Visualization. Lecture Eleven
|
|
|
- Veronica Henderson
- 10 years ago
- Views:
Transcription
1 Visualization Lecture Eleven
2 Forms of Visualization Visualization as a means of data exploration Visualization for Analysis Visual Representations & Graphic Display
3 Why Visualization? The basic belief that seeing is a good way of understanding and generating knowledge. Humans have a very well developed sense of sight. More than 50% of a human brain s s neurons are used in vision. Humans see in 3-D 3 D and full color.
4 Michael Zeitlin (1992) of Texaco: it was impossible to look at all the (geological) data at once before the advent of high speed parallel processing, 3D graphics and visualization. Today we can grasp enormous amounts of information In other words we see and use more of our data and process it with visual pattern recognition as the basis of our o interpretation. Quoted in M. Wood The Traditional Map. in Visualization in Geographic Information Systems, Edited by Hilary Hearnshaw & David Unwin. John Wiley & Sons.
5 Thru visualization we turn raw data into information Raw Data Information = Insight (ideally)
6 Human Cognition & Visualization Cognition refers to processes in human beings like perception, attention, learning, memory, thought, concept formation, reading, and problem solving. You can t t develop useful geographic visual representations without an understanding how we (humans) perceive space. Understanding how we see and organize the world around us allows us to create visuals that play to our cognitive strengths and allows us to learn things more intuitively.
7 GeoVisualization Geovisualization is both a process for leveraging these data resources (spatial data) to meet scientific and societal needs and, together with the broader discipline of Geographic Information Science (GIScience), a field of research and practice that develops visual methods and tools to support a wide array of geospatial data applications. Alan MacEachren et al Draft Paper Submitted to Computer Graphics G & Applications
8 Dimensions of GeoVizualization Users Expert Ideation Knowledge Construction Low Intent Interactivity Public Communication Info Sharing High
9 DiBiase s s Model Range of Map Uses in Geographical Inquiry Adapted from MacEachren et al Advances in Visualizing Spatial Data. in Visualization in Geographic Information Systems, Edited by Hilary Hearnshaw & David Unwin. John Wiley & Sons.
10 Exploratory Spatial Data Analysis - Informal Inference - Exploratory Analysis does not require testing of predefined hypotheses instead it can be used to identify patterns or hidden structure in datasets, which can suggest new research directions/questions.
11 Visual Methods ESDA Methods Cartographic representation (maps). Scatterplots and Histograms (charts or graphs). Less Visual Methods Summary Statistics (spatial and aspatial) Data mining Cluster Analysis*; Neural Networks* * Data mining results can be mapped if data is spatial. Both of these have in common that they allow you to quickly see structure or patterns in a dataset. Ratio of car ownership to income histogram of a remotely sensed image
12 ESDA and Visualization For any spatial data set, what we want to known is are they any important identifiable geographical patterns. Typical questions one might ask about the spatial distribution of spatial data: Is it clustered? Is it dispersed? Is it random? Is there evidence of spatial autocorrelation? Are there any spatial outliers? Are there any spatial trends? For more info see Chapter 8 in: Fotheringham et al Quantitative Geography. Sage Publications: London
13 Limitations of ESDA and Visualization Informal inference (ESDA and visualization) is less rigorous than formal inference. Results (or insight) generated using this approach are often intuitive and subjective the the researcher often generates conclusions by integrating prior/local knowledge. Visual interpretation can be affected by scale (depends on data think think about areal data and MAUP) This means that the same data can be used to generate different results by different researchers.
14 GISc and Visualization GIS offers a means through which large amounts of data can be stored, manipulated, analyzed, and displayed efficiently. Consider the example of choropleth mapping using GIS software versus doing it manually. Now if data is available in the t right format one can make many of these maps in a short period of time. In the past you could think up ideas to map, but it took long hours of work to realize them making making them very expensive to produce. This meant exploratory forms of analysis using maps weren t t always feasible.
15 2000 US Presidential Election Outcome Decided in Florida Would a Recount Have Changed the Outcome?
