For all measurements the loudspeaker CANTON Plus XL.2 was used. This measurement was necessary because the response is not linear due to the complex mechanical structure of a loudspeaker. Not linear means, that different frequencies of the same input signal are differently reproduced by a loudspeaker. The frequency range of the loudspeaker corresponds to 40 Hz- 30 khz. Figure 11 shows the measurement set-up. The loudspeaker was placed at the incident angle 0 and the distance corresponds to 1.91 meters. The microphone and the loudspeaker were connected to the amplifier and the amplifier to the Audio Analyzer R&S UPV input and output respectively. The analyzer is running on Windows XP. The analyzer generated a sweep signal(from 40 Hz to 20 khz) of 500 or 800 samples. This was required because in the first measurements, the phase difference between the right and left microphone of the dummy head were measured with 800 samples. For the measurement the free-field 1/2 microphone Type 4190 from Bruel & Kjaer was used, which has a flat frequency response. A microphone converts sound pressure into an electric signal. A free-field microphone is used to measure the sound pressure in a free field. The frequency response of the free field microphone is linear for the incident angle of 0. The interference of a reflected sound which causes alteration of a sound pressure are compensated by the microphone. Figure 12 shows the frequency response of this microphone.
22 3 Measurements 17 Figure 11: Loudspeaker Measurement Setup Figure 12: Free-Field Response 0 Sound Incidence
23 3 Measurements 18 It is observable that it is flat in the frequency range of the loudspeaker. Before the actual measurement has started, the calibration of the microphone was needed. The calibration is the measurement with which the value of the microphone sensitivity is obtained. Sensitivity indicates how good the microphone converts sound pressure to output voltage. It should be denoted that the re-calibration of the microphones should be done for the next measurement. This is required because a mechanical wear and a drift in electronic components affect the accuracy of the measurements. s M = V p Wherein V is the effective or rms of the microphone output voltage and p is the rms of the sound pressure which produced the output voltage. The calibration is done by generating a sine wave signal with a common frequency of 1 khz and sound pressure of 1Pa. The obtained microphone sensitivity of dbv(referenced to 1 V = 0 dbv) minus 94 db (127.96), was then entered in the Analyzer s Configuration Panel as a Referenced Value. This is necessary because the calibrator produces the pressure of 94 db, thus the sound pressure can be displayed in dbspl(db referenced to 20 µ Pa) [21]. The full description of the settings of the analyzer will be discussed in the next section. The resulting frequency response is shown in figure 13. It is observable that the response of the speaker is not linear. Especially low frequencies below 100 Hz cannot be reproduced by this loudspeaker because of its small membranes. The advantage of a loudspeaker with small membrane is that it can reproduce higher frequencies better than those with big membranes. The obtained frequency response was then used to equalize the HRTF measurements Analyzer Settings for Loudspeaker and HRTFs Measurements First at all it should be denoted that the settings for all measurements can be saved and reused for the next measurement. This section describes the most important settings for the measurement of the loudspeaker response and HRTFs. The Audio Analyzer R&V UPV which was used for measurements has an analog interface, hence the setting for the Instrument should be Analog. The Channel 1 of the generator was used as an output for a sweep signal, see figure 14. (left panel), for HRTF measurement the output signal is the same for both channels (right panel). The Bandwidth was set to 40 khz and for the HRTF 22 khz which means that maximum output frequency corresponds to 40 khz and 22 khz respectively. The Output Type was set to
24 3 Measurements 19 Figure 13: Loudspeaker Frequency Response. x[hz], y[db] Figure 14: Generator Config Panel Bal, which means that the output is symmetrical. This setting is preferable in audio technique because of unsymmetrical and long electrical cabling and many electronic devices, that are connected to a different power supply. This can lead to noise, distortion and ground loops. To avoid these unintended effects, XLR connectors are used. This connector enables further symmetrical processing by a generator or an analyzer. The advantage of the symmetrical processing is that the interferences which affect the signal can be avoided. In frame of this thesis XLR connectors where used for the generator output as well as for the analyzer input. Also the length of the cables was not that long to produce those unintended interferences. The Common option was set to Ground, however for audio measurements the Float is preferable to avoid the interference signal which occurs due to the electrical cabling and is added to the wanted signal [24], [21], thus Float should be used in the Generator Config as well as in Analyzer Config. As already mentioned, this may not affect the measurements that much because of the setting of the Out-
25 3 Measurements 20 put Type and minimized amount of equipment. The Impedance should be set to 10Ω to keep the internal resistance as low as possible, which enables to produce a decent voltage source. Max Voltage should be adjusted individually to avoid harmonic distortions which are caused by an amplifier. In the Generator Function and Analyzer Function panel the settings for the loudspeaker and HRTF measurements are the same, see figure 15. Figure 15: Generator and Analyzer Config The Function is a Sine and in the menu Sweep Ctrl the Auto Sweep should be set, thus the parameter of the sweep can be configured, such as Start and Stop frequency. The Start frequency corresponds to 40 Hz and the Stop to 20 khz. It is possible to fix the desired number of points of the sweep signal in the menu Points, a maximum of 1024 points is allowed. The higher the number of points the longer it takes to measure the responses. In this case 500 points are sufficient. In the Analyzer Function panel as the Function RMS should be set. Further settings have to be fixed in the Sweep Graph 1 Config, see figure 16. Depending on which Analyzer channel was used to connect the output of the microphone, the Reference value of dbv should be set, see figure 16. This is necessary because the Analyzer records AC rms voltage and display it as the absolute voltage level which is given as follow.
26 3 Measurements 21 Figure 16: Sweep Config for Loudspeaker Measurement 20log V V ref, where V ref is a reference voltage. In menu Unit Fnct Track dbr should be set, this allows using customized settings of the Reference value. The same settings should be done for the HRTF measurements. The obtained sensitivity for the left microphone of the dummy head corresponds to dbv and of the right dbv minus 94 db of the calibrator it is equal to and respectively, see figure 16. Also the difference in phase between the right and the left microphone signal was measured on the channel 2. As the reference the channel 1 was used, see figure 18. (right panel). It is possible to display the recordings in various formats such as degree or radiant. In frame of these measurements degree was chosen. To obtain the phase difference in the Analyzer Function panel, see figure 18(left panel), in the menu Freq/Phase the Freq&Phase should be set. All the recorded values can be saved as a trace file, see figure 17 at the very end.
27 3 Measurements 22 Figure 17: Sweep Config for HRTFs Measurement HRTF Measurements First of all, the microphones of the dummy head HMS II.4 from HEAD acoustics were calibrated in the same way as the free-field microphone. Frequency and phase responses were obtained in the horizontal and median plane at the distance of approximately 1.91 meter from the sound source,see figure 19.
