A Regime-Switching Relative Value Arbitrage Rule
|
|
|
- Caren Lindsey
- 10 years ago
- Views:
Transcription
1 A Regime-Switching Relative Value Arbitrage Rule Michael Bock and Roland Mestel University of Graz, Institute for Banking and Finance Universitaetsstrasse 15/F2, A-8010 Graz, Austria 1 Introduction The relative value arbitrage rule, also known as pairs trading or statistical arbitrage, is a well established speculative investment strategy on financial markets, dating back to the 1980s. Today, especially hedge funds and investment banks extensively implement pairs trading as a long/short investment strategy. 1 Based on relative mispricing between a pair of stocks, pairs trading strategies create excess returns if the spread between two normally comoving stocks is away from its equilibrium path and is assumed to be mean reverting, i.e. deviations from the long term spread are only temporary effects. In this situation, pairs trading suggests to take a long position in the relative undervalued stock, while the relative overvalued stock should be shortened. The formation of the pairs ensues from a cointegration analysis of the historical prices. Consequently, pairs trading represents a form of statistical arbitrage where econometric time series models are applied to identify trading signals. However, fundamental economic reasons might cause simple pairs trading signals to be wrong. Think of a situation in which a profit warning of one of the two stocks entails the persistant widening of the spread, whereas for the other no new information is circulated. Under these circumstances, betting on the spread to revert to its historical mean would imply a loss. To overcome this problem of detecting temporary in contrast to longer lasting deviations from spread equilibrium, this paper bridges the literature on Markov regime-switching and the scientific work on statistical 1 For an overview see [7, 3]. B. Fleischmann et al.(eds.), Operations Research Proceedings 2008, DOI: / _2, Springer-Verlag Berlin Heidelberg
2 10 Michael Bock and Roland Mestel arbitrage to develop useful trading rules for pairs trading. The next section contains a brief overview of relative value strategies. Section 3 presents a discussion of Markov regime-switching models which are applied in this study to identify pairs trading signals (section 4). Section 5 presents some preliminary empirical results for pairs of stocks being derived from DJ STOXX 600. Section 6 concludes with some remarks on potential further research. 2 Foundations of Relative Value Strategies Empirical results, documented in the scientific literature on relative value strategies, indicate that the price ratio Rat t = ( Pt A /Pt B ) of two assets A and B can be assumed to follow a mean reverting process [3, 7]. This implies that short term deviations from the equilibrium ratio are balanced after a period of adjustment. If this assumption is met, the simple question in pairs trading strategies is that of discovering the instant where the spread reaches its maximum and starts to converge. The simplest way of detecting these trading points is to assume an extremum in Rat t when the spread deviates from the long term mean by a fixed percentage. In other cases confidence intervals of the ratio s mean are used for the identification of trading signals. 2 Higher sophisticated relative value arbitrage trading rules based on a Kalman filter approach are provided in [2, 1]. Pairs trading strategies can be divided into two categories in regard to the point in time when a trade position is unwinded. According to conservative trading rules the position is closed when the spread reverts to the long term mean. However, in risky approaches the assets are held until a new minimum or maximum is detected by the applied trading rule. However, one major problem in pairs trading strategy - besides the successful selection of the pairs - stems from the assumption of mean reversion of the spread. Pairs traders report that the mean of the price ratio seems to switch between different levels and traditional technical trading approaches often fail to identify profit opportunities. In order to overcome this problem of temporary vs. persistent spread deviations, we apply a Markov regime-switching model with switching mean and switching variances to detect such phases of imbalances. 2 See [3].