16 Visualization with Conventional (2-D) Maps Point Data Dot Maps Proportional Symbol Maps Areal Data Choropleth Maps Other Cartograms Isarithmic Maps
17 Visualizing Election Results The US Presidential Election 2004 (Bush vs. Kerry) The next several slides are design to illustrate how the various mapping approaches can effect how you visualize the election results and what information you perceive. This is especially true if you have no prior knowledge of the area being mapped context is very important in visualization.
18 The Worst Representation The Common Morning After Map Low Resolution Source: CBS & ESRI
19 A Better Representation Higher Resolution Data shows more Localized Patterns
20 An Even Better Representation No Longer Simply Red vs. Blue
21 An Alternative Mapping The Cartogram This map retains the Red vs. Blue theme but adjusts for Relative Electoral Votes Source: New York Times
22 This Map is Kind of Silly But it uses Proportional Symbols
23 A map can be used as a spatial metaphor. In this case it does not map actual geographic locations but instead relationships in attribute space. This example is called The Self- Organizing Map (SOM), which is in essence a representation created by a neural net that re- arranges a state's location in a hexagonal grid according to its socio-demographic similarity with other states. States that resemble each other socio-demographically are placed closer to one another in the SOM than less similar states. Source: Sara Fabrikant - University of California (Santa Barbara)
24 This shows the previous slide s data mapped out geographically after being grouped using k-means k clustering This allows the viewer to see the data further classified into 3 socio-demographic groups and to see how they are oriented in geographic space. Source: Sara Fabrikant - University of California (Santa Barbara)
25 Beyond the Conventional Visualization (or GIS) is about more than conventional (2-D) maps although they are still the most common form of output. Other types: 3-D D Mapping (image drapes) Interactive / Dynamic Maps 3-D D Rendering (e.g. Architectural Rending) Geological Subsurface models Virtual Reality / Augmented Reality
26 Image Draping (3D) Image draping is the most "traditional" geospatial visualization area. There are three key steps to create visualizations in image draping packages: Users first open a file that contains georeferenced elevation data. Users then can select a drape file, such as a satellite or aerial photograph or thematic map, to drape over the elevation data (although this isn't required). The mouse, joystick and/or dialog box is used to locate the "camera."
27
28 Interactive / Dynamic Maps Website:
29 Architectural Rendering This is a well-known category of visualization. Usually used to create buildings and images rather than to customize public space or geographical properties. After a structure s skeleton is created, the next task is associating different materials (e.g., brick, paneling, etc.) with each surface. Finally, camera parameters are defined and a fly-through is created.
30 Architectural Rendering Continued Virtual buildings can be placed into a 2-D photograph with a single viewpoint, but it s also possible to populate an entire 3-D city with virtual buildings and fly through the images. Creating each building, however, can be time consuming. An interesting variation of this technique is a recent approach called site or neighborhood visualization, in which existing photographs are used to quickly create realistic 3-D fly-able visualizations.
31 Examples of Architectural Rendering Source: Architectural Art
32 Source: CNN.com
33 Subsurface Modeling Involves the input of a variety of geological or other subsurface datasets (e.g., well logs) and the creation of plumes or other representations of subsurface phenomena. These software packages use complex interpolation and/or link to various subsurface modeling packages that simulate water or chemical flows.
34 Subsurface Modeling Continued Subsurface modeling is a special case of visualization that takes sparse data values from sources such as geological profiles or well logs and interpolates a 3-D subsurface solid that can be sliced, diced and viewed from multiple angles. A key part of such systems is the interpolation of a volume from a set of individual data points. Typically, methodologies such as 3-D kriging are used. After the volumes are interpolated, tools are provided to slice the volumes or identify specific concentration levels.
35 Subsurface Modeling Continued. ESRI s ArcGIS 3-D Analyst also has some subsurface visualization capabilities. A surface and subsurface layer can be displayed together, and features such as water wells can be extruded from one surface to another. Volumetric model of a plume in groundwater. Spheres indicate the sample locations and concentration.
36 Augmented Reality vs. Virtual Reality Redrawn diagram from These systems can be seen to exist on a continuum that with augmented reality near one end emphasizing the real world augmented with computer generated data, and virtual reality on the opposite end being all computer generated. Mixed Reality is the middle of this continuum and includes varying amounts both real and virtual data depending on continuum location.