28 3 Measurements 23 Figure 18: Analyzer Function and Sweep Graph Config Panel for Phase Measurement In order to measure the phase response the left input of the analyzer was used as a reference signal. Altogether the measurements took place two times on different days. Table 1 shows all measured locations. The measurements were done only for the left area and for two positions of the right area,see figure 32, because it is symmetrical. To get the frequency response for the azimuth 345 the frequency response of 15 can be used. The frequency response of the right microphone is used for the left and vice versa. Elevation Number of Azimuth Increment Date of Measurement Measurements Table 1: Measured Position in the Median and Horizontal Plane The measurements in the horizontal plane and for positions of the positive elevation were done two times on different days and with different resolution for the azimuth. During measurements in the horizontal plane, the dummy head and the loudspeaker were placed on the floor, see figure 20, in the median plane, they alternatively were positioned at the platform, see figure 21. For this measurements the same sweep signal (40 Hz - 20 khz) was generated by the Audio Analyzer with 500 and 800 samples. The measurements contain the left and right HRTF re-
29 3 Measurements 24 Figure 19: HRTF Measurement Setup Figure 20: Measurement in the Horizontal Plane spectively. Figure 22 shows the left HRTFs measured in the horizontal plane and figure 23 for the positions of elevation and azimuth increments of 15. Observable are strong sound pressure deviations in the frequency range between 2 and 4 khz and slight differences at the low frequencies as expected. The reason for those deviations are the directional and the nondirectional spectral modifications due to the physical proportions of a dummy head, which will be discussed in the next chapter. It should be denoted that the measurements below Hz could not be reproduced due to the limited capability of a loudspeaker in the low frequency range.
30 3 Measurements 25 Figure 21: Measurement for Elevation of x[hz], y[db], z[degree] Figure 22: Left HRTFs measured in the Horizontal plane 3.3 Analysis of HRTF curves In the chapter 2.9 it is denoted that the outer ear leads to directional and nondirectional modifications of an incoming sound. The HRTF of the dummy head at the incident angle of 0 in the horizontal plane will be discussed in detail. The absence of the low frequencies, see figure 24(green circle), is due to the limited capabilities of the loudspeaker, see section and The distortions caused by the head occur at the frequencies starting from 500 Hz, see figure 22(pink circle) [3]. The acoustical behavior of the ear canal is given approximatively by the formula of an Helmholtz resonator. The Helmholtz - Resonator is used to determine a frequency where these resonances
31 3 Measurements 26 Figure 23: Left HRTFs measured for the Positions of Elevation and Azimuth of 0 to 180.x[Hz], y[db], z[degree] occur. The equation for the Helmholtz-Resonator is given as follow. f = c πr 2 2π V l Whereas r and l denotes the radius and the length of the ear canal respectively, c is the velocity of a sound and V is the cavity of the pinna. The radius of the ear canal corresponds to ca. 4 mm and its length is ca. 25 mm then volume of the pinna can be calculated as follow. V = πr 2 l ( f2π c ) 2 V = π4mm 2 ( 25mm 1500Hz 2π mm/s ) 2 = 2663mm 3 In the figure 24 it is recognizable that amplifications of the pinna occur at the frequency range from 1 to 1.5 khz (red circle). The ear canal causes amplifications due to its resonance at the frequency around 3 khz. In addition the ear canal is similar to an organ pipe, because it terminates with the eardrum. The resonances are the same as those of the organ-pipe: λ 4, 3λ 4 and 5λ 4. The first resonance occurs at the frequency 3430 Hz(turquoise circle), assuming that the length of the ear canal averages m which is equal to λ. From this it follows that the 4 wavelength λ corresponds to m [23].
32 3 Measurements 27 f = c λ = 343m/s 0.100m = 3430Hz The next resonance occurs at approximately 343m/s 0.033m at 343m/s 0.020m = 10394Hz (orange circle), and the last = 17150Hz (black circle), which can vary from human to human due to different physical shape. The deep notch around 8 khz(big black circle) and serrated peaks at the very end occur due to the folds and ridges of the pinna [20]. More researches on human auditory system can be found here [17]. The analysis of the measurements has shown that the dummy head reproduces the anatomical model of the human auditory system as described above. Figure 24: HRTF pair for 0 Elevation and Azimuth. x[hz], y[db] 3.4 Headphones Measurements Additionally, various headphones from different manufacturer were measured placed on the dummy head. Table 2 depicts measured headphones. The settings of the Audio Analyzer are the same as those of the HRTF measurement, which are described in the section The headphones causes distortions of a signal, therefore a pre-equalization of the sound for playback is required. To compensate those distortions an inverse filter was implemented, see section 4.2. Additionally the left and the right channel of some headphones cannot be reproduced equally, they differ from each other. Figure 25 shows the frequency response of the headphones Sennheiser HD 270 which was used for the system test. In the frequency range between 300 and 400 Hz of the right channel there is a valley and at 500 Hz there is a peak.
33 3 Measurements 28 Measured Headphone Sennheiser HD 500 Sennheiser HD 600 Sennheiser HD 270 Sennheiser CX300 Gembird AP 880 Manhatten Philips Table 2: Measured Headphones In the high frequencies there are many serrated peaks and valleys, this effect is observed in all headphones measurements. This effect is caused by the pinna as discussed in section before. Figure 25: Frequency Response of the Sennheiser HD 270.x[Hz], y[db] Compared to the Sennheiser HD 270 the frequency response of the Sennheiser HD 600 looks better,see figure 26. In the low frequency range there are no peaks and valleys and the response is nearly even. The peak at 3 khz is caused by the ear canal of the dummy head. Figure 27 shows the frequency response of the cheap Philips earbud type headphones. Those type of headphones are especially tricky to measure because they don t have a good seal. For the system test,which is described in section 5, only Sennheiser HD 270 and HD600 headphones were used.