3 A Regime-Switching Relative Value Arbitrage Rule 11 3 Markov Regime-Switching Model Many financial and macroeconomic time series are subject to sudden structural breaks [5]. Therefore, Markov regime-switching models have become very popular since the late 1980s. In his seminal paper Hamilton [4] assumes that the regime shifts are governed by a Markov chain. As a result the current regime s t is determined by an unobservable, i.e. latent variable. Thus, the inference of the predominant regime is based only on calculated state probabilities. In the majority of cases a two-state, first-order Markov-switching process for s t is considered with the following transition probabilities [6]: prob [s t = 1 s t 1 = 1] = p = exp (p 0) 1 + exp (p 0 ) (1) prob [s t = 2 s t 1 = 2] = q = exp (q 0) 1 + exp (q 0 ), (2) where p 0 and q 0 denote unconstrained parameters. We apply the following simple regime-switching model with switching mean and switching variance for our trading rule: Rat t = µ st + ε t, (3) where E [ε t ] = 0 and σ 2 ε t = σ 2 s t. To visualize the problem of switching means figure 1 plots a time series of a scaled price ratio, where the two different regimes are marked. The shaded area indicates a regime with a higher mean (µ s1 ) while the non-shaded area points out a low-mean regime (µ s2 ). Traditional pairs trading signals around the break point BP would suggest an increase in Rat BP implying a long position in Anglo American PLC and a short position in XSTRATA PLC. As can be seen in figure 1 this trading position leads to a loss, since the price of the second stock relative to the price of the first stock increases. 4 Regime-Switching Relative Value Arbitrage Rule In this study we suggest applying Markov regime-switching models to detect profitable pairs trading rules. In a first step we estimate the Markov regime-switching model as stated in equation (3). As a byproduct of the Markov regime-switching estimation we get the smoothed probabilities P ( ) for each state. Based on these calculated probabilities we identify the currently predominant regime. We assume a twostate process for the spread and interpret the two regimes as a low and
4 12 Michael Bock and Roland Mestel Fig. 1. Scaled ratio of the stock prices of Anglo American PLC and XS- TRATA PLC from to The ratio exhibits a switching mean. The shaded area indicates the high mean regime. a high mean regime. In consequence, we try to detect the instant where the spread Rat t reaches a local extremum. As a matter of convenience, we adopt the traditional pairs trading approach that a minimum or maximum is found when the spread deviates from the mean by a certain amount. However, we extend the traditional rule by considering a low and a high mean regime, and so we create a regime dependent arbitrage rule. A trading signal z t is created in the following way: z t = { 1 if Ratt µ st + δ σ st +1 if Rat t µ st δ σ st, (4) otherwise z t = 0. We use δ as a standard deviation sensitivity parameter and set it equal to As a result, a local extremum is detected, if the current value of the spread lies outside the 90% confidence interval within the prevailing regime. The interpretation of the trading signal is quite simple: if z t = 1 (+1) we assume that the observed price ratio Rat t has reached a local maximum (minimum) implying a short (long) position in asset A and a long (short) position in asset B. Probability Threshold To evaluate the trading rule dependent on the current regime (low or high mean), we additionally implement a probability threshold ρ in our
5 A Regime-Switching Relative Value Arbitrage Rule 13 arbitrage rule. Therefore, the regime switching relative value arbitrage rule changes in the following way: { 1 if Ratt µ z t = low + δ σ low P (s t = low Rat t ) ρ (5) +1 if Rat t µ low δ σ low otherwise z t = 0, if s t is in the low mean regime. In the high mean regime a trading signal is created by: z t = { 1 if Ratt µ high + δ σ high +1 if Rat t µ high δ σ high P (s t = high Rat t ) ρ (6) otherwise z t = 0. The probabilities P ( ) of each regime indicate whether a structural break is likely to occur. If the probability suddenly drops from a high to a lower level, our regime switching relative value arbitrage rule prevents us from changing the trading positions the wrong way around, so that a minimum or a maximum is not detected too early. The probability threshold value is set arbitrarily. Empirical results suggest a setting for ρ ranging from 0.6 to 0.7. Therefore, the trading rule acts more cautiously in phases where the regimes are not selective. 5 Empirical Results The developed investment strategy is applied in a first data set to the investing universe of the DJ STOXX 600. Our investigation covers the period to We use the first 250 trading days to find appropriate pairs, where we use a specification of the ADF-test for the pairs selection. The selected pairs 3 are kept constant over a period of 50, 75, 100 and 125 days. However, if a pair sustains a certain accumulated loss (10%, 15%), it will be stopped out. To estimate the parameters of the Markov regime-switching model we use a rolling estimation window of 250 observations. For reasons of space, only one representative example will be quoted. Table 1 demonstrates the results of the regime-switching relative value arbitrage rule for the second term of In this period the best result (average profit of 10.6% p.a.) is achieved by keeping the pairs constant over 125 days and by a stop loss parameter of 15%. The setting of 50 days with a stop loss of 10% generates an average loss of -1.5% p.a. It should be noted that the trading and lending costs (for short selling) have not been considered in this stage of the study. 3 A number of 25 was detected. One asset is only allowed to occur in 10% of all pairs because of risk management thoughts.