37 Augmented Reality An augmented reality system creates a composite view in which the computer populates a scene with additional information (computer generated data). Typically these systems also are interactive in real time. Virtual objects must be registered accurately within the real world dimensions. Image & Video Clips by Jim Vallino - Rochester Institute of Technology Video - Picture -
38 War goes Virtual and Augmented Check of the US Navy s s Virtual Reality Lab s s Website: Our Goal: To be recognized as the Department of Defense's leading research and development laboratory for virtual and augmented reality. Our Mission: We conduct research and development in emerging virtual and augmented reality technologies to advance Naval warfighting capabilities.
39 The Virtual Reality Responsive Workbench The Responsive Workbench is a virtual reality display which operates by displaying computer generated, stereoscopic images onto the workbench surface, which is viewed by a group of users. Built by US Navy VR Lab in It was the first of its kind and is a partial virtual reality environment. Using stereoscopic shuttered glasses, the users observe a 3D image rising above the workbench surface. The users can interact with the workbench using a variety of methods including gesture recognition, voice recognition, and 3D graphical user interfaces (GUIs).
40 The Dragon Battlefield Visualization System The aim of this system is to display a three-dimensional representation of a battlefield. The representation would include a terrain map, entities representing friendly, enemy, unknown, and neutral units, and symbology representing other features such as obstructions or key points in the plan of operations. Dragon receives electronic intelligence feeds which relate each entity's current status, including such information as position, current speed and heading, current damage condition, and so forth. As these reports are received, Dragon updates the corresponding models on the map. Military planners and decision makers need to be able to integrate a wide variety of information (quickly) into a coherent tactical picture but current visualization techniques (they list acetate overlays and grease pencils) do not meet this need.
41 Visualization for Analysis Source: Michael Peterman Geog 355 Final Project Fall 2003
42 Source: Michael Peterman Geog 355 Final Project Fall 2003
43 John Snow s s Cholera Map The London Epidemic of 1854
44 Graphical Excellence Excellence in statistical graphics consists of complex ideas communicated with clarity, precision, and efficiency Graphics reveal data Edward Tufte The Visual Display of Quantitative Information.. Graphics Press: Connecticut
45 Escaping Flatland We envision information in order to reason about, communicate, document, and preserve knowledge activities nearly always carried out on two-dimensional paper and computer screen. Escaping this flatland and enriching the density of data displays are the essential tasks of information design. Edward Tufte Envisioning Information.. Graphics Press: Connecticut
46 This map is an example of a Data-Rich display
47
48 Cognitive Research in GIScience Research Directions / Questions NCGIA's Project Varenius is composed of three research panels. One of them was "Cognitive Models of Geographic Space". It consisted of three specialist topics: Scale and Detail in the Cognition of Geographic Information Cognition of Dynamic Phenomena and Their Representation Multiple Modes and Multiple Frames of Reference for Spatial Knowledge These specialist meetings took place during 1998 and Source: University Consortium of Geographic Information Science (UCGIS) Website: Research Priorities White Paper 1998.
49 A sample of the types of issues that researcher at the intersection ion between geographic information and cognition are asking: How do humans learn geographic information, and how does this learning vary as a function of the medium through which it occurs (direct experience, maps, descriptions, virtual systems, etc.)? How do people use and understand language about space, and about objects and events in space? What are the most natural and effective ways of designing interfaces for geographic information systems? How do people develop concepts and reason about geographical space? How can complex geographical information be depicted to promote comprehension and effective decision-making, whether through maps, models, graphs, or animations? Source: University Consortium of Geographic Information Science (UCGIS) Website: Research Priorities White Paper 1998.
50 Applying Cognitive Research in GIS An applied example of how GIS uses set theory and set relations to describe geographical phenomena: 9-intersection 9 model. Comes from a paper in IJGIS: Shariff,, A.R.B.M., Egenhofer,, M.J. and Mark, D Natural-language language spatial relations between linear and areal obejcts: : the topology and metric of English-language language terms. International Journal of Geographical Information Science 12(3):
51 Research Rationale Need Need to bridge the gap between computational technologies and cognitive models of spatial relations. Topology Topology is less technically important in computational work but is being recognized as more important in cogntive realm where the metric less important. Right Right now metric (geometric) is emphasized over topology.
