LAJOS MOLNÁR PROFESSIONAL DATA

Size: px
Start display at page:

Download "LAJOS MOLNÁR PROFESSIONAL DATA"

Transcription

1 2 LAJOS MOLNÁR PROFESSIONAL DATA September 27, 2015 Office Address: URL: Department of Analysis, Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1. Hungary molnarl/ Born: August 19, 1964; Kemecse, Hungary Citizenship: Hungarian Marital Status: Married, two daughters (born in 1994, 1997) Degrees MSc: Mathematics, University of Debrecen, 1988 (Antal Járai, Adviser). Thesis: A class of measures equivalent to the Haar-measure, and stochastic processes on groups. PhD: Mathematics, University of Debrecen, Thesis: HS operator valued c.a.g.o.s. measures and reproducing kernel Hilbert A- modules. DSc: Mathematics, Hungarian Academy of Sciences, Dissertation: Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces 1

2 2 Employment : Assistant, Department of Mathematics, Teacher s Training College, Nyíregyháza, Hungary : Assistant, Institute of Mathematics and Informatics, University of Debrecen, Debrecen, Hungary : Assistant Professor, Institute of Mathematics and Informatics, University of Debrecen, Debrecen, Hungary : Associate Professor, Institute of Mathematics and Informatics, University of Debrecen, Debrecen, Hungary : Full Professor, Institute of Mathematics, University of Debrecen, Debrecen, Hungary : Head of Department of Analysis, Institute of Mathematics, University of Debrecen, Debrecen, Hungary Spring: Visiting Full Professor, Department of Mathematical Sciences, University of Memphis, Memphis, USA : Full Professor, Bolyai Institute, University of Szeged, Szeged, Hungary : Chair of Department of Analysis, University of Szeged, Szeged, Hungary. Research Interest In general: Functional Analysis, Operator Theory More specifically: Operator algebras: Function algebras: Quantum structures: Inner product structures: isomorphisms, isometries, derivations, preservers, reflexivity. isomorphisms, isometries. algebraic structures of operators in quantum mechanics and their transformations. H -algebras, Hilbert modules. Visiting Researcher for Longer Period 1996: March-May, University of Maribor, Maribor, Slovenia, Scholarship of Soros Foundation.

3 1996: October-December, University of Maribor, Maribor, Slovenia, Hungarian State Eötvös Scholarship. 1997: March-August, University of Paderborn, Paderborn, Germany, Scholarship of the Konferenz der Deutschen Akademien der Wissenschaften. 2002: July-June, 2003, University of Dresden, Dresden, Germany, Research Fellowship of Alexander von Humboldt Foundation. 2008: June-August, University of Dresden, Dresden, Germany, Alexander von Humboldt Foundation. 2010: June-August, University of Dresden, Dresden, Germany, Alexander von Humboldt Foundation. 2011: June-September, University of Ljubljana, Ljubljana, Slovenia, Research grant by the Slovenian Research Agency (ARRS) for renowned researchers from abroad. 2012: January-May, University of Memphis, Visiting Full Professor. 2013: September (1 month), University of Calabria and Instituto Nazionale di Fisica Nucleare (INFN), Cosenza, Italy. 2015: July (1 month), University of Calabria and Instituto Nazionale di Fisica Nucleare (INFN), Cosenza, Italy. 3 Host of Visiting Researcher for Longer Period 2004: February-April, Gregor Dolinar, University of Ljubljana. Grants, Research Projects : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No Team member : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T Team member : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. F Project leader : Bilateral research project supported by the Hungarian and Slovene governments. Registration No. OMFB SLO-2/96. Project leader on the Hungarian side : Grant from the Ministry of Education, Hungary. Registration No. FKFP 0304/1997. Project leader : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T Team member.

4 : Grant from the Ministry of Education, Hungary. Registration No. FKFP 0349/2000. Project leader : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T Team member : Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-3/00. Project leader on the Hungarian side : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T Team member : Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-10/03. Project leader on the Hungarian side : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T Project leader : Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-5/05. Project leader on the Hungarian side : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. NK Team member : Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-13/07. Project leader on the Hungarian side : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. K Project leader : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. NK Team member. 2011: Grant by the Slovenian Research Agency (ARRS) for renowned researchers from abroad. Registration No : Bilateral research project supported by the Hungarian and Slovene governments. Registration No. TÉT Project leader on the Hungarian side : Lendület Research Grant by the Hungarian Academy of Sciences. Head of Research Group : HAS-MOST Hungarian-Taiwanese bilateral research project. Project leader on the Hungarian side : Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. K Project leader. Awards, Decorations, Honours, Prizes 1992: Géza Grünwald Award of János Bolyai Mathematical Society, Hungary

5 1996: Scholarship of the Konferenz der Deutschen Akademien der Wissenschaften. 1997: Széchenyi Professorship for the period , Ministry of Education, Hungary 1998: Award of the International Symposia on Functional Equations for outstanding contribution to the 36th Symposium, 36th ISFE, Brno, Czech Republic 1999: Pál Erdős Award of the Mathematical Section of the Hungarian Academy of Sciences 2002: Research Fellowship of Alexander von Humboldt Foundation for : Bolyai Scholarship for the period , Hungarian Academy of Sciences, Hungary 2006: Bolyai-Plaquette, Hungarian Academy of Sciences 2008: Publication of the Year gold medal in the category of Science and Technology, University of Debrecen 2011: Grant by the Slovenian Research Agency (ARRS) for renowned foreign researchers for a 3-months research stay 2011: Academy Prize of the Hungarian Academy of Sciences 2012: Winner of the Momentum (Lendület) Program of the Hungarian Academy of Sciences 2015: Decoration called Knight s Cross of the Order of Merit of the Republic of Hungary given by the President of Hungary. 5 Organizing Conferences 1999: Functional Analysis and Applications: Memorial Conference for Béla Szőkefalvi-Nagy, August 2 August 6, 1999, Szeged, Hungary. Local organizer. 2003: Von Neumann Centennial Conference: Linear Operators and Foundations of Quantum Mechanics, Budapest, Hungary, October, Member of the Organizing Committee. 2013: Lendület FIFA 13 Workshop, University of Debrecen, April 26-27, 2013, Debrecen, Hungary. Main organizer. 2013: Numbers, Functions, Equations 2013, June 28-30, 2013, Visegrád, Hungary. Member of the Organizing Committee. 2014: Young Functional Analysts Meeting 2014, Institute of Mathematics, April 11-13, 2014, Debrecen, Hungary. Main organizer. 2014: CIMPA Research School on Operator theory and the principles of quantum mechanics University Moulay Ismail, 2014 September 8-17, Meknes, Morocco. Member of the Scientific Committee.

6 6 Editorial Work Editor of Acta Math. Acad. Paedagog. Nyhaziensis. N.S. Editor of Journal of Linear and Topological Algebra Editor of Journal of Mathematical Analysis Editor of Linear and Multilinear Algebra Editor of Mathematica Slovaca Editor of Operators and Matrices Editor of Periodica Mathematica Hungarica Editor of Publicationes Mathematicae (Debrecen) Previously: Editor of Versita de Gruyter Book Publishing Program in Mathematics Other Scientific Activities : Member of the Mathematical Jury of the Hungarian Scientific Research Fund : Member of the Doctoral Committee of the Section of Mathematics, Hungarian Academy of Sciences : Chairman of the Committee of Mathematics and Physics, Debrecen Branch of the Hungarian Academy of Sciences : Member of the Collegium Natural Sciences and Technology of the Hungarian Scientific Research Fund : Councillor of the International Quantum Structure Association : Member of the Mathematical Committee of the Section of Mathematics, Hungarian Academy of Sciences 2013-: Member of the Advisory Board of János Bolyai Research Fellowship, Hungarian Academy of Sciences 2014-: Member of the Doctoral Committee of the Faculty of Science and Informatics, University of Szeged 2014-: Member of the Doctoral Council of the Hungarian Academy of Sciences Membership in Societies 1989-: Member of János Bolyai Mathematical Society : Member of the American Mathematical Society : Member of the International Quantum Structure Association.

7 : Member of the International Linear Algebra Society. University Activities : Scientific advisor of the Library of the Institute of Mathematics and Informatics, University of Debrecen : Member of the Mathematical Committee of the Institute of Mathematics and Informatics, University of Debrecen : Vice-director of the Institute of Mathematics, University of Debrecen : Member of the Scientific and Habilitation Council of the Faculty of Science and Technology, University of Debrecen : Leader of the program Functional Analysis in the Doctoral School Mathematics and Computer Sciences, University of Debrecen. Teaching Activities University of Debrecen: For undergraduates: Linear Algebra, Analysis I, II, III, Differential Equations, Real Variables, Measure and Integration, Complex Variables. Mathematics 3 (in English) for foreign students of physics and electrical engineering, College Math - Functions (in English) for foreign students. For graduates and PhD students: Functional Analysis, Banach Algebras, C -algebras, von Neumann Algebras. Budapest University of Technology and Economics: Selected Topics in Functional Analysis, graduate course in Teaching Activities Abroad 1996: Wintersemester, University of Maribor, Slovenia. Graduate Course in Real Analysis. 1997: Summersemester, University of Paderborn, Germany. Seminar Funktionentheorie/Zahlentheorie.