6 14 Michael Bock and Roland Mestel Table 1. Annualized descriptive statistics for the over all selected pairs averaged results of the second term of # denotes the number of pairs not leading to a stop loss. panel 50 days 75 days 100 days 125 days stop loss 10% 15% 10% 15% 10% 15% 10% 15% µ σ min Q Q Q max # Conclusion In this study we implemented a Markov regime-switching approach into a statistical arbitrage trading rule. As a result a regime-switching relative value arbitrage rule was presented in detail. Additionally, the trading rule was applied for the investing universe of the DJ STOXX 600. The empirical results, which still remain to be validated, suggest that the regime-switching rule for pairs trading generates positive returns and so it offers an interesting analytical alternative to traditional pairs trading rules. References 1. Binh Do, Robert Faff, and Kais Hamza. A new approach to modeling and estimation for pairs trading. Monash University, Working Paper, Robert J. Elliott, John van der Hoek, and William P. Malcolm. Pairs trading. Quantitative Finance, 5: , Evan G. Gatev, William N. Goetzmann, and K. Geert Rouwenhorst. Pairs trading: performance of a relative value arbitrage rule. Review of Financial Studies, 19(3): , James D. Hamilton. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57: , James D. Hamilton. Time Series Analysis. Princeton University Press, Princeton, Chang-Jin Kim and Charles R. Nelson. State-space models with regime switching. The MIT Press, Cambridge, Ganapathy Vidyamurthy. Pairs Trading: quantitative methods and analysis. Wiley, Hoboken, 2004.
7
Some Quantitative Issues in Pairs Trading
Research Journal of Applied Sciences, Engineering and Technology 5(6): 2264-2269, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: October 30, 2012 Accepted: December
High Frequency Equity Pairs Trading: Transaction Costs, Speed of Execution and Patterns in Returns
High Frequency Equity Pairs Trading: Transaction Costs, Speed of Execution and Patterns in Returns David Bowen a Centre for Investment Research, UCC Mark C. Hutchinson b Department of Accounting, Finance
EVALUATION OF THE PAIRS TRADING STRATEGY IN THE CANADIAN MARKET
EVALUATION OF THE PAIRS TRADING STRATEGY IN THE CANADIAN MARKET By Doris Siy-Yap PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN BUSINESS ADMINISTRATION Approval
A Study of Pairs Trading in the Hong Kong Stock Market: 0005.HK & 0011.HK
A Study of Pairs Trading in the Hong Kong Stock Market: 0005.HK & 00.HK BY Zhao Li 0905053 Finance Concentration An Honours Degree Project Submitted to the School of Business in Partial Fulfilment of the
STOCK MARKET VOLATILITY AND REGIME SHIFTS IN RETURNS
STOCK MARKET VOLATILITY AND REGIME SHIFTS IN RETURNS Chia-Shang James Chu Department of Economics, MC 0253 University of Southern California Los Angles, CA 90089 Gary J. Santoni and Tung Liu Department
Volatility, Information and Stock Market Crashes. Nikolaos ANTONAKAKIS, Johann SCHARLER. Working Paper No. 0918. November 2009
DEPARTMENT OF ECONOMICS JOHANNES KEPLER UNIVERSITY OF LINZ Volatility, Information and Stock Market Crashes by Nikolaos ANTONAKAKIS, Johann SCHARLER Working Paper No. 0918 November 2009 Johannes Kepler
Performance of pairs trading on the S&P 500 index
Performance of pairs trading on the S&P 500 index By: Emiel Verhaert, studentnr: 348122 Supervisor: Dick van Dijk Abstract Until now, nearly all papers focused on pairs trading have just implemented the
A profit model for spread trading with an application to energy futures
A profit model for spread trading with an application to energy futures by Takashi Kanamura, Svetlozar T. Rachev, Frank J. Fabozzi No. 27 MAY 2011 WORKING PAPER SERIES IN ECONOMICS KIT University of the
Algorithmic Trading Session 1 Introduction. Oliver Steinki, CFA, FRM