52 Integrating cognition at the algorithmic level Authors Authors wanted to create GIS with more intuitive interfaces allowing users to do queries by (i) sketching possible relationship and (ii) describing their questions in natural language. But But they needed to know how humans perceived relationship between spatial entities.
53 Method Asked Asked 34 human subjects to make sketches of 59 English-language language terms describing SR. Their Their model use derived simple sentences to describe spatial scenarios and to process spatial inquiries based on these formulations. Their Their motto: topology matters, metric refines.
54 9-intersection model 9-intersection model described by Egenhofer and Herring, 1991 describes all possible topological relationships between two point sets A and B. The set of possible relations includes set intersections of A s s interior, its boundary and exterior with B s s interior, boundary and exterior. The set of possible topological relations is called the 9-intersection model.
55
56 Range of the model 512 different topological relations can be realized from this model, given that all intersections will either be empty (O) or not empty (1). NOTE: : some of the 512 cannot be realized because of the unique dimensions of the objects. In the case of a single, one dimensional line and a simple region (2-D, no holes, no weird concavity) in R 2, there will be 19 different scenarios.
57
58 19 line region relations The 19 relations are referred to by their line- region (LR) number: the conversion of the first two rows in the intersection matrix from a binary number to a decimal number. The bottom row is ignored, in this case, because it always produces three 1s for line-region relations in R 2. The 9-intesection 9 model is effective at separating out large-scale topological differences in scenarios while metric space is useful for refining those descriptions.
Geovisualization. Geovisualization, cartographic transformation, cartograms, dasymetric maps, scientific visualization (ViSC), PPGIS
13 Geovisualization OVERVIEW Using techniques of geovisualization, GIS provides a far richer and more flexible medium for portraying attribute distributions than the paper mapping which is covered in Chapter
USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS
USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS Koua, E.L. International Institute for Geo-Information Science and Earth Observation (ITC).
The UCC-21 cognitive skills that are listed above will be met via the following objectives.
Master Syllabus Department of Geography GEOG 265: Introduction to Geographic Information Systems Course Description Fundamentals of geographic information systems (GIS). How to visualize geographic information
Applications of Dynamic Representation Technologies in Multimedia Electronic Map
Applications of Dynamic Representation Technologies in Multimedia Electronic Map WU Guofeng CAI Zhongliang DU Qingyun LONG Yi (School of Resources and Environment Science, Wuhan University, Wuhan, Hubei.
DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7
DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies
What is Visualization? Information Visualization An Overview. Information Visualization. Definitions
What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some
Intro to GIS Winter 2011. Data Visualization Part I
Intro to GIS Winter 2011 Data Visualization Part I Cartographer Code of Ethics Always have a straightforward agenda and have a defining purpose or goal for each map Always strive to know your audience
an introduction to VISUALIZING DATA by joel laumans
an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data
Utilizing spatial information systems for non-spatial-data analysis
Jointly published by Akadémiai Kiadó, Budapest Scientometrics, and Kluwer Academic Publishers, Dordrecht Vol. 51, No. 3 (2001) 563 571 Utilizing spatial information systems for non-spatial-data analysis
Data Visualization Techniques and Practices Introduction to GIS Technology
Data Visualization Techniques and Practices Introduction to GIS Technology Michael Greene Advanced Analytics & Modeling, Deloitte Consulting LLP March 16 th, 2010 Antitrust Notice The Casualty Actuarial
Orford, S., Dorling, D. and Harris, R. (2003) Cartography and Visualization in Rogers, A. and Viles, H.A. (eds), The Student s Companion to
Orford, S., Dorling, D. and Harris, R. (2003) Cartography and Visualization in Rogers, A. and Viles, H.A. (eds), The Student s Companion to Geography, 2nd Edition, Part III, Chapter 27, pp 151-156, Blackwell
ArcGIS Data Models Practical Templates for Implementing GIS Projects
ArcGIS Data Models Practical Templates for Implementing GIS Projects GIS Database Design According to C.J. Date (1995), database design deals with the logical representation of data in a database. The