8 8 2012: Springsemester, University of Memphis, Undergraduate Course on Linear Algebra. 2015: Special courses, Niigata University, Niigata, Japan. Undergraduate course on Functional Analysis. Graduate course on Preserver Problems. Lecture Notes [1] Complex Functions, manuscript, in Hungarian, [2] Spectral Theory and von Neumann Algebras, manuscript, in Hungarian, [3] Banach Algebras, C -Algebras and von Neumann Algebras, manuscript, in Hungarian, Thesis Directed 1993: Nóra Kontra: Riesz representation theorems. (in Hungarian) [MSc] 1995: Péter Battyányi: Jordan *-derivations on operator algebras. (in Hungarian) [Competition work, distinguished national first prize] 1996: Péter Battyányi: Jordan *-derivations on operator algebras. (in Hungarian) [MSc] 1996: Tibor Molnár: Calculus in the secondary school. (in Hungarian) [MSc] 1997: Csaba Noszály: Isomorphisms of function algebras. (in Hungarian) [MSc] 1997: Máté Győry: Isometries of function algebras and semigroup isomorphisms of operator ideals. (in Hungarian) [Competition work, national first prize] 1998: Anna Németh: The three fundamental theorems of functional analysis. (in Hungarian) [MSc] 1998: Máté Győry: Isometries of function algebras and semigroup isomorphisms of operator ideals. (in Hungarian) [MSc] 1998: Zsolt Vida: Derivations, Jordan *-derivations and automorphisms. (in Hungarian) [MSc] 1999: Máté Győry: Diameter preserving linear bijection of C 0 (X) and the reflexivity of the isometry group of the suspension of B(H). (in Hungarian) [Competition work, national first prize; Pro Scientia Medal of the Hungarian Academy of Sciences]

9 2001: Mátyás Barczy and Mariann Tóth: Local automorphisms of the sets of states and effects on a Hilbert space. (in Hungarian) [Competition work, national first prize] 2001: Mariann Tóth: Local maps of operator algebras. (in Hungarian) [MSc] 2008: Emese Tünde Rozsályi: The life and work of Frigyes Riesz (in Hungarian) [MSc] 2010: Patrícia Szokol: Classical and quantum relative entropy [MSc] 2011: Patrícia Szokol: Maps on positive semidefinite operators preserving relative entropy. [Competition work, national special prize] 9 PhD Students Máté Győry; ( ) Preserver problems and reflexivity problems on operator algebras and on function algebras, PhD Dissertation, Gergő Nagy; ( ) Preserver problems on structures of positive operators, PhD Dissertation, Patrícia Szokol; ( ) Preserver problems and separation theorems, PhD Dissertation, Roberto Beneduci; ( ) Mathematical structures of positive operator valued measures and applications, PhD Dissertation, Membership in PhD Committees Vilmos Prokaj, Eötvös Loránd University, Budapest, April 9, Károly Nagy, University of Debrecen, Debrecen, May 31, Bálint Farkas, Eötvös Loránd University, Budapest, May 26, Zsolt Balogh, University of Debrecen, Debrecen, September 21, Attila Házy, University of Debrecen, Debrecen, October 7, Zoltán Kaiser, University of Debrecen, Debrecen, January 27, Fülöp Ágnes, Eötvös Loránd University, Budapest, May 5, Tibor Juhász, University of Debrecen, Debrecen, October 19, 2006.

10 10 Péter Varga, University of Debrecen, Debrecen, December 21, Ágnes Baran, University of Debrecen, Debrecen, November 27, Pál Burai, University of Debrecen, Debrecen, January 15, Árpád Baricz, University of Debrecen, Debrecen, October 2, Izabella Stuhl, University of Debrecen, Debrecen, March 5, Endre Iglói, University of Debrecen, Debrecen, March 20, Zoltán Léka, University of Szeged, Szeged, May 6, Zita Makó, University of Debrecen, Debrecen, November 13, Fruzsina Mészáros, University of Debrecen, Debrecen, March 17, András Bazsó, University of Debrecen, Debrecen, October 15, István Vajda, University of Debrecen, Debrecen, October 27, József Korándi, University of Debrecen, Debrecen, June 12, Ágota Orosz-Kaiser, University of Debrecen, Debrecen, June 27, Szabolcs Baják, University of Debrecen, Debrecen, July 3, Zsolt Szűcs, Eötvös Loránd University, Budapest, András Szántó, Budapest University of Technology and Economics, Budapest, January 23, Ferenc Várady, University of Debrecen, Debrecen, February 11, Membership in Habilitation Committees Kálmán Liptai, University of Debrecen, Debrecen, November 24, Mihály Bessenyei, University of Debrecen, Debrecen, November 25, István Blahota, University of Debrecen, Debrecen, October 16, Pál Burai, University of Debrecen, Debrecen, November 20, Gábor Pusztai, University of Szeged, Szeged, October 9, Membership in DSc Committees

11 Gábor Elek, Hungarian Academy of Sciences, Budapest, January 28, Tamás Keleti, Hungarian Academy of Sciences, Budapest, December 20, Alice Fialowski, Hungarian Academy of Sciences, Budapest, November 14, Sándor Fridli, Hungarian Academy of Sciences, Budapest, May 11, Máté Matolcsi, Hungarian Academy of Sciences, Budapest, June 23,

12 12 LIST OF PUBLICATIONS Book [MB] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, MR 2007g:47056, Zbl Research papers [1] L. Molnár, J. Pitrik and D. Virosztek, Maps on positive definite matrices preserving Bregman and Jensen divergences, preprint [2] O. Hatori and L. Molnár, Generalized isometries of the special unitary group, preprint. [3] O. Hatori and L. Molnár, Spectral conditions for Jordan *-isomorphisms on operator algebras, preprint. [4] F. Botelho, L. Molnár and G. Nagy, Linear bijections on von Neumann factors commuting with λ-aluthge transform, submitted. [5] L. Molnár and D. Virosztek, Continuous Jordan triple endomorphisms of P 2, submitted. [6] L. Molnár and G. Nagy, Spectral order automorphisms on Hilbert space effects and observables: the 2-dimensional case, submitted. [7] L. Molnár and P. Szokol, Transformations preserving norms of means of positive operators and nonnegative functions, Integral Equations Operator Theory, to appear. [8] L. Molnár Two characterizations of unitary-antiunitary similarity transformations of positive definite operators on a finite dimensional Hilbert space, Annales Univ. Sci. Budapest., Sect. Comp. (special issue dedicated to Prof. Zoltán Sebestyén on the occasion of his 70th birthday), to appear. [9] L. Molnár, General Mazur-Ulam type theorems and some applications, in Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, W.

13 Arendt, R. Chill, Y. Tomilov (Eds.), Operator Theory: Advances and Applications, Vol. 250, to appear. [10] L. Molnár and D. Virosztek, On algebraic endomorphisms of the Einstein gyrogroup, J. Math. Phys. 56 (2015), [11] L. Molnár On the nonexistence of order isomorphisms between the sets of all self-adjoint and all positive definite operators, Abstr. Appl. Anal. Volume 2015 (2015), Article ID , 6 pages. IF: 1,274** [12] L. Molnár, P. Šemrl and A.R. Sourour, Bilocal automorphisms, Oper. Matrices 9 (2015), IF: 0,529** [13] L. Molnár and P. Szokol, Transformations on positive definite matrices preserving generalized distance measures, Linear Algebra Appl. 466 (2015), IF: 0,983** [14] L. Molnár, Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear Multilinear Alg. 63 (2015), IF: 0,700** [15] L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), IF: 1,188** [16] R. Beneduci and L. Molnár, On the standard K-loop structure of positive invertible elements in a C -algebra, J. Math. Anal. Appl. 420 (2014), IF: 1,119** [17] L. Molnár, A few conditions for a C -algebra to be commutative, Abstr. Appl. Anal. Volume 2014 (2014), Article ID , 4 pages. IF: 1,274** [18] L. Molnár and P. Szokol, Kolmogorov-Smirnov isometries of the space of generalized distribution functions, Math. Slovaca 64 (2014), IF: 0,451** 13

14 14 [19] L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), IF: 0,479** [20] O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), IF: 1,119** [21] L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), IF: 0,983 [22] F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), IF: 1,152 [23] F. Botelho, J. Jamison and L. Molnár, Algebraic reflexivity of isometry groups and automorphism groups of some operator structures, J. Math. Anal. Appl. 408 (2013), IF: 1,119 [24] L. Molnár, G. Nagy and P. Szokol, Maps on density operators preserving quantum f-divergences, Quantum Inf. Process. 12 (2013), IF: 2,960 [25] G. Dolinar and L. Molnár, Automorphisms for the logarithmic product of positive semidefinite operators, Linear Multilinear Algebra 61 (2013), IF: 0,700 [26] O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), IF: 0,258 [27] O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), MR , Zbl IF: 0,609 [28] G. Dolinar and L. Molnár, Sequential endomorphisms of finite dimensional Hilbert space effect algebras, J. Phys. A: Math. Theor. 45 (2012) MR , Zbl.

15 IF: 1,766 [29] L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), MR , Zbl IF: 1,050 [30] L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), MR , Zbl IF: 0,677 [31] L. Molnár, Maps preserving general means of positive operators, Electron. J. Linear Algebra 22 (2011), MR , Zbl IF: 0,563 [32] L. Molnár, Continuous maps on matrices transforming geometric mean to arithmetic mean, Annales Univ. Sci. Budapest., Sect. Comp. (special issue dedicated to Prof. Antal Járai on the occasion of his 60th birthday) 35 (2011), MR?? Zbl [33] L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), MR , Zbl IF: 0,845 [34] L. Molnár, Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math. 9 (2011), MR , Zbl IF: 0,440 [35] L. Molnár, Lévy isometries of the space of probability distribution functions, J. Math. Anal. Appl. 380 (2011), MR , Zbl IF: 1,001 [36] L. Molnár, Order automorphisms on positive definite operators and a few applications, Linear Algebra Appl. 434 (2011), MR , Zbl IF: 0,974

16 16 [37] L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl. 432 (2010), MR 2011b:47087, Zbl IF: 1,005 [38] L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), MR , Zbl IF: 0,808 [39] L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), MR 2010m:46100, Zbl IF: 0,828 [40] L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), MR 2010h:47058, Zbl IF: 0,64 [41] L. Molnár, Maps preserving the harmonic mean or the parallel sum of positive operators, Linear Algebra Appl. 430 (2009), MR 2010e:47077, Zbl IF: 1,073 [42] L. Molnár, Maps on positive operators preserving Lebesgue decompositions, Electron. J. Linear Algebra 18 (2009), MR 2010i:47079, Zbl IF: 0,892 [43] L. Molnár and W. Timmermann, A metric on the space of projections admitting nice isometries, Studia Math. 191 (2009), MR 2009m:47097, Zbl IF: 0,645 [44] L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), MR 2009m:47096, Zbl IF: 0,64 [45] L. Molnár and W. Timmermann, Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor. 42 (2009), MR 2010f:81033, Zbl IF: 1,577 [46] L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2009),

17 MR 2010i:15003, Zbl IF: 0,74 [47] G. Dolinar and L. Molnár, Isometries of the space of distribution functions with respect to the Kolmogorov-Smirnov metric, J. Math. Anal. Appl., 348 (2008), MR 2009j:47063, Zbl IF: 1,046 [48] L. Molnár, Maps on the n-dimensional subspaces of a Hilbert space preserving principal angles, Proc. Amer. Math. Soc. 136 (2008), MR 2009f:47056, Zbl IF: 0,584 [49] L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), MR 2009c:81025, Zbl IF: 1,085 [50] L. Molnár, Isometries of the spaces of bounded frame functions, J. Math. Anal. Appl. 338 (2008), MR 2009d:47038, Zbl IF: 1,046 [51] G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), MR 2008m:81008, Zbl IF: 0,624 [52] L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), MR 2008f:47118, Zbl IF: 1,044 [53] L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007), MR 2008b:46084, Zbl IF: 1,044 [54] L. Molnár and P. Šemrl, Elementary operators on selfadjoint operators, J. Math. Anal. Appl. 327 (2007), MR 2007g:47052, Zbl IF: 0,872