Algorithmic Trading Session 1 Introduction Oliver Steinki, CFA, FRM Outline An Introduction to Algorithmic Trading Definition, Research Areas, Relevance and Applications General Trading Overview Goals
Daytrading Stock Pairs
TRADING TECHNIQUES Using Volatility And Correlation Daytrading Stock Pairs Tired of trading Level II quotes and one-minute charts? Try a market-neutral strategy. by Mark Conway and Aaron Behle I t can
The International College of Economics and Finance
The International College of Economics and Finance Lecturer: Sergey Gelman Class Teacher: Alexander Kostrov Course Discription Syllabus Financial Econometrics (Econometrics II) Financial Econometrics is
Lecture 23: Pairs Trading Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 23: Pairs Trading Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Pairs Trading This strategy was pioneered
Working Papers. Cointegration Based Trading Strategy For Soft Commodities Market. Piotr Arendarski Łukasz Postek. No. 2/2012 (68)
Working Papers No. 2/2012 (68) Piotr Arendarski Łukasz Postek Cointegration Based Trading Strategy For Soft Commodities Market Warsaw 2012 Cointegration Based Trading Strategy For Soft Commodities Market
Pair Trading with Options
Pair Trading with Options Jeff Donaldson, Ph.D., CFA University of Tampa Donald Flagg, Ph.D. University of Tampa Ashley Northrup University of Tampa Student Type of Research: Pedagogy Disciplines of Interest:
11. Time series and dynamic linear models
11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd
Mining Pairs-Trading Patterns: A Framework
, pp.19-28 http://dx.doi.org/10.14257/ijdta.2013.6.6.02 Mining Pairs-Trading Patterns: A Framework Ghazi Al-Naymat College of Computer Science and Information Technology University of Dammam, KSA [email protected]
A Regime-Switching Model for Electricity Spot Prices. Gero Schindlmayr EnBW Trading GmbH [email protected]
A Regime-Switching Model for Electricity Spot Prices Gero Schindlmayr EnBW Trading GmbH [email protected] May 31, 25 A Regime-Switching Model for Electricity Spot Prices Abstract Electricity markets
René Garcia Professor of finance
Liquidity Risk: What is it? How to Measure it? René Garcia Professor of finance EDHEC Business School, CIRANO Cirano, Montreal, January 7, 2009 The financial and economic environment We are living through
Total Credits: 30 credits are required for master s program graduates and 51 credits for undergraduate program.
Middle East Technical University Graduate School of Social Sciences Doctor of Philosophy in Business Administration In the Field of Accounting-Finance Aims: The aim of Doctor of Philosphy in Business Administration
Topics in Time Series Analysis
Topics in Time Series Analysis Massimiliano Marcellino EUI and Bocconi University This course reviews some recent developments in the analysis of time series data in economics, with a special emphasis
Pairs Trading: Performance of a Relative-Value Arbitrage Rule
Pairs Trading: Performance of a Relative-Value Arbitrage Rule Evan Gatev Boston College William N. Goetzmann Yale University K. Geert Rouwenhorst Yale University We test a Wall Street investment strategy,
A Simple Model for Intra-day Trading
A Simple Model for Intra-day Trading Anton Golub 1 1 Marie Curie Fellow, Manchester Business School April 15, 2011 Abstract Since currency market is an OTC market, there is no information about orders,
CHAPTER 11: ARBITRAGE PRICING THEORY
CHAPTER 11: ARBITRAGE PRICING THEORY 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times
Algorithmic Trading Session 6 Trade Signal Generation IV Momentum Strategies. Oliver Steinki, CFA, FRM
Algorithmic Trading Session 6 Trade Signal Generation IV Momentum Strategies Oliver Steinki, CFA, FRM Outline Introduction What is Momentum? Tests to Discover Momentum Interday Momentum Strategies Intraday
Overlapping ETF: Pair trading between two gold stocks