34 4 System Design 29 Figure 26: Frequency Response of the Sennheiser HD 600. x[hz], y[db] 4 System Design The designed system consists of a pair of digital filters that are characterized by an input and an output signal and its transfer function. The system is completely implemented in Matlab. Figure 28 depicts the structure of the system. The frequency response of the dummy head was measured using the Audio Analyzer as described in the previous section. The obtained data was used to create a HRIR filter and a further filter to equalize the headphones. Section 4.1 gives a detailed description of the Head Related Impulse Response(HRIR) filter which is a Finite Impulse Response (FIR) filter. Section 4.2 describes the implementation of an inverse filter designed to equalize headphones. 4.1 HRIR Filter There are two types of digital filters: Infinite Impulse Response(IIR) and Finite Impulse Response(FIR). In frame of this thesis the system was implemented as a FIR filter because of its linear phase response which is especially desired in digital audio processing [8]. Linear phase filter do not produce phase distortions of the signal, which means that the delay caused by a filter is the same at all frequencies. The advantage of the linear filter is that they can be implemented with a given frequency response and phase. The condition is that the desired response must include linear phase. The main disadvantage of FIR filters is that they require high pro-
35 4 System Design 30 Figure 27: Frequency Response of the Philips Earbud Type Headphones.x[Hz], y[db] Figure 28: Structure of the System cessing time and storage. In this thesis these parameters were not a part of the requirements. The FIR filter is implemented using the window method [8]. The window method is commonly used for FIR filter design. In this method the desired response of the filter is defined and the coefficients are obtained by evaluating the Inverse Fourier Transform(IFFT). The number of coefficients NFILT corresponds to 512 which is sufficient to meet the requirements of the system. The code listing below means that we take 512 samples of the given frequency response at intervals k fs/nf ILT, where k = 0, 1, 2,..., NF ILT 1. The sampling frequency fs corresponds to 44,100 Hz. f f r e q = (0 : NFILT 1) f s / NFILT ;
36 4 System Design 31 First of all, the data(frequency-, phase- and speaker-response) is imported into the workspace using the matlab script named get_data.m. The data is available as a m-file which was prepared for Matlab using the executable PrepareData.jar. The next step is the interpolation of the speaker response at the frequency points of the dummy head response, see the code snippet below. The interpolation is required because the data contains different numbers of points(500 or 800). a r _ s p e a k e r = i n t e r p 1 ( f r e q _ s p e a k e r, a r _ s p e a k e r, f r e q _ a r ) ; As already mentioned in the previous chapter, the frequency response of the loudspeaker is nonlinear and the frequencies below 100 Hz cannot be reproduced by the speaker at all, therefore the normalization of the level is required. The level of the frequency range below 100 Hz is replaced by the last index of the rng_speaker_lo and above 18 khz by the first index of the rng_speaker_hi,see code snippet below. r n g _ s p e a k e r _ l o = f i n d ( f r e q _ s p e a k e r < 100) ; a r _ s p e a k e r ( r n g _ s p e a k e r _ l o ) = a r _ s p e a k e r ( r n g _ s p e a k e r _ l o ( end ) ) ; r n g _ s p e a k e r _ h i = f i n d ( f r e q _ s p e a k e r > 18000) ; a r _ s p e a k e r ( r n g _ s p e a k e r _ h i ) = a r _ s p e a k e r ( r n g _ s p e a k e r _ h i ( 1 ) ) ; A simple subtraction is performed to equalize the frequency response of the dummy head. Whereas ar_db_l and ar_db_r are a frequency response of the left and right microphone respectively. ar_db_l_1 = ar_db_l a r _ s p e a k e r ; ar_db_r_1 = ar_db_r a r _ s p e a k e r ; The next step is converting the frequency response from decibel into the magnitude and the phase response from degree to radiant. a r _ l = 1 0. ^ ( ar_db_l_1 / 20) ; a r _ r = 1 0. ^ ( ar_db_r_1 / 20) ; p r _ r = p r _ d e g _ r p i / 180; The filter coefficients of a FIR filter are computed using IFFT. IFFT transforms a signal from frequency domain into the time domain. The fact is that the IFFT of a conjugate-symmetric vector is real [12]. By using this fact, mirroring makes sure that the transmitted signal is real. The following code lines shows the mirroring concept. First an upper and a lower half of the symmetric vector is defined.
37 4 System Design 32 r n g _ h i = NFILT : 1 : NFILT / ; r n g _ l o = 1 : NFILT / 2 ; In the following lines, only the desired frequency response of the lower half is defined because the upper half is a mirror of the lower half. f a r _ l ( r n g _ l o ) = i n t e r p 1 ( f r e q _ a r, a r _ l, f f r e q ( r n g _ l o ), l i n e a r, e x t r a p ) ; f a r _ r ( r n g _ l o ) = i n t e r p 1 ( f r e q _ a r, a r _ r, f f r e q ( r n g _ l o ), l i n e a r, e x t r a p ) ; In the mirroring the lower half of the response is flipped around, complex conjugated and placed at the end of the lower half. The lines below show the flipped magnitude for the left and right channel respectively. The phase response fpr_diff represents the difference in phase between the left and the right channel. f a r _ l ( r n g _ h i ) = f a r _ l ( r n g _ l o ) ; f a r _ r ( r n g _ h i ) = f a r _ r ( r n g _ l o ) ; f p r _ d i f f = [ f p r _ d i f f ; f p r _ d i f f ( end : 1:1) ] ; Figure 29 depicts the magnitude after mirroring. Figure 29: Magnitude after Mirroring To realize the filter with a linear phase response its phase response must fulfill the following condition [8] :
38 4 System Design 33 θ(ω) = αω, where α is constant. The line below defines the linear phase response, where α corresponds to π. This means that the whole spectrum is delayed by (NF ILT/2) 1, because the NF ILT is even. This step has two reasons: to obtain the linear phase characteristics, to delay a signal by half a filter length and then perform the window function(in this case the Hanning Window). The impulse response is shifted in order to avoid that the interesting parts of the impulse response are cropped by a window function. f p r _ b a s e = (0 : NFILT 1) ( p i ) ; Also the coefficients of the filter must be symmetrical around the center, that means, the first coefficient is the same as the last, the second as the next-to-last [19]. In this case the phase response is a function of the filter length [8], where α = (NF ILT/2) 1 : h(n) = (NF ILT n 1), n = 0, 1,...(NF ILT/2) 1,where NFILT is even. The next step is to compute the phase response for the left and right channel,see the code below. Here the left and right signal is just shifted to the opposite directions. f p r _ l = f p r _ b a s e 0. 5 f p r _ d i f f ; f p r _ r = f p r _ b a s e f p r _ d i f f ; The coefficients of the filter are computed using the IFFT which represents the impulse response of the filter. b _ l = r e a l ( i f f t ( f a r _ l. exp ( j f p r _ l ) ) ) ; b_r = r e a l ( i f f t ( f a r _ r. exp ( j f p r _ r ) ) ) ; The coefficients represent a selected set of time-domain samples. wnd = hanning ( NFILT ) ; b _ l = b _ l. wnd ; b_r = b_r. wnd ;