18 18 [55] L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), MR 2007k:47059, Zbl IF: 0,585 [56] L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), MR 2006j:47059, Zbl IF: 0,515 [57] L. Molnár and W. Timmermann, Transformations on the sets of states and density operators, Linear Algebra Appl. 418 (2006), MR 2007g:81014, Zbl IF: 0,585 [58] L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc. 134 (2006) MR 2007b:81018, Zbl IF: 0,513 [59] L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), MR 2006m:47063, Zbl IF: 0,868 [60] E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004), MR 2005m:47077, Zbl IF: 0,625 [MDiss] L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages. [61] L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), MR 2005d:46128, Zbl [62] L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), MR 2004i:81015, Zbl IF: 0,489

19 [63] L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), MR 2004j:47074, Zbl IF: 0,993 [64] L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), MR 2004g:81022, Zbl IF: 0,656 [65] L. Molnár and W. Timmermann, Preserving the measure of compatibility between quantum states, J. Math. Phys. 44 (2003), MR 2004:81010, Zbl IF: 1,481 [66] L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), MR 2004a:81046, Zbl IF: 1,357 [67] L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), MR 2003j:47050, Zbl IF: 0,389 [68] L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), MR 2003g:47067, Zbl IF: 0,353 [69] L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), MR 2003h:47069, Zbl IF: 0,924 [70] F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), MR 2003j:47046, Zbl IF: 0,525 [71] L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), MR 2003e:47067, Zbl IF: 0,386 19

20 20 [72] L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002), MR 2003c:47070, Zbl IF: 0,462 [73] L. Molnár, On certain automorphisms of sets of partial isometries, Arch. Math. 78 (2002), MR 2002k:47078, Zbl IF: 0,326 [74] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), MR 2002m:47047, Zbl IF: 0,334 [75] L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp MR 2003e:47068, Zbl [76] L. Molnár, On some functional equations on operator algebras, in Hungarian, Assembly Lectures, May 2000, vol. II, Hungarian Academy of Sciences, Budapest, 2001, pp [77] L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), MR 2002k:47077, Zbl IF: 0,819 [78] L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), MR 2003a:81081, Zbl IF: 0,475 [79] L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), MR 2002m:81012, Zbl IF: 1,151 [80] L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp , Birkhäuser, MR , Zbl

21 [81] L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), MR 2003a:81013, Zbl IF: 1,729 [82] L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), MR 2001m:47141, Zbl IF: 1,151 [83] L. Molnár, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), MR 2002b:81008, Zbl IF: 1,729 [84] L. Molnár, A reflexivity problem concerning the C -algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), MR 2001e:46101, Zbl IF: 0,369 [85] L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), MR 2001j:47092, Zbl IF: 0,171 [86] M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), MR 2002h:47053, Zbl [87] L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), MR 2001g:47124, Zbl IF: 0,477 [88] L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), MR 2001i:46098, Zbl IF: 0,598 [89] L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), MR 2001g:81109, Zbl IF: 0,966 21

22 22 [90] L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), MR 2001a:47083, Zbl [91] L. Molnár, Generalization of Wigner s unitary-antiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), MR 2001g:47064, Zbl IF: 1,721 [92] L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), MR 2001k:47049, Zbl IF: 0,305 [93] L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), MR 2000c:46103, Zbl IF: 0,394 [94] L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), MR 2000f:43002, Zbl IF: 0,394 [95] L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), MR 2000k:47045, Zbl [96] L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), MR 2000h:47060, Zbl IF: 0,385 [97] L. Molnár, A generalization of Wigner s unitary-antiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), MR 2000j:46112, Zbl IF: 0,976 [98] L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), MR 2000b:47094, Zbl IF: 0,225 [99] L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999),

23 MR 2000b:47089, Zbl IF: 0,385 [100] L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), MR 99k:46031, Zbl IF: 0,330 [101] L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), MR 99h:15003, Zbl [102] V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), MR 99m:46145, Zbl IF: 0,265 [103] L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), MR 99k:47083, Zbl [104] L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), MR 2000h:47110, Zbl IF: 0,760 [105] M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), MR 99h:46098, Zbl IF: 0,216 [106] M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *-semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), MR 2000k:47044, Zbl IF: 0,392 [107] L. Molnár, Stability of the surjectivity of Jordan *- homomorphisms of B(H), J. Nat. Geom. 14 (1998), MR 99g:46102, Zbl [108] L. Molnár, Characterization of additive *-homomorphisms and Jordan *-homomorphisms on operator ideals, Aequationes Math. 55 (1998), MR: 99m:47042, Zbl

24 24 [109] L. Molnár, A proper standard C -algebra whose automorphism and isometry groups are topologically reflexive, Publ. Math. (Debrecen) 52 (1998), MR 99e:46082, Zbl IF: 0,098 [110] L. Molnár, Stability of the surjectivity of endomorphisms and isometries of B(H), Proc. Amer. Math. Soc. 126 (1998), MR 98e:47055, Zbl IF: 0,363 [111] L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), MR 99a:47054, Zbl IF: 0,281 [112] L. Molnár, Jordan *-derivation pairs on a complex *-algebra, Aequationes Math. 54 (1997), MR 98j:46053, Zbl [113] L. Molnár and B. Zalar, Three-variable *-identities and homomorphisms of Schatten classes, Publ. Math. (Debrecen) 50 (1997), MR 98h:46054, Zbl IF: 0,089 [114] L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), MR 98e:47068, Zbl IF: 0,452 [115] L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), MR 97d:47038, Zbl IF: 0,273 [116] L. Molnár, On rings of differentiable functions, Grazer Math. Ber. 327 (1996), MR 98e:46035, Zbl [117] L. Molnár, Bijectivity of *-endomorphisms of B(H) and the unilateral shift, Monatsh. Math. 122 (1996), MR 97m:47047, Zbl IF: 0,299 [118] C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), MR 97f:47034, Zbl.

25 IF: 0,170 [119] L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), MR 97m:47046, Zbl [120] L. Molnár, The range of a Jordan *-derivation on an H -algebra, Acta Math. Hung. 72 (1996), MR 98g:46078, Zbl IF: 0,139 [121] L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), MR 97i:46038, Zbl [122] L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), MR 97c:47042, Zbl IF: 0,163 [123] L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), MR 96h:46090, Zbl IF: 0,300 [124] L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. MR 97i:47069, Zbl [125] L. Molnár, Algebraic difference between p-classes of an H*- algebra, Proc. Amer. Math. Soc. 124 (1996), MR 96d:46072, Zbl IF: 0,300 [126] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), MR 96m:47092, Zbl IF: 0,341 [127] L. Molnár and B. Zalar, On automatic surjectivity of Jordan homomorphisms, Acta Sci. Math. (Szeged) 61 (1995), MR 97a:46097, Zbl [128] L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), MR 96a:46102, Zbl IF: 0,101

26 26 [129] L. Molnár, Conditions for a function to be a centralizer on an H*-algebra, Acta Math. Hung. 67 (1995), MR 96b:46074, Zbl IF: 0,145 [130] L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), MR 95k:47054, Zbl [131] L. Molnár, A condition for a function to be a bounded linear operator, Indian J. Math. 35 (1993), 1 4. MR 94k:47061, Zbl [132] L. Molnár, p-classes of an H*-algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), MR 95c:46081, Zbl [133] L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), MR 94i:46062, Zbl [134] L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), MR 95m:46076, Zbl [135] L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), MR 93i:46095, Zbl IF: 0,132 [136] L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), MR 92i:46064, Zbl IF: 0,263 [137] L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), MR 93i:46094, Zbl IF: 0,038 [138] L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), MR 92j:46097, Zbl IF: 0,198 [139] L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), MR 94k:46103, Zbl

27 [140] Y. Kakihara and L. Molnár, A remark on HS operator valued c.a.g.o.s. measures, Res. Act. Fac. Sci. Engrg. Tokyo Denki Univ. 12 (1990), MR 91h:46082 [141] L. Molnár, Two applications of the theory of weakly stationary stochastic processes to harmonic analysis, Glasnik Mat. 25 (1990), MR 92h:60055, Zbl

28 28 LIST OF INDEPENDENT CITATIONS (without self- or co-authors citations) ordered according to the cited work [1] L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), (1) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), (2) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), (3) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), [2] L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), (4) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), (5) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), (6) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), [3] L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), (7) S. Banić, D. Ilišević and S. Varošanec, Bessel and Grüss type inequalities in inner product modules, Proc. Edinburgh Math. Soc. 50 (2007), (8) A.G. Ghazanfari and S.S. Dragomir Bessel and Grüss type inequalities in inner product modules over Banach *-algebras, J. Inequal. Appl. Volume 2011, Article ID , 16 pages. (9) D. Ilišević, Molnár-dependence in a pre-hilbert module over an H -algebra, Acta Math. Hungar. 101 (2003), (10) D. Ilišević and S. Varošanec, Grüss type inequalities in inner product modules, Proc. Amer. Math. Soc. 133 (2005), (11) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, (12) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995),

29 (13) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), [4] L. Molnár, -representations of the trace-class of an H -algebra, Proc. Amer. Math. Soc. 115 (1992), (14) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, (15) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), (16) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), [5] L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), (17) D. Bakič and B. Guljaš, Operators on Hilbert H -modules, J. Operator Theory 46 (2001), (18) D. Bakič and B. Guljaš, Hilbert C -modules over C - algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), (19) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, (20) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), (21) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), [6] L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), (22) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), (23) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), [7] L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), (24) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995),

30 30 (25) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), [8] L. Molnár, p-classes of an H*-algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), (26) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), [9] L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), (27) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), (28) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), (29) M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), (30) J. Cui and C. Park, Maps preserving strong skew Lie product on factor Von Neumann algebras, Acta Math. Sci. (Ser. B Engl. Ed.) 32 (2012), (31) A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002), [10] L. Molnár, Conditions for a function to be a centralizer on an H*-algebra, Acta Math. Hung. 67 (1995), (32) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), [11] L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), (33) S. Ali and N.A. Dar, On left centralizers of prime rings with involution, Palestine Journal of Mathematics 3 (2014), (34) S. Ali and C. Haetinger, On Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat. 26 (2008), (35) M. Ashraf and S. Ali, On (α, β) -derivations in H - algebras, Adv. Algebra 2 (2009), (36) M. Ashraf and M.R. Mozumder, On Jordan α - centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences 7 (2012), (37) M. Ashraf, N. Rehman, S. Ali and M.R. Mozumder, On generalized (θ, φ)-derivations in semiprime rings with involution, Math. Slovaca 62 (2012), (38) M.J. Atteya, On generalized derivations of semiprime rings, Int. J. Algebra 4 (2010),