MPRA Munich Personal RePEc Archive Overlapping ETF: Pair trading between two gold stocks Peter N Bell and Brian Lui and Alex Brekke University of Victoria 1. April 2012 Online at http://mpra.ub.uni-muenchen.de/39534/
PAIRS TRADING TO THE COMMODITIES FUTURES MARKET USING COINTEGRATION METHOD. Cüneyt Ungever, (Phd Candidate)
International Journal of Commerce and Finance International Journal of Commerce and Finance, Vol. 1, Issue 1, 2015, 25-38 Abstract: PAIRS TRADING TO THE COMMODITIES FUTURES MARKET USING COINTEGRATION METHOD
High Frequency and Dynamic Pairs Trading Based on Statistical Arbitrage Using a Two-Stage Correlation and Cointegration Approach
International Journal of Economics and Finance; Vol. 6, No. 3; 2014 ISSN 1916-971X E-ISSN 1916-9728 Published by Canadian Center of Science and Education High Frequency and Dynamic Pairs Trading Based
PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU
PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard
Identifying Market Price Levels using Differential Evolution
Identifying Market Price Levels using Differential Evolution Michael Mayo University of Waikato, Hamilton, New Zealand [email protected] WWW home page: http://www.cs.waikato.ac.nz/~mmayo/ Abstract. Evolutionary
Understanding the Technical Market Indicators
Understanding the Technical Market Indicators Revised: October 2009 Article Written By: Md Saeed Ul Hoque Golden Gate University San Francisco, CA Sharif Gias Assistant Professor of Finance University
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
DEPARTMENT OF BANKING AND FINANCE
202 COLLEGE OF BUSINESS DEPARTMENT OF BANKING AND FINANCE Degrees Offered: B.B., E.M.B.A., M.B., Ph.D. Chair: Chiu, Chien-liang ( 邱 建 良 ) The Department The Department of Banking and Finance was established
The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
Asian Economic and Financial Review PAIRS TRADING STRATEGY IN DHAKA STOCK EXCHANGE: IMPLEMENTATION AND PROFITABILITY ANALYSIS. Sharjil Muktafi Haque
Asian Economic and Financial Review journal homepage: http://www.aessweb.com/journals/5002 PAIRS TRADING STRATEGY IN DHAKA STOCK EXCHANGE: IMPLEMENTATION AND PROFITABILITY ANALYSIS Sharjil Muktafi Haque
Understanding the Impact of Weights Constraints in Portfolio Theory
Understanding the Impact of Weights Constraints in Portfolio Theory Thierry Roncalli Research & Development Lyxor Asset Management, Paris [email protected] January 2010 Abstract In this article,
Futures Price d,f $ 0.65 = (1.05) (1.04)
24 e. Currency Futures In a currency futures contract, you enter into a contract to buy a foreign currency at a price fixed today. To see how spot and futures currency prices are related, note that holding
by Maria Heiden, Berenberg Bank
Dynamic hedging of equity price risk with an equity protect overlay: reduce losses and exploit opportunities by Maria Heiden, Berenberg Bank As part of the distortions on the international stock markets
Implementation Shortfall One Objective, Many Algorithms
Implementation Shortfall One Objective, Many Algorithms VWAP (Volume Weighted Average Price) has ruled the algorithmic trading world for a long time, but there has been a significant move over the past
Portfolio Performance Measures
Portfolio Performance Measures Objective: Evaluation of active portfolio management. A performance measure is useful, for example, in ranking the performance of mutual funds. Active portfolio managers
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869. Words: 3441
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869 Words: 3441 1 1. Introduction In this paper I present Black, Scholes (1973) and Merton (1973) (BSM) general
Using Options Trading Data to Algorithmically Detect Insider Trading
MS&E 444 Final Project Report Using Options Trading Data to Algorithmically Detect Insider Trading Instructor: Prof. Kay Giesecke TA: Benjamin Armbruster Group Members: 1 Youdan Li Elaine Ou Florin Ratiu