39 4 System Design 34 The impulse responses which is referred to as Head Related Impulse Response (HRIR) for the left and right ear are then saved in a Matlab m-file using the matlab script write_coeff.m. Figure 30 shows HRIR for the left and right ear of the dummy head at the incident angle 90 in the horizontal plane. As expected the signal arrives at the right ear before the signal at the left ear. Figure 30: Left and Right HRIR for incident angle of 90 in the horizontal plane 4.2 Headphone Equalization As already mentioned, sound samples need to be pre-equalized for playback. The distortions caused by headphones are compensated using an inverse filter with linear characteristics. The process of inverse filtering is also referred to as deconvolution. Using deconvolution a signal can be compensated for an undesired convolution. The aim is to reproduce the signal as it existed before the convolution took place. In order to design an inverse filter which recreates the original signal, the frequency response of the filter must be inverse of the response of the headphones. That is done by inverting the frequency spectrum of headphones, see code snippet below. ar_db_hp = ar_db_hp ;
40 4 System Design 35 The inverse filter was designed in the same manner as the HRIR filter using the window method to compute filter coefficients, see the code snippet below. f a r _ h p ( r n g _ h i ) = f a r _ h p ( r n g _ l o ) ; b_hp = r e a l ( i f f t ( f a r _ h p. exp ( j f p r _ b a s e ) ) ) ; b_hp = b_hp. wnd ; w r i t e _ h e a d p h o n e s _ c o e f f ( b_hp, headphones, headphoneshrir ) ;
41 5 Test 36 5 Test 5.1 Overview The hearing test is necessary to validate(did we realize the right system?) and verify(are we satisfied with the results?) the implemented system. The effects of varying parameters for the playback system will be analyzed. There are two parameters, the HRTF-Measurement and the headphones. The results will show how these parameters affect the perception of a sound. 5.2 Test Setup and Procedure The sound samples were presented to the listener through two different headphones in varying environments respectively. It was not possible to perform the test in the same environment because some of the subjects could not arrange to come to the university. Sound samples were generated for different azimuth and elevation, see table 5.2. Speech was used as a testing-signal because it is familiar to humans, hence it is easier to localize. Elevation Number of Measurements Azimuth Increment Date of Measurement Table 3: Positions for Generation of Sound Samples The headphones Sennheiser HD 600 and Sennheiser HD 270 were used for the reproduction of sound samples and played back using itunes. The test procedure is shown below in chronological order. A piece of paper was given to the testing subject with a circle on it. The circle is divided in many sections,see figure Briefing 2. Adaptation phase 3. Sound Playback 4. Interview The lines represent all possible directions the sound can come from. The sound samples were numbered in the sequential order for 15 resolution and 30 resolution, see figure 32. The testing subject listened to the samples and put the number around the circle. If the direction of the speech could not be specified, it was played again.
42 5 Test 37 Figure 31: Testrecord In the adaption phase a testing subject listened to several testing sound samples. The person was told to listen carefully and pay attention to changes between speech samples. Most testingpersons who have attend the test have alleged, that it was difficult to determine the direction of the speech due to the fact, that they do not really know how it would sound in a real situation. Before the test had begun, another person went around the testing subject and said something. The subject closed the eyes and pointed to the direction where the person was present. All of testing subject could determine the position accurately.
43 5 Test 38 (a) Figure 32: Numbered Positons for 15 (a) and 30 (b) Resolution Section Number Azimuth in degree 1 0,15,30,45, 60,75, , 120,135, 150, 165, , 210, 225, 240, 255, , 300, 315, 330, 345 Table 4: Sections with corresponding angles (b) 5.3 Test Results Thirteen persons have participated in the test. The age of the testing subjects ranges from 23 to 56 years. The average age is 34.8 and The test results were gathered and merged for headphones type and elevation angle respectively, see figure 36 e.g. After every test run the subject was asked to determine the elevation of sound samples. Table 5.3 shows the results.the elevation 0 was identified in most cases correctly with Sennheiser HD 600 as well as with HD 270. For some persons it seemed as if the speech came from different elevation even if it was the same. The majority of testing subjects have said that high frequency sounds appear more above and low frequency sounds below the eye level. The elevation 37 has been determined properly by seven persons with the HD 270 and HD 600. Only four subjects could determine the elevation -41 with HD 270 and three subjects with HD 600. The Front-Back Confusion effect could be observed. Most of the testing subjects have confused the front with the back. Some have said that the speech sample no.1 (0 ) and no.13 (180 )
44 5 Test 39 No. Gender Age HD 270 HD 270 HD 270 HD 600 HD 600 HD 600 elev 0 elev 370 elev -41 elev 0 elev 37 elev m 23 n y n y y y 2 m 24 y y n n n n 3 m 24 y n n y n n 4 m 25 y y n y n n 5 m 25 n n y n y y 6 m 26 y y n y y n 7 f 26 y y y n n n 8 m 26 y n n y y n 9 m 27 y n n y n n 10 m 36 n n y y n n 11 m 48 y n n y y n 12 f 50 n y y y y y 13 m 56 y y n y y n Table 5: Evaluation of the Elevation Angle, y = yes, n = no, m = male,f = female sound equally, so that both numbers were placed at 0 or 180 of the circle 36. In test runs for the horizontal plane with the Sennheiser HD 270 and HD 600, two of the testing subjects could not localize speech sample no.1 that came from the front. The testing subjects had the impression that the speech appear inside the head, see figure 36, 39. Sample no. 1 was placed in the middle of the circle to denote that it appears inside the head. This effect is normal and occurs when headphones are used to play back a sound. This happens because of missing information about the distance of an incoming sound. A further reason is that humans move the head to detect the sound source which is not possible when a sound is reproduced by headphones [18]. For instance, in the next sections only test runs for the horizontal plane will be discussed Test run with Sennheiser HD 270 and HD 600 for the Horizontal Plane Although some of the testing persons have complained about poor sound quality of the Sennheiser HD 270, the majority have localized the sample no.13 in the horizontal plane correctly, see figure 36 and also in the test run with HD 600. Sample no.1(0 ) is scattered around the left half of the circle, but in some cases it was assigned to the right position. For most testing persons sample no.15 (330 ) seems to appear behind the head and no.14(270 ) at the front,see figure 36, 39. Testing subjects asserted that a sound that contains more low frequencies appear behind the head and high frequency sound more in the front. Figure 33 shows that the transfer function of the left and right HRIR filter of 330 incident angle looks like a low pass filter. This could be an explanation why the filtered speech sample sounds deep.