31 (39) M.J. Atteya, A note on generalized Jordan derivations in semiprime rings, Mathematics and Statistics 3 (2015), 7 9. (40) M.J. Atteya and D.I. Resan, Commuting derivations of semiprime rings, Int. J. Contemp. Math. Sciences 6 (2011), (41) D. Benkovič and D. Eremita, Characterizing left centralizers by their action on a polynomial, Publ. Math. (Debrecen) 64 (2004), (42) M.N. Daif and M.S. Tammam El-Sayiad, An identity related to generalized derivations, Internat. J. Algebra 1 (2007), (43) M.N. Daif and M.S. Tammam El-Sayiad, On generalized derivations of semiprime rings with involution, Internat. J. Algebra 1 (2007), (44) A.K. Faraj and A.H. Majeed, On Left σ-centralizers of Jordan ideals and generalized Jordan left (σ, τ)-derivations of prime rings, Eng. and Tech. Journal 29 (2011), (45) A. Fošner and N. Peršin, On certain functional equation related to two-sided centralizers, Aeq. Math. 85 (2013), (46) A. Fošner and J. Vukman, Some functional equations on standard operator algebras, Acta Math. Hung. 118 (2008), (47) M. Fošner and J. Vukman, An equation related to twosided centralizers in prime rings, Rocky Mountain J. Math. 41 (2011), (48) O. Gölbaşi and E. Koç, Notes on Jordan (σ, τ) - derivations and Jordan triple (σ, τ) -derivations, Aeq. Math. Aeq. Math. 85 (2013), (49) M. Hongan, N.U. Rehman and R.M. Al-Omary On Lie Ideals and Jordan triple derivations in rings, Rend. Sem. Mat. Univ. Padova 125 (2011), (50) I. Kosi-Ulbl and J. Vukman, An identity related to derivations of standard operator algebras and semisimple H -algebras, CUBO A Math. J. 12 (2010), (51) X.F. Qi, Characterization of centralizers on rings and operator algebras, Acta Math. Sin. 56 (2013), (52) X.F. Qi, S.P. Du and J.C. Hou, Two kinds of additive maps on operator algebras, J. Shanxi Normal Univ. Nat. Sci. Ed. 20 (2006), 1 3. (53) X. Qi, S. Du and J. Hou, Characterization of centralizers, Acta Math. Sin., Chin. Ser. 51 (2008), (54) X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin., Eng. Ser. 29 (2013),

32 32 (55) N. ur Rehman, Jordan triple (α, β) -derivations on semiprime rings with involution, Hacettepe J. Math. Stat. 42 (2013), (56) N. Širovnik and J. Vukman, A result concerning twosided centralizers on algebras with involution, Oper. Matrices 7 (2013), (57) N. Širovnik and J. Vukman, On derivations of operator algebras with involution, Demonstr. Math. 47 (2014), (58) Z. Ullah and M.A. Chaudhry, θ-centralizers of rings with involution, Int. J. Algebra 4 (2010), (59) J. Vukman, An equation on operator algebras and semisimple H -algebras, Glasnik Math. 40 (2005), (60) J. Vukman, On derivations of algebras with involution, Acta Math. Hung. 112 (2006), (61) J. Vukman, On derivations of standard operator algebras and semisimple H -algebras, Studia Sci. Math. Hungar. 44 (2007), (62) J. Vukman, Identities related to derivations and centralizers on standard operator algebras, Taiwanese J. Math. 11 (2007), (63) J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), (64) J. Vukman, On (m, n)-jordan centralizers in rings and algebras, Glasnik Math. 45 (2010), (65) J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glasnik Math. 46 (2011), (66) J. Vukman and M. Fošner, A characterization of twosided centralizers on prime rings, Taiwanese J. Math. 11 (2007), (67) J. Vukman and I. Kosi-Ulbl, Centralisers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), (68) J. Vukman and I. Kosi-Ulbl, A remark on a paper of L. Molnár, Publ. Math. (Debrecen) 67 (2005), (69) J. Vukman and I. Kosi-Ulbl, On centralizers of standard operator algebras and semisimple H -algebras, Acta Math. Hung. 110 (2006), (70) J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hung. 43 (2006), (71) J. Vukman and I. Kosi-Ulbl, On centralizers of semisimple H -algebras, Taiwanese J. Math. 11 (2007), (72) J. Vukman and I. Kosi-Ulbl, On two-sided centralizers of rings and algebras, CUBO A Math. J. 10 (2008),

33 (73) J. Vukman, I. Kosi-Ulbl and D. Eremita, On certain equations in rings, Bull. Austral. Math. Soc. 71 (2005), [12] L. Molnár and B. Zalar, On automatic surjectivity of Jordan homomorphisms, Acta Sci. Math. (Szeged) 61 (1995), (74) F. Botelho and J. Jamison, Algebraic and topological reflexivity properties of l p (X) spaces, J. Math. Anal. Appl., 346 (2008), [13] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (75) R.L. An and. J.C. Hou, A characterization of *- automorphism on B(H), Acta Math. Sin. 26 (2010), (76) Z. Bai and S. Du, Maps preserving products XY Y X on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), (77) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), (78) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), (79) M. Brešar and M. Fošner, On rings with involution equipped with some new product, Publ. Math. (Debrecen) 57 (2000), (80) M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), (81) J. Cui and C.K. Li, Maps preserving product XY Y X on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), (82) J. Cui, Q. Li, J. Hou and X. Qi, Some unitary similarity invariant sets preservers of skew Lie products, Linear Algebra Appl. 457 (2014), (83) J. Cui and C. Park, Maps preserving strong skew Lie product on factor Von Neumann algebras, Acta Math. Sci. (Ser. B Engl. Ed.) 32 (2012), (84) L. Dai and F. Lu, Nonlinear maps preserving Jordan *- products, J. Math. Anal. Appl. 409 (2014), (85) M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), (86) L. Gong, X. Qi, J. Shao and F. Zhang, Strong (skew) ξ-lie commutativity preserving maps on algebras, Cogent Mathematics (2015), 2:

34 34 (87) D. Huo, B. Zheng, J. Xua and H. Liu, Nonlinear mappings preserving Jordan multiple? product on factor von Neumann algebras, Linear Multilinear Alg. 63 (2015), (88) C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY + Y X on factor von Neumann algebras, Linear Algebra Appl. 438 (2013) (89) C. Li, F. Lu and X. Fang, Non-linear ξ-jordan *- derivations on von Neumann algebras, Linear Multilinear Alg. 62 (2014), (90) X. Qi and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Anal. Appl. 397 (2012), (91) A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002), (92) A. Taghavi, V. Darvish, H. Rohi, Additivity of maps preserving products AP ± P A on C -algebras, Math. Slovaca, to appear. (93) A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Alg., to appear. [14] L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. (94) M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Royal Soc. Edinburgh 137 (2007), (95) A. Fošner and M. Fošner, On superderivations and local superderivations, Taiwanese J. Math. 11 (2007), (96) A. Fošner and M. Fošner, On ɛ-derivations and local ɛ- derivations, Acta Math. Sin. 26 (2010), [15] L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), (97) O. Hatori, T. Ishii, T. Miura and S. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, 2003, pp (98) T. Miura, A representation of ring homomorphisms on commutative Banach algebras, Scient. Math. Japon. 53 (2001), (99) T. Miura, A representation of ring homomorphisms on unital regular commutative Banach algebras, Math. J. Okoyama Univ. 44 (2002),

35 (100) T. Miura and S. Takahasi, Ring homomorphisms on real Banach algebras, Int. J. Math. Math. Sci. 48 (2003), (101) T. Miura, S.E. Takahasi and N. Niwa Prime ideals and complex ring homomorphisms on a commutative algebra, Publ. Math. (Debrecen) 70 (2006), (102) T. Miura, S.E. Takahasi and N. Niwa Ring homomorphisms on commutative regular Banach algebras, Nihonkai Math. J. 19 (2008), (103) T. Miura, S.E. Takahasi, N. Niwa and H. Oka, On surjective ring homomorphisms between semi-simple commutative Banach algebras, Publ. Math. (Debrecen), 73 (2008), (104) K. Seddighi and Y. Taghavi, Mappings on spaces of continuous functions, Southeast Asian Bull. Math. 24 (2000), (105) S.E. Takahasi and O. Hatori, A structure of ring homomorphisms on commutative Banach algebras, Proc. Amer. Math. Soc. 127 (1999), [16] L. Molnár, Two characterizations of additive *-automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (106) Z. Bai and J. Hou The additive maps on operator algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 15 (2001), 1 6. (107) Z. Bai and J. Hou, Linear maps and additive maps that preserve operators annihilated by a polynomial, J. Math. Anal. Appl. 271 (2002), (108) Z. Bai and J. Hou, Additive maps preserving orthogonality or commuting with. k, Acta Mathematica Sinica 45 (2002), (109) M. Burgos, J.J. Garcés and A.M. Peralta, Automatic continuity of biorthogonality preservers between compact C - algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011), (110) J. Cui and J. Hou, Linear maps preserving indefinite orthogonality on C -algebras, Chinese Ann. Math., Ser. A 25 (2004), (111) J. Cui and J. Hou, Linear maps preserving elements annihilated by a polynomial XY Y X, Studia Math. 174 (2006), (112) J. Cui, J. Hou and C-G. Park, Indefinite orthogonality preserving additive maps, Arch. Math. 83 (2004), (113) M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003),

36 36 (114) M. Radjabalipour, K. Seddighi and Y. Taghavi, Additive mappings on operator algebras preserving absolute values, Linear Algebra Appl. 327 (2001), (115) M. Radjabalipour and Y. Taghavi, Characterisations of *-homomorphisms of B(H) into B(K), Proceedings of the 31st Iranian Mathematics Conference (Tehran, 2000), , Univ. Tehran, Tehran, (116) A. Taghavi, Additive mappings on operator algebras preserving square absolute values, Honam Math. J. 23 (2001), (117) A. Taghavi, Additive mappings on C -algebras preserving absolute values, Linear Multilinear Algebra 60 (2012), (118) A. Taghavi, Additive mappings on C -algebras subpreserving absolute values of products, Journal of Inequalities and Applications 2012, Article ID 161, 6 p., electronic only (2012). (119) A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), (120) J. Wu, Additive mappings preserving zero products, Acta Math. Sinica 42 (1999), (121) F.J. Zhang and G.X. Ji, Additive maps preserving orthogonality on B(H), J. Shaanxi Normal Univ. Nat. Sci. Ed. 33 (2005), [17] L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (122) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (123) C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), (124) Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner?s theorem, Phys. Lett. A 378 (2014), (125) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), (126) M. Győry, A new proof of Wigner s theorem, Rep. Math. Phys. 54 (2004), (127) J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

37 (128) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), (129) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), [18] L. Molnár, The range of a Jordan *-derivation on an H - algebra, Acta Math. Hung. 72 (1996), (130) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), (131) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, [19] L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), (132) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), (133) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), (134) M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), (135) A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002), [20] C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (136) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (137) A. Ben Ali Essaleh, A.M. Peralta, M.I. Ramírez, Weaklocal derivations and homomorphisms on C*-algebras, Linear Multilinear Alg., to appear. (138) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), (139) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), (140) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), (141) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004),