How To Value Options In A Regime Switching Model
NICOLAS P.B. BOLLEN VALUING OPTIONS IN REGIME-SWITCHING MODELS ABSTRACT This paper presents a lattice-based method for valuing both European and American-style options in regime-switching models. In a
The Merits of Absolute Return Quantitative Investment Strategies
The Merits of Absolute Return Quantitative Investment Strategies Cambridge University Finance Seminar, Lent Term, 2005 Dimitris Melas, Global Head of Quantitative Research HSBC Asset Management (Europe)
Pairs Trading STRATEGIES
Pairs Trading Pairs trading refers to opposite positions in two different stocks or indices, that is, a long (bullish) position in one stock and another short (bearish) position in another stock. The objective
Money and Public Finance
Money and Public Finance By Mr. Letlet August 1 In this anxious market environment, people lose their rationality with some even spreading false information to create trading opportunities. The tales about
UBS Global Asset Management has
IIJ-130-STAUB.qxp 4/17/08 4:45 PM Page 1 RENATO STAUB is a senior assest allocation and risk analyst at UBS Global Asset Management in Zurich. [email protected] Deploying Alpha: A Strategy to Capture
The Single Name Corporate CDS Market. Alan White
The Single Name Corporate CDS Market Alan White CDS Structure Single Name DJ Index Products CDS Notional x [ ] bp p.a. Buyer Credit Risk of ABC Seller 125 Equally Weighted Names Buyer Delivery 10MM Principal
Volatility: A Brief Overview
The Benefits of Systematically Selling Volatility July 2014 By Jeremy Berman Justin Frankel Co-Portfolio Managers of the RiverPark Structural Alpha Fund Abstract: A strategy of systematically selling volatility
Market Making and Mean Reversion
Market Making and Mean Reversion Tanmoy Chakraborty University of Pennsylvania [email protected] Michael Kearns University of Pennsylvania [email protected] ABSTRACT Market making refers broadly
CHANG-JIN KIM January, 2014
CHANG-JIN KIM January, 2014 Address: Department of Economics, University of Washington, Seattle, WA 98195 [email protected] 206-543-5795 (Phone) 206-685-7477 (Fax) Degrees: 1983 Korea University,
Design of an FX trading system using Adaptive Reinforcement Learning
University Finance Seminar 17 March 2006 Design of an FX trading system using Adaptive Reinforcement Learning M A H Dempster Centre for Financial Research Judge Institute of Management University of &
END OF CHAPTER EXERCISES - ANSWERS. Chapter 14 : Stock Valuation and the EMH
1 EN OF CHAPTER EXERCISES - ANSWERS Chapter 14 : Stock Valuation and the EMH Q1 oes the dividend discount model ignore the mass of investors who have bought their shares with the intention of selling them
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
How to use Ez Trade Builder
How to use Ez Trade Builder If you are an experienced options trader or just learning how to trade options, the right tools are critical to becoming profitable and minimizing your risk. This is a very
Key words: economic integration, time-varying regressions, East Asia, China, US, Japan, stock prices.
Econometric Analysis of Stock Price Co-movement in the Economic Integration of East Asia Gregory C Chow a Shicheng Huang b Linlin Niu b a Department of Economics, Princeton University, USA b Wang Yanan
THE POWER OF FOREX OPTIONS
THE POWER OF FOREX OPTIONS TOPICS COVERED Option basics Call options Put Options Why trade options? Covered call Covered put Hedging your position using options How to repair a trading position THE POWER
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008. Options
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes describe the payoffs to European and American put and call options the so-called plain vanilla options. We consider the payoffs to these
Xetra. The market. Xetra: Europe s largest trading platform for ETFs. ETF. One transaction is all you need.