45 5 Test 40 Figure 33: Transfer Function of the Left and Right HRIR Filter 330. x[hz], y[db] The frequency response of the left HRIR filter of 270 incident angle behaves as a high-pass filter, see figure 34. In this case the filtered sound seemed to appear in the front and above the subject, although the elevation corresponds to 0. Figure 34: Transfer Function of the Left and Right HRIR Filter 270. x[hz], y[db] Sample no. 2(15 ) using the HD 270 was localized quite accurately in many cases unlike when the HD 600 was used. Here, the sample is scattered around the right half of the circle and gathered at the 135. In this case one can assume that the transfer function of the HRIR filter must act as a low pass filter. On the picture 35 one can see that low frequencies are passed through the filter, this could be an explanation for the test results. Good results could be achieved with the samples no.4,5,6,7 in the test runs with the HD 270 as well as with the HD
46 5 Test According to the Cone of Confusion samples no.6 and no.8 for instance in the horizontal plane can appear from the same direction, see figure 9. In fact some of testing subjects put those numbers very close to each other or sometimes exactly at the same position. The same effect must occur with sample no 7 for 37 and no.4 for -41 elevation. Here one of the user was asked to try to determine exactly the elevation, but this was not the case. Figure 35: Transfer Function of the Left and Right HRIR Filter 15. x[hz], y[db] Generally it appears that better test results in the horizontal plane could be achieved with the Sennheiser HD 270. It should be denoted that a higher number of testing persons is required to test the system extensively. Nevertheless, the test has shown that the measurement procedure and the FIR filter approach is a right way to develop a decent 3D Audio System and can be used for further works. In this test the samples were played back in sequential order. In the next test, samples can be played back randomly just to see if other results will come up. Also the test could be repeated with the same testing subjects. The measurements done on were not tested completely this can be done in further works. Another approach is to use the data measured by MIT and IRCAM for testing and compare it with the results of this project.
47 6 Conclusion and Further Development 42 6 Conclusion and Further Development The purpose of this thesis was to design and develop a 3D Audio System. This project involves the reproduction of a virtual auditory space in headphones using head related transfer functions(hrtf). It is a fact that this thesis is based on related works, but it has been shown that it is possible to realize such a system with less equipment and some effort. This project is an initial step in using head related transfer functions to create acoustic events. Further the system can be analyzed in terms of solving the front-back confusion problem using the following work [5]. To extend existing HRTF databases new measurements are required with a better resolution of azimuth and elevation or by using interpolation to obtain a desired HRTF. In this thesis a FIR filter approach was used, but also an IIR approach filter could be considered to see if the system could be enhanced. The project provides a basis for further developments like head-tracking or the simulation of room acoustics. Overall this project has provided a method for a filter design and HRTF measurements.
48 7 References 43 7 References [1] ANSWERS.COM. Frequency-Loudness Level Relationship. content.answers.com/main/content/wp/en-commons/thumb/4/ 4b/400px-FletcherMunson_ELC.svg.png [2] BLAUERT. Head Related Coordinate System. ~raffik/zero-g/aup/figure3.jpg [3] BLAUERT, Jens: Räumliches Hören. 1. S. Hirzel Verlag Stuttgart, ISBN [4] BLAUERT, Jens: Communication Acoustics. 1. Springer Berlin Heidelberg New York, ISBN X [5] CHO, Sang J. ; OVCHARENKO, A. Front-Back Confusion Resolution in 3D Sound Localization with HRTF Databases. org/xplore/login.jsp?url=/iel5/ / / pdfisnumber= &prod=cnf&arnumber= &arst= 239&ared=243&arAuthor=Sang+Jin+Cho [6] ELIJAH BREDER, David M.: Csound - based Auditory Localization. In: The Csound book: perspectives in software synthesis, sound design, signal processing, and programming, MIT Press, 2000, S [7] ELLIOTT, Rod. Human Hearing Range. articles/fadb-f1.gif [8] EMMANUEL C. IFEACHOR, Barrie W.: Digital Signal Processing. 2. Prentice Hall, ISBN [9] EVEREST, F. E.: Master Handbook of Acoustics. 4. McGraw-Hill, ISBN [10] E.ZWICKER, M.Zollner: Elektroakustik. 1. Springer Berlin Heidelberg New York Tokyo, ISBN X [11] FLIEGE, Norbert: Systemtheorie. 1. B.G. Teubner Stuttgart, ISBN [12] FOHL. conversation [13] GARDNER, Bill ; MARTIN, Keith. HRTF Measurements of a KEMAR Dummy-Head Microphone.
49 7 References 44 [14] GÜNTER BOYE, Urbi F. H.: Handbuch der Elektroakustik. 3. Hüthig Buch Verlag Heidelberg, ISBN [15] IRCAM. HRTF Measurements. salles/listen/context.html [16] KJAER, Bruel Free-field response 0 Sound Incidence of the Free Field Microphone. Brochure [17] LOPEZ-POVEDA. Peer-reviewed papers. ~ealopezpoveda/publications.htm [18] MARKUS LINDENBERG, Nina van Ackern u. Räumliches Hören. uni-mannheim.de/fakul/psycho/irtel/lehre/seminararbeiten/ w96/hoeren1/hoeren1.html [19] MATTHIES, Jörn: Entwicklung von VST-Plugins zum automatischen Entwurf von frequenzgangkorrigierenden FIR-Filtern aus Hörtest-Daten, Hochschule für Angewandte Wissenschaften Hamburg, Bachelorarbeit, 2005 [20] ROOM, Head. Frequency Response of Headphones. how-to-interpret-headphone-data/ [21] SCHWARZ, Rohde Calibrating Measuring Microphones and Sound Sources for Acoustic Measurements with Audio Analyzer R&S UPV [22] VEIT, Ivar: Technische Akustik. 6. Vogel Buchverlag, ISBN [23] WIKIPEDIA. Äußerer Gehörgang. Äusserer_Gehörgang [24] WIKIPEDIA. Brummschleife. Brummschleife [25] WIKIPEDIA. Relation Between the Sone and Phon. org/wikipedia/de/c/c7/akustik_phon2sone3.jpg [26] WIKIPEDIA. Weighting Filter Curves. Weighting_filter [27] W.SMITH, Steven. The Scientist and Engineer s Guide to Digital Signal Processing. [28] WUPPERTAL, Uni. Physiologie des Ohres. de/ars_auditus/physiologie/inhaltphysio.htm
50 7 References 45 [29] ZÖLZER, Udo: DAFX Digital Audio Effects. 1. John Wiley & Sons, Ltd England, ISBN
51 List of Figures 46 List of Figures 1 Equal-Loudness Contours of the Human Ear [1] Weighting Filter Curves [26] The Human Ear [28] Human Hearing Range [2] Head Related Coordinate System [14] Inter-Aural Time Differences [28] Waves of Low Frequencies Waves of High Frequencies The Cone of Confusion Frequency Response for Azimuth 90 and Elevation 0. x[hz], y[db], left = blue, right = green Loudspeaker Measurement Setup Free-Field Response 0 Sound Incidence Loudspeaker Frequency Response. x[hz], y[db] Generator Config Panel Generator and Analyzer Config Sweep Config for Loudspeaker Measurement Sweep Config for HRTFs Measurement Analyzer Function and Sweep Graph Config Panel for Phase Measurement HRTF Measurement Setup Measurement in the Horizontal Plane Measurement for Elevation of x[hz], y[db], z[degree] Left HRTFs measured in the Horizontal plane Left HRTFs measured for the Positions of Elevation and Azimuth of 0 to 180.x[Hz], y[db], z[degree] HRTF pair for 0 Elevation and Azimuth. x[hz], y[db] Frequency Response of the Sennheiser HD 270.x[Hz], y[db] Frequency Response of the Sennheiser HD 600. x[hz], y[db] Frequency Response of the Philips Earbud Type Headphones.x[Hz], y[db] Structure of the System Magnitude after Mirroring