38 38 (142) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), (143) D. Hadwin and J.K. Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004), (144) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), (145) W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), (146) W. Jing, S. Lu and G. Han, On topological reflexivity of the spaces of derivations on operator algebras, Appl. Math. J. Chinese Univ. Ser. A 17 (2002), (147) S.O. Kim and J.S. Kim, Local automorphisms and derivations on certain C -algebras, Proc. Amer. Math. Soc. 133 (2005), (148) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear. [21] L. Molnár, On rings of differentiable functions, Grazer Math. Ber. 327 (1996), (149) J. Araujo, Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity, Adv. Math. 187 (2004), [22] L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), (150) J. Zhu and C. Xiong, Generalized derivable maps at zero point on some reflexive operator algebras, Linear Algebra Appl. 397 (2005), (151) J. Zhu and C. Xiong, Characterization of generalized Jordan *-left derivations on real nest algebras, Linear Algebra Appl. 404 (2005), (152) J. Zhu and C. Xiong, Generalized Jordan *-left derivations on real nest algebras, Acta Math. Sinica 48 (2005), [23] L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (153) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (154) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011),

39 (155) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), (156) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), (157) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), (158) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, (159) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), (160) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), (161) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), (162) P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), (163) A. Jimenéz-Vargas, A.M. Campoy and M. Villegas- Vallecillos, Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010), (164) W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), (165) W. Jing, S. Lu and G. Han, On topological reflexivity of the spaces of derivations on operator algebras, Appl. Math. J. Chinese Univ. Ser. A 17 (2002), (166) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), (167) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), (168) F.F. Pan, The characterization of the local linear mappings on the subalgebra of matrix algebra M 3 (C), J. Xi an Univ. Post and Telecomm., 11 (2006), (169) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), (170) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005),

40 40 (171) J.H. Zhang, S. Feng and R.H. Wu, Local 2-cocycles of nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 416 (2006), (172) J.H. Zhang, G.X. Ji and H.X. Cao, Local derivations of nest subalgebras of von Neumann algebras, Linear Algebra Appl. 392 (2004), (173) J.H. Zhang, A.L. Yang and F.F. Pan, Local automorphisms on nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 402 (2005), [24] L. Molnár and B. Zalar, Three-variable *-identities and homomorphisms of Schatten classes, Publ. Math. (Debrecen) 50 (1997), (174) W. Timmermann, Remarks on automorphism and derivation pairs in ternary rings of unbounded operators, Arch. Math. 74 (2000), [25] L. Molnár, Jordan *-derivation pairs on a complex *-algebra, Aequationes Math. 54 (1997), (175) D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), (176) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), (177) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), (178) A. Bodaghi, S.Y. Jang and C. Park, On the stability of Jordan *-derivation pairs, Results. Math. 64 (2013), (179) D. Ilišević, Equations arising from Jordan *-derivation pairs, Aequationes Math. 67 (2004), (180) D. Ilišević, Quadratic functionals on modules over complex Banach *-algebras with an approximate identity, Studia Math. 171 (2005), (181) D. Ilišević, Quadratic functionals on modules over alternative *-rings, Studia Sci. Math. Hung. 42 (2005), (182) Abdul-Rahman H. Majeed and A.H. Mahmood, Dependent elements of biadditive mappings on semiprime rings, Journal of Al-Nahrain University 18 (2015), (183) D. Yang, Jordan *-derivation pairs on standard operator algebras and related results, Colloq. Math. 102 (2005), (184) J. Vukman, A note on Jordan *-derivations in semiprime rings with involution, Int. Math. Forum 1 (2006), [26] L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997),

41 (185) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (186) D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 + βxay + A = 0, Linear Algebra Appl. 429 (2008), (187) W. Timmermann, Remarks on automorphism and derivation pairs in ternary rings of unbounded operators, Arch. Math. 74 (2000), [27] L. Molnár, A proper standard C -algebra whose automorphism and isometry groups are topologically reflexive, Publ. Math. (Debrecen) 52 (1998), (188) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), [28] L. Molnár, Characterization of additive *-homomorphisms and Jordan *-homomorphisms on operator ideals, Aequationes Math. 55 (1998), (189) W. Timmermann, Zero product preservers and orthogonality preservers in algebras of unbounded operators, Math. Pannon. 16 (2005), [29] M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *-semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), (190) D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 + βxay + A = 0, Linear Algebra Appl. 429 (2008), (191) M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), (192) M. Marciniak, On extremal positive maps acting between type I factors, M. Bożejko (ed.) et al., Noncommutative harmonic analysis with applications to probability. II: Banach Center Publ. 89 (2010), (193) W. Timmermann, Zero product preservers and orthogonality preservers in algebras of unbounded operators, Math. Pannon. 16 (2005), (194) A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), (195) L. Zhao and J. Hou, Additive Maps Preserving Indefinite Semi-Orthogonality, J. Systems Sci. Math. Sci. 27 (2007),

42 42 [30] M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), (196) A. Aizpuru and F. Rambla, There s something about the diameter, J. Math. Anal. Appl. 330 (2007), (197) A. Aizpuru and F. Rambla, Diameter preserving linear bijections and C 0 (L) spaces, Bull. Belgian Math. Soc. 17 (2010), (198) A. Aizpuru and M. Tamayo, On diameter preserving linear maps, J. Korean Math. Soc. 45 (2008), (199) A. Aizpuru and M. Tamayo, Linear bijections which preserve the diameter of vector-valued maps, Linear Algebra Appl. 424 (2007), (200) B.A. Barnes and A.K. Roy, Diameter preserving maps on various classes of function spaces, Studia Math. 153 (2002), (201) F. Cabello Sánchez, Diameter preserving linear maps and isometries, Arch. Math. 73 (1999), (202) F. Cabello Sánchez, Diameter preserving linear maps and isometries II, Proc. Indian Acad. Sci. 110 (2000), (203) F. Cabello Sánchez, Convex transitive norms on spaces of continuous functions, Bull. London. Math. Soc. 37 (2005), (204) A. Cabello Sánchez and F. Cabello Sánchez, Maximal norms on Banach spaces of continous functions, Math. Proc. Camb. Philos. Soc. 129 (2000), (205) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, (206) J.J. Font and M. Hosseini, Diameter preserving mappings between function algebras, Taiwanese J. Math. 15 (2011), (207) J.J. Font and M. Sanchis, A characterization of locally compact spaces with homeomorphic one-point compactifications, Topology Appl., 121 (2002), (208) J.J. Font and M. Sanchis, Extreme points and the diameter norm, Rocky Mountain J. Math. 34 (2004), (209) F. González and V.V. Uspenskij, On homomorphisms of groups of integer-valued functions, Extracta Math. 14 (1999), (210) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012),

43 (211) A. Jiménez-Vargas, Linear bijections preserving the Hölder seminorm, Proc. Amer. Math. Soc. 135 (2007), (212) A. Jiménez-Vargas and M.A. Navarro, Hölder seminorm preserving linear bijections and isometries, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), (213) J.C. Navarro Pascual and M.G. Sanchez Lirola, Diameter, extreme points and topology, Studia Math. 191 (2009), (214) T.S.S.R.K. Rao and A.K. Roy, Diameter preserving linear bijections of functions spaces, J. Austral. Math. Soc. 70 (2001), [31] L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (215) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (216) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), (217) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), (218) F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), (219) F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), (220) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), (221) M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), (222) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), (223) W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), (224) J.H. Zhang, A.L. Yang and F.F. Pan, Local automorphisms on nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 402 (2005),

44 44 [32] L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), (225) N. Boudi and M. Mbekhta, Additive maps preserving strongly generalized inverses, J. Operator Theory 64 (2010), (226) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), (227) R. El Harti and M Mabrouk, Maps compressing and expanding the numerical range on C -algebras, Linear Multilinear Alg., to appear. [33] V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), (228) J. Cui and J. Hou, A characterization of indefiniteunitary invariant linear maps and relative results, Northeast. Math. J. 22(2006), (229) D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 + βxay + A = 0, Linear Algebra Appl. 429 (2008), (230) T.S.S.R.K. Rao, Nice surjections on spaces of operators, Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), [34] L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), (231) Z. Bai, J. Hou and S. Du, Additive maps preserving rankone operators on nest algebras, Linear and Multilinear Algebra 58 (2010), (232) K.I. Beidar, M. Brešar, M.A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear Algebra Appl. 312 (2000), (233) K.I. Beidar, M. Brešar and M.A. Chebotar, Functional identities on upper triangular matrix algebras, J. Math. Sci. 102 (2000), (234) D. Benkovič, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl. 397 (2005), (235) C. Boboc, S. Dăscălescu and L. van Wyk, Jordan isomorphisms of 2-torsionfree triangular rings, Linear and Multilinear Alg., to appear. (236) W.S. Cheung and C.K. Li, Linear operators preserving generalized numerical ranges and radii on certain triangular algebras of matrices, Canad. Math. Bull. 44 (2001),

45 (237) W.L. Chooi, Rank-one non-increasing additive maps between block triangular matrix algebras, Linear and Multilinear Algebra 58 (2010), (238) W.L. Chooi and M.H. Lim, Rank-one nonincreasing mappings on triangular matrices and some related preserver problems, Linear Multilinear Alg. 49 (2001), (239) W.L. Chooi and M.H. Lim, Coherence invariant mappings on block triangular matrix spaces, Linear Algebra Appl. 346 (2002), (240) W.L. Chooi and M.H. Lim, Some linear preserver problems on block triangular matrix algebras, Linear Algebra Appl. 370 (2003), (241) W.L. Chooi and M.H. Lim, Additive rank-one preserver on block triangular matrix spaces, Linear Algebra Appl. 416 (2006), (242) J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or tr-rank, Bull. Austral. Math. Soc. 65 (2002), (243) J. Cui and J. Hou, Linear maps preserving idempotence on nest algebras, Acta Math. Sinica 20 (2004), (244) J. Cui, J. Hou and B. Li, Linear preservers on upper triangular operator matrix algebras, Linear Algebra Appl. 336 (2001), (245) S. Dăscălescu, S. Preduţ, L. van Wyk, Jordan isomorphisms of generalized structural matrix rings, Linear Multilinear Alg. 61 (2013), (246) Y. Du and Y. Wang, Additivity of Jordan maps on triangular algebras, Linear Multiliear Alg. 60 (2012), (247) Y. Du and Y. Wang, Jordan homomorphisms of upper triangular matrix rings over a prime ring, Linear Algebra Appl. 458 (2014), (248) A. Fošner, Order preserving maps on the poset of upper triangular idempotent matrices, Linear Algebra Appl. 403 (2005), (249) A. Fošner, Automorphisms of the poset of upper triangular idempotent matrices, Linear Multilinear Algebra 53 (2005), (250) J. Hou and J. Cui, Rank-1 preserving linear maps on nest algebras, Linear Algebra Appl. 369 (2003), (251) J. Hou and J. Cui, Completely rank nonincreasing linear maps on nest algebras, Proc. Amer. Math. Soc. 132 (2004), (252) C.K. Liu and W.Y. Tsai, Jordan isomorphisms of upper triangular matrix rings, Linear Algebra Appl. 426 (2007),