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
Future Landscapes. Research report CONTENTS. June 2005
Future Landscapes Research report June 2005 CONTENTS 1. Introduction 2. Original ideas for the project 3. The Future Landscapes prototype 4. Early usability trials 5. Reflections on first phases of development
Spatial Data Analysis
14 Spatial Data Analysis OVERVIEW This chapter is the first in a set of three dealing with geographic analysis and modeling methods. The chapter begins with a review of the relevant terms, and an outlines
Thematic Map Types. Information Visualization MOOC. Unit 3 Where : Geospatial Data. Overview and Terminology
Thematic Map Types Classification according to content: Physio geographical maps: geological, geophysical, meteorological, soils, vegetation Socio economic maps: historical, political, population, economy,
3D VISUALIZATION OF GEOTHERMAL WELLS DIRECTIONAL SURVEYS AND INTEGRATION WITH DIGITAL ELEVATION MODEL (DEM)
Presented at Short Course VII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 27 Nov. 18, 2012. GEOTHERMAL TRAINING PROGRAMME
THREE-DIMENSIONAL CARTOGRAPHIC REPRESENTATION AND VISUALIZATION FOR SOCIAL NETWORK SPATIAL ANALYSIS
CO-205 THREE-DIMENSIONAL CARTOGRAPHIC REPRESENTATION AND VISUALIZATION FOR SOCIAL NETWORK SPATIAL ANALYSIS SLUTER C.R.(1), IESCHECK A.L.(2), DELAZARI L.S.(1), BRANDALIZE M.C.B.(1) (1) Universidade Federal
What is GIS? Geographic Information Systems. Introduction to ArcGIS. GIS Maps Contain Layers. What Can You Do With GIS? Layers Can Contain Features
What is GIS? Geographic Information Systems Introduction to ArcGIS A database system in which the organizing principle is explicitly SPATIAL For CPSC 178 Visualization: Data, Pixels, and Ideas. What Can
Information Visualization WS 2013/14 11 Visual Analytics
1 11.1 Definitions and Motivation Lot of research and papers in this emerging field: Visual Analytics: Scope and Challenges of Keim et al. Illuminating the path of Thomas and Cook 2 11.1 Definitions and
WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat
Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise
Virtual Environments - Basics -
Virtual Environments - Basics - What Is Virtual Reality? A Web-Based Introduction Version 4 Draft 1, September, 1998 Jerry Isdale http://www.isdale.com/jerry/vr/whatisvr.html Virtual Environments allow
Files Used in this Tutorial
Generate Point Clouds Tutorial This tutorial shows how to generate point clouds from IKONOS satellite stereo imagery. You will view the point clouds in the ENVI LiDAR Viewer. The estimated time to complete
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
Institute of Natural Resources Departament of General Geology and Land use planning Work with a MAPS
Institute of Natural Resources Departament of General Geology and Land use planning Work with a MAPS Lecturers: Berchuk V.Y. Gutareva N.Y. Contents: 1. Qgis; 2. General information; 3. Qgis desktop; 4.
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Visualization methods for patent data
Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION Exploration is a process of discovery. In the database exploration process, an analyst executes a sequence of transformations over a collection of data structures to discover useful
GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL CLUSTERING
Geoinformatics 2004 Proc. 12th Int. Conf. on Geoinformatics Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, 7-9 June 2004 GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL
Improving Decision Making and Managing Knowledge
Improving Decision Making and Managing Knowledge Decision Making and Information Systems Information Requirements of Key Decision-Making Groups in a Firm Senior managers, middle managers, operational managers,
BYLINE: Michael F. Goodchild, University of California, Santa Barbara, www.geog.ucsb.edu/~good
TITLE: SPATIAL DATA ANALYSIS BYLINE: Michael F. Goodchild, University of California, Santa Barbara, www.geog.ucsb.edu/~good SYNONYMS: spatial analysis, geographical data analysis, geographical analysis
GIS Initiative: Developing an atmospheric data model for GIS. Olga Wilhelmi (ESIG), Jennifer Boehnert (RAP/ESIG) and Terri Betancourt (RAP)
GIS Initiative: Developing an atmospheric data model for GIS Olga Wilhelmi (ESIG), Jennifer Boehnert (RAP/ESIG) and Terri Betancourt (RAP) Unidata seminar August 30, 2004 Presentation Outline Overview
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed
Principles of Data Visualization for Exploratory Data Analysis. Renee M. P. Teate. SYS 6023 Cognitive Systems Engineering April 28, 2015