52 List of Figures Left and Right HRIR for incident angle of 90 in the horizontal plane Testrecord Numbered Positons for 15 (a) and 30 (b) Resolution Transfer Function of the Left and Right HRIR Filter 330. x[hz], y[db] Transfer Function of the Left and Right HRIR Filter 270. x[hz], y[db] Transfer Function of the Left and Right HRIR Filter 15. x[hz], y[db] Test with Sennheiser HD elevation Test with Sennheiser HD elevation Test with Sennheiser HD elevation Test with Sennheiser HD elevation Test with Sennheiser HD elevation Test with Sennheiser HD elevation
53 List of Tables 48 List of Tables 1 Measured Position in the Median and Horizontal Plane Measured Headphones Positions for Generation of Sound Samples Sections with corresponding angles Evaluation of the Elevation Angle, y = yes, n = no, m = male,f = female
54 Test with Sennheiser HD elevation 49
55 Test with Sennheiser HD elevation 50
56 Test with Sennheiser HD elevation 51
57 Test with Sennheiser HD elevation 52
58 Test with Sennheiser HD elevation 53
59 Test with Sennheiser HD elevation 54
60 A Matlab Scripts and Supporting Tool 55 A Matlab Scripts and Supporting Tool All tools, scripts an data is available on the attached cd. PrepareFiles.jar : This is the executable java jar file which converts the analyzer s data into a Matlab file format. Please type following line to execute the application: java -jar PrepareFiles.jar fullpath get_data.m : This function loads R&S Analyzer Data which was prepared as a m- File with PrepareFiles.jar application. calculate_hrir.m : This function computes left and right HRIR filter coefficients. equalize_headphone.m : Returns filter coefficients for a headphone equalization. write_coeff.m: Writes HRIR filter coefficients into a Matlab file. lininterp.m: Interpolates filter coefficients for a desired position. write_headphones_coeff.m: Writes filter coefficients for the headphone equalization into a Matlab file. plot_three_d.m: Plots an 3D graph of a measured frequency response for a desired elevation and azimuth. filter_sound.m: Filters any sound for a desired position. main.m: All parameters are defined in this file to compute the filter coefficients.
61 Versicherung über Selbstständigkeit Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach 24(5) ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel benutzt habe. Hamburg, September 6, 2008 Ort, Datum Unterschrift
Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany
Audio Engineering Society Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany This convention paper has been reproduced from the author's advance manuscript, without editing,
What Audio Engineers Should Know About Human Sound Perception. Part 2. Binaural Effects and Spatial Hearing
What Audio Engineers Should Know About Human Sound Perception Part 2. Binaural Effects and Spatial Hearing AES 112 th Convention, Munich AES 113 th Convention, Los Angeles Durand R. Begault Human Factors
Room Acoustic Reproduction by Spatial Room Response
Room Acoustic Reproduction by Spatial Room Response Rendering Hoda Nasereddin 1, Mohammad Asgari 2 and Ayoub Banoushi 3 Audio Engineer, Broadcast engineering department, IRIB university, Tehran, Iran,
Impedance 50 (75 connectors via adapters)
VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title to improve 3D audio playback Author(s) Sunder, Kaushik; Tan, Ee-Leng; Gan, Woon-Seng Citation Sunder,
Direct and Reflected: Understanding the Truth with Y-S 3
Direct and Reflected: Understanding the Truth with Y-S 3 -Speaker System Design Guide- December 2008 2008 Yamaha Corporation 1 Introduction Y-S 3 is a speaker system design software application. It is
Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db
Basic Concepts of Sound Contents: Definitions db Conversion Sound Fields db ± db BA 7666-11, 1 Abstract This lecture introduces sound and sound measurements by describing sound pressure, sound level and
Aircraft cabin noise synthesis for noise subjective analysis
Aircraft cabin noise synthesis for noise subjective analysis Bruno Arantes Caldeira da Silva Instituto Tecnológico de Aeronáutica São José dos Campos - SP [email protected] Cristiane Aparecida Martins
Lecture 4: Jan 12, 2005
EE516 Computer Speech Processing Winter 2005 Lecture 4: Jan 12, 2005 Lecturer: Prof: J. Bilmes University of Washington Dept. of Electrical Engineering Scribe: Scott Philips
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the
The Design and Implementation of Multimedia Software
Chapter 10 Auditory Content The Design and Implementation of Multimedia Software David Bernstein Jones and Bartlett Publishers www.jbpub.com David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band.
Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band. Reference: EB968 Date: January 2008 Author: Eric Burwood (National Acoustic Laboratories) Collaborator: Walter
Acoustic Terms, Definitions and General Information
Acoustic Terms, Definitions and General Information Authored by: Daniel Ziobroski Acoustic Engineer Environmental and Acoustic Engineering GE Energy Charles Powers Program Manager Environmental and Acoustic
THE SIMULATION OF MOVING SOUND SOURCES. John M. Chowning
THE SIMULATION OF MOVING SOUND SOURCES John M. Chowning The Center for Computer Research in Music and Acoustics (CCRMA) Department of Music Stanford University, Stanford, CA 94306 [email protected] (first
CLIO 8 CLIO 8 CLIO 8 CLIO 8
CLIO 8, by Audiomatica, is the new measurement software for the CLIO System. The CLIO System is the easiest and less expensive way to measure: - electrical networks - electronic equipment - loudspeaker
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
Hearing and Deafness 1. Anatomy & physiology
Hearing and Deafness 1. Anatomy & physiology Chris Darwin Web site for lectures, lecture notes and filtering lab: http://www.lifesci.susx.ac.uk/home/chris_darwin/ safari 1 Outer, middle & inner ear Capture;
Sound absorption and acoustic surface impedance
Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance
MICROPHONE SPECIFICATIONS EXPLAINED
Application Note AN-1112 MICROPHONE SPECIFICATIONS EXPLAINED INTRODUCTION A MEMS microphone IC is unique among InvenSense, Inc., products in that its input is an acoustic pressure wave. For this reason,
Noise. CIH Review PDC March 2012
Noise CIH Review PDC March 2012 Learning Objectives Understand the concept of the decibel, decibel determination, decibel addition, and weighting Know the characteristics of frequency that are relevant
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
PS 29M DUAL CHANNEL BELTPACK IN METAL CASE
PS 29M DUAL CHANNEL BELTPACK IN METAL CASE USER MANUAL October 2013 This product is designed and manufactured by: ASL Intercom BV Zonnebaan 42 3542 EG Utrecht The Netherlands Phone: +31 (0)30 2411901 Fax:
PURE TONE AUDIOMETER
PURE TONE AUDIOMETER V. Vencovský, F. Rund Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic Abstract Estimation of pure tone hearing
Sound Quality Aspects for Environmental Noise. Abstract. 1. Introduction
The 2002 International Congress and Exposition on Noise Control Engineering Dearborn, MI, USA. August 19-21, 2002 Sound Quality Aspects for Environmental Noise Dr.-Ing. Klaus Genuit HEAD acoustics GmbH
Introduction to acoustic imaging
Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3
Doppler Effect Plug-in in Music Production and Engineering
, pp.287-292 http://dx.doi.org/10.14257/ijmue.2014.9.8.26 Doppler Effect Plug-in in Music Production and Engineering Yoemun Yun Department of Applied Music, Chungwoon University San 29, Namjang-ri, Hongseong,
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
UNIVERSITY OF LONDON GOLDSMITHS COLLEGE. B. Sc. Examination Sample CREATIVE COMPUTING. IS52020A (CC227) Creative Computing 2.