46 46 (253) T. Petek, Spectrum and commutativity preserving mappings on triangular matrices, Linear Algebra Appl. 357 (2002), (254) J. Qi, G. Ji, Linear maps preserving idempotency of products of matrices on upper triangular matrix algebras, Commun. Math. Res. 25 (2009), (255) M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), (256) R. Slowik, Maps on infinite triangular matrices preserving idempotents, Linear Multilinear Alg. 62 (2014), (257) R. Slowik, Linear minimal rank preservers on infinite triangular matrices, Kyushu J. Math. 69 (2015), (258) X.M. Tang, C.G. Cao and X. Zhang, Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 338 (2001), (259) J.L. Xu, C.G. Cao and X.M. Tang Linear preservers of idempotence on triangular matrix spaces over any field, Internat. Math. Forum 2 (2007), (260) A. Yang, Jordan isomorphisms on nest subalgebras, Advances in Mathematical Physics, Volume 2015, Article ID , 6 pages. (261) A.L. Yang and J.H. Zhang, Jordan isomorphisms on nest subalgebras of factor von Neumann algebras, Acta Math. Sinica 51 (2008), (262) Y. Wang and Y. Wang, Jordan homomorphisms of upper triangular matrix rings, Linear Algebra Appl. 439 (2013), (263) T.L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), (264) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, (265) J.H. Zhang, A.L. Yang and F.F. Pan, Linear maps preserving zero products on nest subalgebras of von Neumann algebras, Linear Algebra Appl. 412 (2006), (266) X.H. Zhang and J.H. Zhang, Characterizations of Jordan isomorphisms of nest algebras, Acta Math. Sin. 56 (2013), [35] L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (267) D. Bakič and B. Guljaš, Wigner s theorem in Hilbert C - modules over C -algebras of compact operators, Proc. Amer. Math. Soc. 130 (2002),

47 (268) D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), (269) A. Bonami, G. Garrigos and P. Jaming, Discrete radar ambiguity problems, Appl. Comput. Harmon. Anal. 23 (2007), (270) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (271) H. Du and H.X. Cao, Some remarks on Wigner s theorem, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), (272) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (273) Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner?s theorem, Phys. Lett. A 378 (2014), (274) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), (275) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), (276) M. Győry, A new proof of Wigner s theorem, Rep. Math. Phys. 54 (2004), (277) D. Ilišević and A. Turněk, A quantitative version of Herstein??s theorem for Jordan *-isomorphisms, Linear Multilinear Alg., to appear. (278) D.L.W. Kuo, M.C. Tsai, N.C. Wong and J. Zhang, Maps preserving Schatten p-norms of convex combinations, Abstr. Appl. Anal. (2014), Article ID , 5 pp. (279) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, J. Math. Study 37 (2004), (280) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, Front. Math. China 1 (2006), (281) D. Ilisevič and A. Turnšek, Stability of the Wigner equation - a singular case, J. Math. Anal. Appl. 429 (2015), (282) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), (283) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005),

48 48 (284) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), (285) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), (286) A. Turnšek, A variant of Wigner?s functional equation, Aequat. Math., to appear. [36] L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), (287) J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or tr-rank, Bull. Austral. Math. Soc. 65 (2002), (288) J. Cui and J. Hou, Linear maps preserving ideals of C - algebras, Proc. Amer. Math. Soc. 131 (2003), (289) W. Jing, P. Li and S. Lu, Additive mappings that preserve rank one nilpotent operators, Linear Algebra Appl. 367 (2003), (290) S.O. Kim, Linear maps preserving ideals of C -algebras, Proc. Amer. Math. Soc. 129 (2001), (291) C.W. Leung, C.W. Tsai and N.C. Wong, Linear disjointness preservers of W -algebras, Math. Z. 270 (2012), (292) C. Yan, G. Zhang and C. Gao, The form of finite rank idempotent operators of B(H) and its application, Natur. Sci. J. Harbin Normal Univ. 22 (2006), (293) H. You, S. Liu and G. Zhang, Rank one preserving R-linear maps on spaces of self-adjoint operators on complex Hilbert spaces, Linear Algebra Appl. 416 (2006) (294) G. Zhang and S. Liu, Rank one preserving linear maps on spaces of symmetric operators, J. Heilongjiang Univ. Natur. Sci. 23 (2006), (295) X. Zhang, H. Cui and J. Hou, Jordan semi-triple mappings preserving rank and minimal rank, Proceedings of the Third International Workshop on Matrix Analysis and Applications, vol 3., World Academic Union, , (296) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, [37] L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (297) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009),

49 (298) F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), (299) F. Botelho and J. Jamison, Algebraic and topological reflexivity properties of l p (X) spaces, J. Math. Anal. Appl., 346 (2008), (300) F. Botelho and J. Jamison, Algebraic reflexivity of C(X, E) and Cambern s theorem, Studia Math. 186 (2008), (301) F. Botelho and J. Jamison, Topological reflexivity of spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009), (302) F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), (303) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), (304) F. Botelho and J. Jamison, Algebraic reflexivity of tensor product spaces, Houston J. Math. 36 (2010), (305) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), (306) F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (307) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), (308) F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), (309) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, (310) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), (311) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), (312) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), (313) A. Jimenéz-Vargas, A.M. Campoy and M. Villegas- Vallecillos, Algebraic reflexivity of the isometry group of some 49

50 50 spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010), (314) P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), (315) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), (316) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), (317) T.S.S.R.K. Rao, A note on the algebraic reflexivity of the group of surjective isometries of K(C(K)), Expo. Math. 26 (2008), [38] L. Molnár, A generalization of Wigner s unitary-antiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (318) D. Bakič and B. Guljaš, Hilbert C -modules over C - algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), (319) D. Bakič and B. Guljaš, Wigner s theorem in Hilbert C - modules over C -algebras of compact operators, Proc. Amer. Math. Soc. 130 (2002), (320) D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), (321) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (322) J. Chmieliński, D. Ilišević, M.S. Moslehian and G.H. Sadeghi, Perturbation of the Wigner equation in inner product C -modules, J. Math. Phys. 49 (2008), (323) H. Du and H.X. Cao, Some remarks on Wigner s theorem, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), (324) C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), (325) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), (326) J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, (327) K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), (328) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012),

51 (329) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, J. Math. Study 37 (2004), (330) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, Front. Math. China 1 (2006), (331) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), (332) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), (333) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), (334) W. Zhang and J. Hou, Maps preserving numerical radius or cross norms of products on 2 2 matrix algebras, Journal of North University of China (Natural Science Edition) 30 (2009), [39] L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (335) G. An and J. Hou, Characterizations of isomorphisms by multiplicative maps on operator algebras, Northeast. Math. J. 17 (2001), (336) G. An and J. Hou, Rank-preserving multiplicative maps on B(X), Linear Algebra Appl. 342 (2002), (337) G. An and J. Hou, Multiplicative maps on matrix algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 16 (2002), 1 4. (338) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (339) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), (340) W.S. Cheung, S. Fallat and C.K. Li, Multiplicative preservers on semigroups of matrices, Linear Algebra Appl. 355 (2002), (341) F.G. Hu, Multiplicative maps on matrices preserving the Frobenius norm, J. Hubei Inst. National. Nat. Sci. 25 (2007), (342) L. Huang, L. Chen and F. Lu, Characterizations of automorphisms of operator algebras on Banach spaces, J. Math. Anal. Appl. 430 (2015), (343) F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002), (344) F. Lu and J. Xie, Multiplicative mappings of rings, Acta Math. Sinica 22 (2006),

52 52 (345) L.W. Marcoux, H. Radjavi and A.R. Sourour, Multiplicative maps that are close to an automorphism on algebras of linear transformations, Studia Math. 214 (2013), [40] L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), (346) G. An and J. Hou, Characterizations of isomorphisms by multiplicative maps on operator algebras, Northeast. Math. J. 17 (2001), (347) G. An and J. Hou, Rank-preserving multiplicative maps on B(X), Linear Algebra Appl. 342 (2002), (348) G. An and J. Hou, Multiplicative maps on matrix algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 16 (2002), 1 4. (349) F.G. Hu, Multiplicative maps on matrices preserving the Frobenius norm, J. Hubei Inst. National. Nat. Sci. 25 (2007), (350) F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002), (351) F. Lu and J. Xie, Multiplicative mappings of rings, Acta Math. Sinica 22 (2006), [41] L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (352) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), (353) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), (354) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), (355) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), (356) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), (357) S. Dutta and T.S.S.R.K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), (358) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005),

53 (359) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), (360) J.H. Liu, N.C. Wong, Local automorphisms of operator algebras, Taiwanese J. Math. 11 (2007), (361) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), (362) T.S.S.R.K. Rao, Local surjective isometries of function spaces, Expositiones Math. 18 (2000), (363) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), (364) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), (365) J. Zhu and C. Xiong, Generalized derivable maps at zero point on some reflexive operator algebras, Linear Algebra Appl. 397 (2005), (366) J. Zhu and C. Xiong, Characterization of generalized Jordan *-left derivations on real nest algebras, Linear Algebra Appl. 404 (2005), (367) J. Zhu and C. Xiong, Generalized Jordan *-left derivations on real nest algebras, Acta Math. Sinica 48 (2005), [42] L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (368) O. Hatori, T. Ishii, T. Miura and S. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, 2003, pp (369) T. Miura, S.E. Takahasi and N. Niwa Ring homomorphisms on commutative regular Banach algebras, Nihonkai Math. J. 19 (2008), [43] L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), (370) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (371) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), (372) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004),

54 54 (373) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), (374) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), [44] L. Molnár, Generalization of Wigner s unitary-antiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (375) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (376) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), (377) C.W Leung, C.K. Ng and N.C. Wong, Linear orthogonality preservers of Hilbert C -modules, J. Operator Theory 71 (2014), (378) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), (379) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear and Multilinear Alg. 54 (2006), (380) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on finite dimensional projective spaces over division rings, Linear and Multilinear Alg. 56 (2008), (381) L. Rodman and P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear and Multilinear Alg. 57 (2009), (382) P. Šemrl, Generalized symmetry transformations on quaternionic indefinite inner product spaces: An extension of quaternionic version of Wigner s theorem, Commun. Math. Phys. 242 (2003), (383) P. Šemrl, Applying projective geometry to transformations on rank one idempotents, J. Funct. Anal. 210 (2004), (384) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), (385) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (386) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007),