Principles of Data Visualization for Exploratory Data Analysis Renee M. P. Teate SYS 6023 Cognitive Systems Engineering April 28, 2015 Introduction Exploratory Data Analysis (EDA) is the phase of analysis
o Ivy Tech DESN 105- Architectural Design I DESN 113- Intermediate CAD o Vincennes University ARCH 221- Advanced Architectural Software Applications
Indiana Department of Education Academic Course Framework ARCHITECHTURAL DRAFTING AND DESIGN II Architectural Drafting and Design II presents a history and survey of architecture and focuses on the creative
How To Create A Data Visualization
CSCI 552 Data Visualization Shiaofen Fang What Is Visualization? We observe and draw conclusions A picture says more than a thousand words/numbers Seeing is believing, seeing is understanding Beware of
Introduction to Geographical Data Visualization
perceptual edge Introduction to Geographical Data Visualization Stephen Few, Perceptual Edge Visual Business Intelligence Newsletter March/April 2009 The important stories that numbers have to tell often
GIS. Digital Humanities Boot Camp Series
GIS Digital Humanities Boot Camp Series GIS Fundamentals GIS Fundamentals Definition of GIS A geographic information system (GIS) is used to describe and characterize spatial data for the purpose of visualizing
CARTOGRAPHIC VISUALIZATION FOR SPATIAL ANALYSIS. Jason Dykes Department of Geography, University of Leicester, Leicester, LE2 ITF, U.K.
POSTER SESSIONS 257 CARTOGRAPHIC VISUALIZATION FOR SPATIAL ANALYSIS Jason Dykes Department of Geography, University of Leicester, Leicester, LE2 ITF, U.K. Abstract Characteristics of Visualization in Scientific
Business Intelligence and Decision Support Systems
Chapter 12 Business Intelligence and Decision Support Systems Information Technology For Management 7 th Edition Turban & Volonino Based on lecture slides by L. Beaubien, Providence College John Wiley
Create a folder on your network drive called DEM. This is where data for the first part of this lesson will be stored.
In this lesson you will create a Digital Elevation Model (DEM). A DEM is a gridded array of elevations. In its raw form it is an ASCII, or text, file. First, you will interpolate elevations on a topographic
GIS 101 - Introduction to Geographic Information Systems Last Revision or Approval Date - 9/8/2011
Page 1 of 10 GIS 101 - Introduction to Geographic Information Systems Last Revision or Approval Date - 9/8/2011 College of the Canyons SECTION A 1. Division: Mathematics and Science 2. Department: Earth,
FROM GIS TO GEOGRAPHIC INFORMATION SCIENCE IN UNIVERSITY EDUCATION
FROM GIS TO GEOGRAPHIC INFORMATION SCIENCE IN UNIVERSITY EDUCATION Prof. Kirsi VIRRANTAUS, Chair of FIG Commission 2, Finland Key words: Geographic Information Science, spatial analysis, spatial modelling,
Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal
Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation
Big Data: Rethinking Text Visualization
Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important
INTRODUCTION to ESRI ARCGIS For Visualization, CPSC 178
INTRODUCTION to ESRI ARCGIS For Visualization, CPSC 178 1) Navigate to the C:/temp folder 2) Make a directory using your initials. 3) Use your web browser to navigate to www.library.yale.edu/mapcoll/ and
Implementing Geospatial Data in Parametric Environment Elçin ERTUĞRUL*
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2015, Amsterdam 17-20 August 2015, Amsterdam, The Netherlands Implementing Geospatial Data in Parametric Environment
Improving Data Mining of Multi-dimension Objects Using a Hybrid Database and Visualization System
Improving Data Mining of Multi-dimension Objects Using a Hybrid Database and Visualization System Yan Xia, Anthony Tung Shuen Ho School of Electrical and Electronic Engineering Nanyang Technological University,
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
Topic Maps Visualization
Topic Maps Visualization Bénédicte Le Grand, Laboratoire d'informatique de Paris 6 Introduction Topic maps provide a bridge between the domains of knowledge representation and information management. Topics
GRADES 7, 8, AND 9 BIG IDEAS
Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for
COURSE OUTLINE GEOL 204 MINING COMPUTING 45 HOURS 1.5 CREDITS
APPLIED SCIENCE AND MANAGEMENT DIVISION School of Science Fall, 2014 COURSE OUTLINE GEOL 204 MINING COMPUTING 45 HOURS 1.5 CREDITS PREPARED BY: Joel Cubley, Instructor DATE: APPROVED BY: Margaret Dumkee,
INDIVIDUAL COURSE DETAILS
INDIVIDUAL COURSE DETAILS A. Name of Institution NATIONAL INSTITUTE OF TECHNICAL TEACHERS TRAINING AND RESEARCH TARAMANI CHENNAI 600 113 [An Autonomous Institute under Ministry of Human Resource Development,
Reading Questions. Lo and Yeung, 2007: 2 19. Schuurman, 2004: Chapter 1. 1. What distinguishes data from information? How are data represented?