UNIVERSITY OF LONDON GOLDSMITHS COLLEGE B. Sc. Examination Sample CREATIVE COMPUTING IS52020A (CC227) Creative Computing 2 Duration: 3 hours Date and time: There are six questions in this paper; you should
Manual Analysis Software AFD 1201
AFD 1200 - AcoustiTube Manual Analysis Software AFD 1201 Measurement of Transmission loss acc. to Song and Bolton 1 Table of Contents Introduction - Analysis Software AFD 1201... 3 AFD 1200 - AcoustiTube
Outer Diameter 23 φ mm Face side Dimension 20.1 φ mm. Baffle Opening. Normal 0.5 Watts Maximum 1.0 Watts Sine Wave.
1. MODEL: 23CR08FH-50ND 2 Dimension & Weight Outer Diameter 23 φ mm Face side Dimension 20.1 φ mm Baffle Opening 20.1 φ mm Height Refer to drawing Weight 4.0Grams 3 Magnet Materials Rare Earth Size φ 9.5
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
A mixed structural modeling approach to personalized binaural sound rendering
A mixed structural modeling approach to personalized binaural sound rendering Federico Avanzini Michele Geronazzo Simone Spagnol Sound and Music Computing Group Dept. of Information Engineering University
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
Sound Pressure Measurement
Objectives: Sound Pressure Measurement 1. Become familiar with hardware and techniques to measure sound pressure 2. Measure the sound level of various sizes of fan modules 3. Calculate the signal-to-noise
(51) Int Cl.: H04S 3/00 (2006.01)
(19) TEPZZ_9 7 66B_T (11) EP 1 927 266 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 14.0.14 Bulletin 14/ (21) Application number: 0679846.2 (22)
Dayton Audio is proud to introduce DATS V2, the best tool ever for accurately measuring loudspeaker driver parameters in seconds.
Dayton Audio is proud to introduce DATS V2, the best tool ever for accurately measuring loudspeaker driver parameters in seconds. DATS V2 is the latest edition of the Dayton Audio Test System. The original
THREE-DIMENSIONAL (3-D) sound is becoming increasingly
476 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 5, SEPTEMBER 1998 A Structural Model for Binaural Sound Synthesis C. Phillip Brown and Richard O. Duda, Fellow, IEEE Abstract A structural
Trigonometric functions and sound
Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude
Understanding CIC Compensation Filters
Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response
A Game of Numbers (Understanding Directivity Specifications)
A Game of Numbers (Understanding Directivity Specifications) José (Joe) Brusi, Brusi Acoustical Consulting Loudspeaker directivity is expressed in many different ways on specification sheets and marketing
A Microphone Array for Hearing Aids
A Microphone Array for Hearing Aids by Bernard Widrow 1531-636X/06/$10.00 2001IEEE 0.00 26 Abstract A directional acoustic receiving system is constructed in the form of a necklace including an array of
The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology
The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology Questions about the effects of ultrasonic energy on hearing and other human physiology arise from
Canalis. CANALIS Principles and Techniques of Speaker Placement
Canalis CANALIS Principles and Techniques of Speaker Placement After assembling a high-quality music system, the room becomes the limiting factor in sonic performance. There are many articles and theories
Effects of microphone arrangement on the accuracy of a spherical microphone array (SENZI) in acquiring high-definition 3D sound space information
November 1, 21 1:3 1 Effects of microphone arrangement on the accuracy of a spherical microphone array (SENZI) in acquiring high-definition 3D sound space information Shuichi Sakamoto 1, Jun ichi Kodama
The Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD INTRODUCTION CEA-2010 (ANSI) TEST PROCEDURE
AUDIOMATICA AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD by Daniele Ponteggia - [email protected] INTRODUCTION The Consumer Electronics Association (CEA),
Whisky. Product-Description
Whisky Product-Description Low-Midrange: SEAS Excel W16-NX001 Tweeter: Mundorf AMT 2540 Frequency response: Characteristic Sensitivity (2,83 V, 1m): Nominal Impedance: Long Term Power Handling: Dimensions
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
Sound Power Measurement
Sound Power Measurement A sound source will radiate different sound powers in different environments, especially at low frequencies when the wavelength is comparable to the size of the room 1. Fortunately
Spectrum Level and Band Level
Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic
Convention Paper Presented at the 118th Convention 2005 May 28 31 Barcelona, Spain
Audio Engineering Society Convention Paper Presented at the 118th Convention 25 May 28 31 Barcelona, Spain 6431 This convention paper has been reproduced from the author s advance manuscript, without editing,
Performing Amplifier Measurements with the Vector Network Analyzer ZVB
Product: Vector Network Analyzer R&S ZVB Performing Amplifier Measurements with the Vector Network Analyzer ZVB Application Note This document describes typical measurements that are required to be made
Welcome to the United States Patent and TradeMark Office
Welcome to the United States Patent and TradeMark Office an Agency of the United States Department of Commerce United States Patent 5,159,703 Lowery October 27, 1992 Silent subliminal presentation system
A Sound Localization Algorithm for Use in Unmanned Vehicles
A Sound Localization Algorithm for Use in Unmanned Vehicles Justin A. MacDonald & Phuong K. Tran uman Research and Engineering Directorate U. S. Army Research Laboratory Aberdeen Proving Ground MD 005
Basic Acoustics and Acoustic Filters
Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors
PRODUCT SHEET OUT1 SPECIFICATIONS
OUT SERIES Headphones OUT2 BNC Output Adapter OUT1 High Fidelity Headphones OUT1A Ultra-Wide Frequency Response Headphones OUT3 see Stimulators OUT100 Monaural Headphone 40HP Monaural Headphones OUT101
Experimental validation of loudspeaker equalization inside car cockpits
Experimental validation of loudspeaker equalization inside car cockpits G. Cibelli, A. Bellini, E. Ugolotti, A. Farina, C. Morandi ASK Industries S.p.A. Via F.lli Cervi, 79, I-421 Reggio Emilia - ITALY
The world s first Acoustic Power Equalization Technology Perfect Acoustic Power Equalization. Perfect Time/Phase Alignment.