55 (387) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), [45] L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (388) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (389) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), (390) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), (391) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), (392) A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), (393) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), (394) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear. (395) F. Pop, On local representations of von Neumann algebras, Proc. Amer. Math. Soc. 132 (2004), [46] L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (396) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), (397) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (398) S. Gudder and R. Greechie, Sequential products on effect algebras, Rep. Math. Phys. 49 (2002), (399) K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), (400) K. He, F. Sun and J. Hou, Separability of sequential isomorphisms on quantum effects in multipartite systems, J. Phys. A: Math. Theor. 48 (2015), (9pp). 55

56 56 (401) J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), (402) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), (403) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), (404) J. Marovt and T. Petek, Automorphisms of Hilbert space effect algebras equipped with Jordan triple product, the twodimensional case, Publ. Math. (Debrecen) 66 (2005), (405) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), (406) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), (407) F. Qu, A class of bijective maps preserving *- multiplicativity on B(H), J. Baoji College Arts Sci. Nat. Sci. 29 (2009), (408) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), (409) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), (410) Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID , 5 pages. [47] L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (411) G. Chevalier, Lattice approach to Wigner-type theorems, Int. J. Theor. Phys. 44 (2005), (412) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (413) G. Chevalier, Wigner-type theorems for projections, Int. J. Theor. Phys. 47 (2008), (414) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), (415) K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), (416) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012),

57 (417) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (418) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), [48] L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (419) R.L. An and J.C. Hou, Characterizations of Jordan - skew multiplicative maps on operator algebras of indefinite inner product spaces, Chinese Ann. Math. 26 (2005), (420) R.L. An and J.C. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), (421) R.L. An and J.C. Hou, Jordan ring isomorphism on the space of symmetric operators, Acta Math. Sin. 55 (2012), (422) J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal. Appl. 282 (2003), (423) Z. Bai and S. Du, Maps preserving products XY Y X on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), (424) M. Dobovišek, Maps from M n (F) to F that are multiplicative with respect to Jordan triple product, Publ. Math. (Debrecen) 73 (2008), (425) M. Dobovišek, Maps from M 2 (F) to M 3 (F) that are multiplicative with respect to the Jordan triple product, Aequationes Math. 85 (2013), (426) H. Gao, Jordan-triple multiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), (427) R.J. Gu and P.S. Ji, Jordan triple maps of triangular algebras, J. Qingdao Univ. (Nat. Sci. Ed.) 20 (2007), (428) X. Hao, P. Ren and R.L. An, Jordan semi-triple multiplicative maps on symmetric matrices, Advances in Linear Algebra and Matrix Theory 3 (2013), (429) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (430) S.O. Kim and C. Park, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), (431) G. Lešnjak and N.S. Sze, On injective Jordan semi-triple maps of matrix algebras, Linear Algebra Appl. 414 (2006), (432) P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004),

58 58 (433) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), (434) F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), (435) F. Lu, Jordan derivable maps of prime rings, Commun. Algebra 38 (2010), (436) F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010), (437) H.A. Mahdi and A.H. Majeed, Derivable maps of prime rings, Iraqi J. Sci. 54 (2013), (438) X. Qi and J. Hou, Additivity of Lie multiplicative maps on triangular algebras Linear Multilinear Algebra 59 (2011), (439) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), (440) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (441) A. Taghavi, V. Darvish, H. Rohi, Additivity of maps preserving products AP ± P A on C -algebras, Math. Slovaca, to appear. (442) A. Taghavi, H. Rohi and V. Darvish, Non-linear *- Jordan derivations on von Neumann algebras, Linear Multilinear Alg., to appear. (443) X.P. Yu and F.Y. Lu, Maps preserving Lie product on B(X), Taiwanese J. Math. 12 (2008), (444) H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, [49] M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (445) D.A.A. Ahmed and R. Tribak, Additivity of elementary maps on generalized matrix algebras, Journal of Algebra, Number Theory: Advances and Applications 13 (2015), (446) R. An and J. Hou, Jordan elementary map on operator algebras, Adv. in Math. (China) 41 (2012), (447) P. Ara and M. Mathieu, Local multipliers of C*-algebras, Springer Monographs in Mathematics. Springer-Verlag, London, (448) X.H. Cheng and W. Jing, Additivity of maps on triangular algebras, Electr. J. Lin. Alg. 17 (2008), (449) S. Feng, Additivity of elementary maps on nest subalgebras of von Neumann algebra, J. Baoji College Arts Sci. Nat. Sci. 28 (2008),

59 (450) P. Li, Elementary maps on nest algebras, J. Math. Anal. Appl. 320 (2006), (451) P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004), (452) P. Li and F. Lu, Elementary operators on J -subspace lattice algebras, Bull. Austral Math. Soc. 68 (2003), (453) P. Li and F. Lu, Additivity of elementary maps on rings, Commun. Alg. 32 (2004), (454) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), (455) P. Li and F. Lu, Jordan elementary operators on J - subspace lattice algebras algebras, Linear Algebra Appl., 428 (2008), (456) M. Mathieu, Elementary operators on Calkin algebras, Irish Math. Soc. Bulletin 46 (2001), (457) Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), (458) W. Timmermann, Elementary operators on algebras of unbounded operators, Acta Math. Hung. 107 (2005) (459) L. Wang, Additivity of Jordan triple elementary maps on triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 33 (2012). (460) M. Wei, J. Zhang Elementary maps on triangular algebra, J. Northwest Univ. 45 (2009), [50] L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), (461) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (462) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), (463) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (464) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), [51] L. Molnár, A reflexivity problem concerning the C -algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), (465) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010),

60 60 (466) F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp [52] L. Molnár, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (467) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (468) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (469) J. Dauxois, G.M. Nkiet, Y. Romain, Canonical analysis relative to a closed subspace, Linear Algebra Appl. 388 (2004) (470) A. Galántai, Subspaces, angles and pairs of orthogonal projections, Linear and Multilinear Algebra, 56 (2008), (471) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), (472) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), (473) T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), (474) J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), (475) P. Šemrl, Orthogonality preserving transformations on the set of n-dimensional subspaces of a Hilbert space, Illinois J. Math. 48 (2004), (476) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), (477) P. Šemrl, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), (478) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (479) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007),

61 (480) L. Wang, J. Hou and K. He, Fidelity, sub-fidelity, superfidelity and their preservers, Int. J. Quantum Inf. 13 (2015), , 11 pp. (481) J. Xu, B. Zheng and H. Yao, Linear transformations between multipartite quantum systems that map the set of tensor product of idempotent matrices into idempotent matrix set, J. Funct. Space Appl. Volume 2013, Article ID , 7 pages. (482) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, [53] L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (483) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), (484) G. Cassinelli, E. De Vito, P.J. Lahti and A. Levrero, The Theory of Symmetry Actions in Quantum Mechanics, Lecture Notes in Physics 654, Springer, (485) D.J. Foulis, Observables, states, and symmetries in the context of CB-effect algebras, Rep. Math. Phys. 60 (2007), (486) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), (487) P. Lahti, M. M aczynski and K. Ylinen, Unitary and antiunitary operators mapping vectors to paralell or to orthogonal ones, with applications to symmetry transformations, Lett. Math. Phys. 55 (2001), (488) M. Maczynski and E. Scheffold, On elementary operators of length 1 and some order intervals in B s (H), Acta Sci. Math. (Szeged) 70 (2004), (489) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), (490) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), (491) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), (492) S. Pulmannová, Tensor products of Hilbert space effect algebras, Rep. Math. Phys. 53 (2004), (493) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), (494) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013),

62 62 (495) P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) [54] L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (496) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), (497) G. Cassinelli, E. De Vito, P.J. Lahti and A. Levrero, The Theory of Symmetry Actions in Quantum Mechanics, Lecture Notes in Physics 654, Springer, (498) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (499) J. Hamhalter, Spectral order of operators and range projections, J. Math. Anal. Appl. 331 (2007), (500) K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), (501) H. Heinosaari, A simple sufficient condition for the coexistence of quantum effects, J. Phys. A: Math. Theor. 46 (2013), (502) H. Heinosaari, D. Reitzner and P. Stano, Notes on joint measurability of quantum observables, Found. Phys. 38 (2008), (503) T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), (504) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), (505) M. Radjabalipour and P. Torabian, On nonlinear preservers of weak matrix majorization, Bull. Iranian Math. Soc. 32 (2006), (506) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), (507) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), (508) P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) (509) P. Stano, D. Reitzner and T. Heinosaari, Coexistence of qubit effects, Phys. Rev. A 78 (2008), [55] L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp , Birkhäuser, 2001.

63 (510) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (511) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), [56] L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (512) S. Artstein-Avidan and B. A. Slomka, Order isomorphisms in cones and a characterization of duality for ellipsoids, Sel. Math. New Ser. 18 (2012), (513) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), (514) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), (515) J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), (516) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (517) M. Maczynski and E. Scheffold, On elementary operators of length 1 and some order intervals in B s (H), Acta Sci. Math. (Szeged) 70 (2004), (518) P. Šemrl, Linear Preserver Problems, In Handbook of Linear Algebra (L. Hogben edt.) Discrete Mathematics and its Applications, Chapman and Hall, 2007, (519) P. Šemrl, Non-linear commutativity preserving maps on hermitian matrices, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), (520) P. Šemrl, Comparability preserving maps on bounded observables, Integral Equations Operator Theory 62 (2008), (521) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), (522) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), (523) P. Šemrl and A.R. Sourour, Order preserving maps on hermitian matrices, J. Austral. Math. Soc. 95 (2013), (524) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), [57] L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001),

64 64 (525) I. Bengtssone and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, (526) L. Maccone, Information-disturbance tradeoff in quantum measurements, Phys. Rev. A 73 (2006), (527) G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), (528) A. Rivas, S.F. Huelga and M. Plenio, Quantum non- Markovianity: characterization, quantification and detection, Rep. Progr. Phys. 77 (2014), , 26 pp. (529) T. Tanengtang, K. Paithoonwattanakij, P.P. Yupapin and S. Suchat, Quantum bits generation using correlated photons: Fidelity and error corrections, Optik 121 (2010), (530) L. Wang, J. Hou and K. He, Fidelity, sub-fidelity, superfidelity and their preservers, Int. J. Quantum Inf. 13 (2015), , 11 pp. [58] L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (531) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (532) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), (533) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), (534) M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), (535) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), (536) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), (537) J.H. Liu, N.C. Wong, Local automorphisms of operator algebras, Taiwanese J. Math. 11 (2007), (538) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), (539) H. Zhang and X. Wang, Local E-automorphisms on effect algebras, Pure Math. 2 (2012), (540) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007.