Reading Questions Week two Lo and Yeung, 2007: 2 19. Schuurman, 2004: Chapter 1. 1. What distinguishes data from information? How are data represented? 2. What sort of problems are GIS designed to solve?
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
GRADUATE CERTIFICATE PROGRAM
GRADUATE CERTIFICATE PROGRAM GEOGRAPHIC INFORMATION SCIENCES Department of Geography University of North Carolina Chapel Hill Conghe Song, Director csong at email dot unc dot edu 919-962-6816 (voice) 919-962-1537
WHAT IS GIS - AN INRODUCTION
WHAT IS GIS - AN INRODUCTION GIS DEFINITION GIS is an acronym for: Geographic Information Systems Geographic This term is used because GIS tend to deal primarily with geographic or spatial features. Information
Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?
Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information
SPATIAL ANALYSIS IN GEOGRAPHICAL INFORMATION SYSTEMS. A DATA MODEL ORffiNTED APPROACH
POSTER SESSIONS 247 SPATIAL ANALYSIS IN GEOGRAPHICAL INFORMATION SYSTEMS. A DATA MODEL ORffiNTED APPROACH Kirsi Artimo Helsinki University of Technology Department of Surveying Otakaari 1.02150 Espoo,
Mapping Mashup/Data Integration Development Resources Teaching with Google Earth and Google Ocean Stone Lab August 13, 2010
Mapping Mashup/Data Integration Development Resources Teaching with Google Earth and Google Ocean Stone Lab August 13, 2010 David Hart GIS Specialist University of Wisconsin Sea Grant Institute Virtual
Location Analytics for Financial Services. An Esri White Paper October 2013
Location Analytics for Financial Services An Esri White Paper October 2013 Copyright 2013 Esri All rights reserved. Printed in the United States of America. The information contained in this document is
A quick overview of geographic information systems (GIS) Uwe Deichmann, DECRG <[email protected]>
A quick overview of geographic information systems (GIS) Uwe Deichmann, DECRG Why is GIS important? A very large share of all types of information has a spatial component ( 80
Proposal for a Virtual 3D World Map
Proposal for a Virtual 3D World Map Kostas Terzidis University of California at Los Angeles School of Arts and Architecture Los Angeles CA 90095-1467 ABSTRACT The development of a VRML scheme of a 3D world
Visualization. For Novices. ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu
Visualization For Novices ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu Data Visualization Data visualization deals with communicating information about
2012 VISUAL ART STANDARDS GRADES K-1-2
COGNITIVE & K Critical and Creative Thinking: Students combine and apply artistic and reasoning skills to imagine, create, realize and refine artworks in conventional and innovative ways. The student will
Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001
A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS
Consumption of OData Services of Open Items Analytics Dashboard using SAP Predictive Analysis
Consumption of OData Services of Open Items Analytics Dashboard using SAP Predictive Analysis (Version 1.17) For validation Document version 0.1 7/7/2014 Contents What is SAP Predictive Analytics?... 3
Daryl Harrison Golder Associates Ltd., Canada June 2014
A Picture Paints a Thousand Words : The Role of Visualization in Communicating Project Design to Support Consultation and Understanding in the ESIA Process Daryl Harrison Golder Associates Ltd., Canada
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
Data Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
Visualizing Historical Agricultural Data: The Current State of the Art Irwin Anolik (USDA National Agricultural Statistics Service)
Visualizing Historical Agricultural Data: The Current State of the Art Irwin Anolik (USDA National Agricultural Statistics Service) Abstract This paper reports on methods implemented at the National Agricultural
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL G. Maria Priscilla 1 and C. P. Sumathi 2 1 S.N.R. Sons College (Autonomous), Coimbatore, India 2 SDNB Vaishnav College
Overview... 2. Basic Design Studio A (MCD1330)... 3. Visual Arts Studio A (MCD1340)... 3. Drawing A (MCD1270)... 4
Unit guide Diploma of Art & Design Contents Overview... 2 Basic Design Studio A (MCD1330)... 3 Visual Arts Studio A (MCD1340)... 3 Drawing A (MCD1270)... 4 Art and Design Theory A (MCD1280)... 4 Basic
ART A. PROGRAM RATIONALE AND PHILOSOPHY
ART A. PROGRAM RATIONALE AND PHILOSOPHY Art education is concerned with the organization of visual material. A primary reliance upon visual experience gives an emphasis that sets it apart from the performing
MIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP ENVIRONMENTAL SCIENCE
Science Practices Standard SP.1: Scientific Questions and Predictions Asking scientific questions that can be tested empirically and structuring these questions in the form of testable predictions SP.1.1
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared.