Consumer Electronics Applications The world s first Acoustic Power Equalization Technology Perfect Acoustic Power Equalization. Perfect Time/Phase Alignment. Acoustic Power Equalization Technology For
Generic - Hearing Loop - (AFILS) U.S. System Specification
This document is a generic specification for any Hearing Loop (Audio Frequency Induction Loop System). For the remainder of the document, we will refer to using the term Hearing Loop rather than Audio
Airborne Sound Insulation
Airborne Sound Insulation with XL2-TA Sound Level Meter This application note describes the verification of the airborne sound insulation in buildings with the XL2-TA Sound Level Meter. All measurements
Outperform. Bryston is pleased to announce the HT Series Loudspeaker System
Outperform Bryston is pleased to announce the HT Series Loudspeaker System Introducing the BRYSTON Home Theater Loudspeakers Since Bryston was founded five decades ago, our electronics have been mated
SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems
SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems WILLIAM KUFFNER, M.A. Sc., P.Eng, PMP Senior Fire Protection Engineer Director Fire Protection Engineering October 30, 2013 Code Reference
Relationship between Sound Pressure and Sound Power Levels
Relationship between Sound Pressure and Sound Power Levels 4 W. T. W. CORY Chairman of the Eurovent WG 1 Fans If we wish to know the sound power transmitted through a fan and ducting system, it is preferable
Tonal Detection in Noise: An Auditory Neuroscience Insight
Image: http://physics.ust.hk/dusw/ Tonal Detection in Noise: An Auditory Neuroscience Insight Buddhika Karunarathne 1 and Richard H.Y. So 1,2 1 Dept. of IELM, Hong Kong University of Science & Technology,
TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS
TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS PACS: 43.10.Sv Shin-ichiro Iwamiya, Yoshitaka Nakajima, Kazuo Ueda, Kazuhiko Kawahara and Masayuki
Schindler 3300 / Schindler 5300 Information on noise and vibration.
Schindler 3300 / Schindler 5300. Content Introduction 1. Ride quality Jerk Car acceleration Vertical car vibration Lateral car vibration Sound in the car 2. Sound basics 3. Vibration basics 4. Structure-borne
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain
Rec. ITU-R BS.644-1 1 RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain (1986-1990) The ITU Radiocommunication Assembly,
Sound Attenuation INTRODUCTION
INTRODUCTION In the broadest sense, a sound wave is any disturbance that is propagated in an elastic medium, which may be a gas, a liquid, or a solid. Noise is defined as any unwanted sound perceived by
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note
Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction
APPLICATION NOTE AP050830
APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: [email protected] URL: http://www.prowave.com.tw The purpose of this application note
Loudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering
Loudspeaker Parameters D. G. Meyer School of Electrical & Computer Engineering Outline Review of How Loudspeakers Work Small Signal Loudspeaker Parameters Effect of Loudspeaker Cable Sample Loudspeaker
application note Directional Microphone Applications Introduction Directional Hearing Aids
APPLICATION NOTE AN-4 Directional Microphone Applications Introduction The inability to understand speech in noisy environments is a significant problem for hearing impaired individuals. An omnidirectional
INTERFERENCE OF SOUND WAVES
1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.
Estimation of Loudness by Zwicker's Method
Estimation of Loudness by Zwicker's Method Loudness is one category in the list of human perceptions of sound. There are many methods of estimating Loudness using objective measurements. No method is perfect.
COMPREHENSIVE MATLAB TOOL FOR HRTF MEASUREMENT AND VIRTUAL AUDITORY SPACE TESTING
COMPREHENSIVE MATLAB TOOL FOR HRTF MEASUREMENT AND VIRTUAL AUDITORY SPACE TESTING F. Rund, J. Bouše, T. Baráth Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University
E190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar Network Analyzer combines a 90 db wide dynamic range with the accuracy and linearity
Active noise control in practice: transformer station
Active noise control in practice: transformer station Edwin Buikema 1 ; Fokke D. van der Ploeg 2 ; Jan H. Granneman 3 1, 2, 3 Peutz bv, Netherlands ABSTRACT Based on literature and extensive measurements
Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: [email protected]
5th Congress of Alps-Adria Acoustics Association NOISE-INDUCED HEARING LOSS
5th Congress of Alps-Adria Acoustics Association 12-14 September 2012, Petrčane, Croatia NOISE-INDUCED HEARING LOSS Davor Šušković, mag. ing. el. techn. inf. [email protected] Abstract: One of
Yamaha Power Amplifier. White Paper
Yamaha Power Amplifier White Paper August 2008 Table of Contents 1. About EEEngine...2 1.1. Introduction...2 1.2. Explanation of different amplifier topologies...2 2. Yamaha technology...5 2.1. Dual mono-amplifier
Lab Exercise 1: Acoustic Waves
Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
The Sonometer The Resonant String and Timbre Change after plucking
The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes
Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page
Understanding the Fundamental Principles of Vector Network Analysis Application Note 1287-1 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements
INTERFERENCE OF SOUND WAVES
2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking
Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking The perception and correct identification of speech sounds as phonemes depends on the listener extracting various
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
MUSC 1327 Audio Engineering I Syllabus Addendum McLennan Community College, Waco, TX
MUSC 1327 Audio Engineering I Syllabus Addendum McLennan Community College, Waco, TX Instructor Brian Konzelman Office PAC 124 Phone 299-8231 WHAT IS THIS COURSE? AUDIO ENGINEERING I is the first semester
The recording angle based on localisation curves
Audio Engineering Society Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany This convention paper has been reproduced from the author's advance manuscript, without editing,
Testing Panasonic s WM-61A Mike Cartridge
Tube, Solid State, Loudspeaker Technology Article prepared for www.audioxpress.com Testing Panasonic s WM-61A Mike Cartridge By George Danavaras This microphone study measures how distortion affects performance.
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER
ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal
Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth
Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Product Note The Agilent Technologies 89400 series vector signal analyzers provide unmatched signal analysis
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