Xetra. The market. Xetra: Europe s largest trading platform for ETFs ETF. One transaction is all you need. Deutsche Börse Group is the leading global service provider to the securities industry. Its cutting-edge
The Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small
SAIF-2011 Report. Rami Reddy, SOA, UW_P
1) Title: Market Efficiency Test of Lean Hog Futures prices using Inter-Day Technical Trading Rules 2) Abstract: We investigated the effectiveness of most popular technical trading rules on the closing
PHD PROGRAM IN FINANCE COURSE PROGRAMME AND COURSE CONTENTS
PHD PROGRAM IN FINANCE COURSE PROGRAMME AND COURSE CONTENTS I. Semester II. Semester FINC 601 Corporate Finance 8 FINC 602 Asset Pricing 8 FINC 603 Quantitative Methods in Finance 8 FINC 670 Seminar 4
Modeling Electricity Prices with Regime Switching Models
Modeling Electricity Prices with Regime Switching Models Michael Bierbrauer 1, Stefan Trück 1, and Rafa l Weron 2 1 Chair of Statistics, Econometrics and Mathematical Finance, University of Karlsruhe,
Maximum likelihood estimation of mean reverting processes
Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. [email protected] Abstract Mean reverting processes are frequently used models in real options. For
EURODOLLAR FUTURES PRICING. Robert T. Daigler. Florida International University. and. Visiting Scholar. Graduate School of Business
EURODOLLAR FUTURES PRICING Robert T. Daigler Florida International University and Visiting Scholar Graduate School of Business Stanford University 1990-91 Jumiaty Nurawan Jakarta, Indonesia The Financial
BINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing
Chap 3 CAPM, Arbitrage, and Linear Factor Models
Chap 3 CAPM, Arbitrage, and Linear Factor Models 1 Asset Pricing Model a logical extension of portfolio selection theory is to consider the equilibrium asset pricing consequences of investors individually
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its
Computing Near Optimal Strategies for Stochastic Investment Planning Problems
Computing Near Optimal Strategies for Stochastic Investment Planning Problems Milos Hauskrecfat 1, Gopal Pandurangan 1,2 and Eli Upfal 1,2 Computer Science Department, Box 1910 Brown University Providence,
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
Fuzzy logic decision support for long-term investing in the financial market
Fuzzy logic decision support for long-term investing in the financial market Abstract This paper discusses the use of fuzzy logic and modeling as a decision making support for long-term investment decisions
Statistical Analysis of ETF Flows, Prices, and Premiums
Statistical Analysis of ETF Flows, Prices, and Premiums Aleksander Sobczyk ishares Global Investments & Research BlackRock Matlab Computational Finance Conference New York April 9 th, 214 is-123 FOR INSTITUTIONAL
DEPARTMENT OF ECONOMICS CREDITOR PROTECTION AND BANKING SYSTEM DEVELOPMENT IN INDIA
DEPARTMENT OF ECONOMICS CREDITOR PROTECTION AND BANKING SYSTEM DEVELOPMENT IN INDIA Simon Deakin, University of Cambridge, UK Panicos Demetriades, University of Leicester, UK Gregory James, University
ALEXANDER DAVID. 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4 Phone: (403) 220-6987, Fax: (403) 210-3327 E. Mail: adavid@ucalgary.
ADDRESS Haskayne School of Business University of Calgary 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4 Phone: (403) 220-6987, Fax: (403) 210-3327 E. Mail: [email protected] DEGREES PhD Economics,
Excess Volatility and Closed-End Fund Discounts
Excess Volatility and Closed-End Fund Discounts Michael Bleaney School of Economics University of Nottingham Nottingham NG7 RD, U.K. Tel. (+44) 115 951 5464 Fax (+44) 115 951 4159 e-mail: [email protected]
Black-Scholes-Merton approach merits and shortcomings
Black-Scholes-Merton approach merits and shortcomings Emilia Matei 1005056 EC372 Term Paper. Topic 3 1. Introduction The Black-Scholes and Merton method of modelling derivatives prices was first introduced
Session IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics
Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock
Haksun Li [email protected] www.numericalmethod.com MY EXPERIENCE WITH ALGORITHMIC TRADING
Haksun Li [email protected] www.numericalmethod.com MY EXPERIENCE WITH ALGORITHMIC TRADING SPEAKER PROFILE Haksun Li, Numerical Method Inc. Quantitative Trader Quantitative Analyst PhD, Computer
Fixed-Effect Versus Random-Effects Models
CHAPTER 13 Fixed-Effect Versus Random-Effects Models Introduction Definition of a summary effect Estimating the summary effect Extreme effect size in a large study or a small study Confidence interval
Fixed odds bookmaking with stochastic betting demands
Fixed odds bookmaking with stochastic betting demands Stewart Hodges Hao Lin January 4, 2009 Abstract This paper provides a model of bookmaking in the market for bets in a British horse race. The bookmaker