A Geographic Information System (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. GIS allows us to view,
On the use of Three-dimensional Self-Organizing Maps for Visualizing Clusters in Geo-referenced Data
On the use of Three-dimensional Self-Organizing Maps for Visualizing Clusters in Geo-referenced Data Jorge M. L. Gorricha and Victor J. A. S. Lobo CINAV-Naval Research Center, Portuguese Naval Academy,
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Principles and Practices of Data Integration
Data Integration Data integration is the process of combining data of different themes, content, scale or spatial extent, projections, acquisition methods, formats, schema, or even levels of uncertainty,
GEOGRAPHIC INFORMATION SYSTEMS
GEOGRAPHIC INFORMATION SYSTEMS WHAT IS A GEOGRAPHIC INFORMATION SYSTEM? A geographic information system (GIS) is a computer-based tool for mapping and analyzing spatial data. GIS technology integrates
PART 1. Representations of atmospheric phenomena
PART 1 Representations of atmospheric phenomena Atmospheric data meet all of the criteria for big data : they are large (high volume), generated or captured frequently (high velocity), and represent a
Data Visualization Handbook
SAP Lumira Data Visualization Handbook www.saplumira.com 1 Table of Content 3 Introduction 20 Ranking 4 Know Your Purpose 23 Part-to-Whole 5 Know Your Data 25 Distribution 9 Crafting Your Message 29 Correlation
DIABLO VALLEY COLLEGE CATALOG 2015-2016
GEOGRAPHY GEOG Tish Young, Dean Physical Sciences and Engineering Division Physical Sciences Building, Room 263 Possible career opportunities Geography is an interdisciplinary study focusing on the spatial
Web-Based Enterprise Data Visualization a 3D Approach. Oleg Kachirski, Black and Veatch
Web-Based Enterprise Data Visualization a 3D Approach Oleg Kachirski, Black and Veatch Contents - Introduction - Why 3D? - Applications of 3D - 3D Content Authoring - 3D/4D in GIS - Challenges of Presenting
Visualization Techniques for Geospatial Data IDV 2015/2016
Interactive Data Visualization 07 Visualization Techniques for Geospatial Data IDV 2015/2016 Notice n Author t João Moura Pires ([email protected]) n This material can be freely used for personal or academic
Business Intelligence and Process Modelling
Business Intelligence and Process Modelling F.W. Takes Universiteit Leiden Lecture 2: Business Intelligence & Visual Analytics BIPM Lecture 2: Business Intelligence & Visual Analytics 1 / 72 Business Intelligence
Government 98dn Mapping Social and Environmental Space
Government 98dn Mapping Social and Environmental Space LAB EXERCISE 5: The Analysis of Fields Objectives of this lab: Visualizing raster data Using Spatial Analyst functions to create new data Analysis
Digital Cadastral Maps in Land Information Systems
LIBER QUARTERLY, ISSN 1435-5205 LIBER 1999. All rights reserved K.G. Saur, Munich. Printed in Germany Digital Cadastral Maps in Land Information Systems by PIOTR CICHOCINSKI ABSTRACT This paper presents