65 [59] L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp (541) R.L. An and J.C. Hou, Characterizations of Jordan - skew multiplicative maps on operator algebras of indefinite inner product spaces, Chinese Ann. Math. 26 (2005), (542) R.L. An and J.C. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), (543) R.L. An and J.C. Hou, A characterization of *- automorphism on B(H), Acta Math. Sin. 26 (2010), (544) R.L. An and J.C. Hou, Jordan ring isomorphism on the space of symmetric operators, Acta Math. Sin. 55 (2012), (545) G. Dolinar, Maps on M n preserving Lie products, Publ. Math. (Debrecen) 71 (2007), (546) S. Feng and J.H. Zhang, Additivity of elementary maps on nest subalgebra of von Neumann algebra, J. Xi an Univ. Art. Sci. Nat. Sci. Ed. 9 (2006), (547) A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), (548) H. Gao, Jordan-triple multiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), (549) X. Hao, P. Ren and R.L. An, Jordan semi-triple multiplicative maps on symmetric matrices, Advances in Linear Algebra and Matrix Theory 3 (2013), (550) P. Ji, Additivity of Jordan maps on Jordan algebras, Linear Algebra Appl. 431 (2009), (551) P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), (552) P. Ji, L. Sun, J. Chen, Jordan multiplicative isomorphisms on spin factors, J. Shandong Univ. Nat. Sci. Ed. 46 (2011), 1 3. (553) W. Jing and F. Lu, Additivity of Jordan (triple) derivations on rings, Linear and Multilinear Algebra 40 (2012), (554) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), (555) Y. Li and Z. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Algebra 22 (2011),

66 66 (556) Z. Ling and F. Lu, Jordan maps of nest algebras, Linear Algebra Appl. 387 (2004), (557) F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), (558) F. Lu, Jordan maps on associative algebras, Commun. Algebra 31 (2003), (559) F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), (560) F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010), (561) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), (562) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (563) X.P. Yu and F.Y. Lu, Maps Preserving Lie Product on B(X), Taiwanese J. Math. 12 (2008), (564) H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, [60] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (565) Z. Abdelali, A. Achchi and R. Marzouki, Maps preserving the local spectrum ofskew-product of operators, Linear Algebra Appl. 485 (2015), (566) T. Abe, S. Akiyama, and O. Hatori, Isometries of the special orthogonal group, Linear Algebra Appl. 439 (2013), (567) Z. Bai and J. Hou, Characterizing isomorphisms between standard operator algebras by spectral functions, J. Oper. Theo. 54 (2005), (568) M. Bendaoud, Preservers of local spectrum of matrix Jordan triple products, Linear Algebra Appl. 471 (2015), (569) M. Bendaoud, M. Jabbar and M. Sarih Preservers of local spectra of operator products, Linear and Multilinear Algebra 63 (2015), (570) A. Bourhim, M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), (571) A. Bourhim, J. Mashreghi, and A. Stepanyan, Nonlinear maps preserving the minimum and surjectivity moduli, Linear Algebra Appl. 463 (2014), (572) A. Bourhim and J. Mashreghi, Maps preserving the local spectrum of product of operators, Glasgow Math. J. 57 (2015),

67 (573) M. Brešar and Š. Špenko Determining elements in Banach algebras through spectral properties, J. Math. Anal. Appl. 393 (2012), (574) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Nonlinear conditions for weighted composition operators between Lipschitz algebras, J. Math. Anal. Appl. 359 (2009), (575) J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), (576) J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), (577) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), (578) J. Cui and C.K. Li, Maps preserving peripheral spectrum of Jordan products of operators, Oper. Matrices 6 (2012), (579) J. Cui, C.K. Li and Y.T. Poon, Pseudospectra of special operators and pseudospectrum preservers, J. Math. Anal. Appl. 419 (2014), (580) Q. Di and J. Hou, Maps preserving numerical range of products of operators, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 19 (2005), 1 4. (581) D. Ethier, T. Lindberg, and A. Luttman, Polynomial identification in uniform and operator algebras, Ann. Funct. Anal. 1 (2010), (582) H.L Gau and C.K. Li, C -isomorphisms, Jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc. 135 (2007), (583) S.A. Grigoryan and T.V. Tonev, Shift-invariant Uniform Algebras on Groups, Monografie Matematyczne, Vol. 68, Birkhäuser Verlag, (584) O. Hatori, K. Hino, T. Miura and H. Oka, Peripherally monomial-preserving maps between uniform algebras, Mediterr. J. Math. 6 (2009), (585) O. Hatori, G. Hirasawa and T. Miura, Additively spectralradius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math. 8 (2010), (586) O. Hatori, A. Jimenez-Vargas and M. Villegas- Vallecillos, Maps which preserve norms of non-symmetrical quotients between groups of exponentials of Lipschitz functions, J. Math. Anal. Appl. 415 (2014),

68 68 (587) O. Hatori, S. Lambert, A. Luttman, T. Miura, T. Tonev, and R. Yates Spectral preservers in commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (588) O. Hatori, T. Miura and H. Oka, An example of multiplicatively spectrum-preserving maps between non-isomorphic semi-simple commutative Banach algebras, Nihonkai Math. J. 18 (2007), (589) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), (590) O. Hatori, T. Miura, H. Oka and H. Takagi, Peripheral multiplicativity of maps on uniformly closed algebras of continuous functions which vanish at infinity, Tokyo J. of Math. 32 (2009), (591) O. Hatori, T. Miura, R. Shindo and H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo 59 (2010), (592) O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006), (593) O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), (594) G. Hirasawa, T. Miura and R. Shindo, A generalization of the Banach-Stone theorem for commutative Banach algebras, Nihonkai Math. J. 21 (2010), (595) G. Hirasawa, T. Miura and H. Takagi, Spectral radii conditions for isomorphisms between unital semisimple commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (596) G. Hirasawa and H. Oka, A polynomially spectrum preserving map between uniform algebras, Nihonkai Math. J. 21 (2010), (597) D. Honma, Surjections on the algebras of continuous functions which preserve peripheral spectrum, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp (598) D. Honma, Norm-preserving surjections on the algebras of continuous functions, Rocky Mount. J. Math. 39 (2009),

69 (599) M. Hosseini and M. Amini, Peripherally multiplicative maps between Figa-Talamanca-Herz algebras, Publ. Math. (Deberecen) 86 (2015), (600) M. Hosseini and J.J. Font, Norm-additive in modulus maps between function algebras, Banach J. Math. Anal. 8 (2014), (601) M. Hosseini and F. Sady, Multiplicatively rangepreserving maps between Banach function algebras, J. Math. Anal. Appl. 357 (2009), (602) M. Hosseini and F. Sady, Multiplicatively and nonsymmetric multiplicatively norm-preserving maps, Cent. Eur. J. Math. 8 (2010), (603) M. Hosseini and F. Sady, Weighted composition operators on C(X) and Lip c (X, α), Tokyo J. of Math. 35 (2012), (604) M. Hosseini and F. Sady, Banach function algebras and certain polynomially norm-preserving maps, Banach J. Math. Anal. 6 (2012), (605) M. Hosseini and F. Sady, Maps between Banach function algebras satisfying certain norm conditions, Cent. Eur. J. Math. 11 (2013), (606) J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc. 134 (2006), (607) J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), (608) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (609) A. Jiménez-Vargas, K. Lee, A. Luttman and M. Villegas- Vallecillos, Generalized weak peripheral multiplicativity in algebras of Lipschitz functions, Cent. Eur. J. Math. 11 (2013), (610) A. Jiménez-Vargas, A. Luttman and M. Villegas- Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain J. Math. 40 (2010), (611) A. Jiménez-Vargas and M. Villegas-Vallecillos, Lipschitz algebras and peripherally-multiplicative maps, Acta Math. Sinica 24 (2008), (612) S. Lambert, A. Luttman and T. Tonev, Weakly peripherally-multiplicative mappings between uniform algebras, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp

70 70 (613) K. Lee, Characterizations of peripherally multiplicative mappings between real function algebras, Publ. Math. (Debrecen) Math. Debrecen 84 (2014), (614) K. Lee, A multiplicative Banach-Stone theorem, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp (615) K. Lee and A. Luttman, Generalizations of weakly peripherally multiplicative maps between uniform algebras, J. Math. Anal. Appl. 375 (2011), (616) C.K. Li and E. Poon, Schur product of matrices and numerical radius (range) preserving maps, Linear Alg. Appl. 424 (2007), (617) C.K. Li, P. Šemrl and N.S. Sze, Maps preserving the nilpotency of products of operators, Linear Alg. Appl. 424 (2007), (618) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), (619) A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Europ. J. Math., 6 (2008), (620) A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135 (2007), (621) A. Maouche, Spectrum preserving mappings in Banach algebras, Far East J. Math. Sci. 21 (2006), (622) T. Miura, D. Honma A generalization of peripherallymultiplicative surjections between standard operator algebras, Cent. Eur. J. Math. 7 (2009), (623) T. Miura, D. Honma and R. Shindo, Divisibly normpreserving maps between commutative Banach algebras, Rocky Mountain J. Math. 41 (2011), (624) T. Miura and T. Tonev, Mappings onto multiplicative subsets of function algebras and spectral properties of their products, Ark. Mat. 53 (2015), (625) M. Najafi Tavani, Peripherally multiplicative operators on unital commutative Banach algebras, Banach J. Math. Anal. 9 (2015), (626) N.V. Rao and A.K. Roy, Multiplicatively spectrumpreserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), (627) N.V. Rao and A.K. Roy, Multiplicatively spectrumpreserving maps of function algebras II, Proc. Edinb. Math. Soc. 48 (2005),

71 (628) N.V. Rao, T.V. Tonev and E.T. Toneva, Uniform algebra isomorphisms and peripheral spectra, In: Topological Algebras (Eds. A. Malios and M. Haralampidu), Contemporary Math. 427 (2007), (629) R. Shindo, Norm conditions for real-algebra isomorphisms between uniform algebras, Centr. Eur. Math. J. 8 (2010), (630) R. Shindo, Maps between uniform algebras preserving norms of rational functions, Mediterr. J. Math. 8 (2011), (631) R. Shindo, Weakly-peripherally multiplicative conditions and isomorphisms between uniform algebras, Publ. Math. (Debrecen) 78 (2011), (632) A. Taghavi and E. Dadar, Range-preserving maps on operator algebras, Int. J. Contemp. Math. Sci. 3 (2008), (633) T. Tonev, Weak multiplicative operators on function algebras without units, Banach Cent. Publ. 91 (2010), (634) T. Tonev, Spectral conditions for almost composition operators between algebras of functions, Proc. Amer. Math. Soc. 142 (2014), See more at: 08/S /sthash.R7f2ogZX.dpuf (635) T. Tonev and A. Luttman, Algebra isomorphisms between standard operator algebras, Studia Math. 191 (2009), (636) T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl. 357 (2009), (637) W. Zhang and J. Hou, Maps preserving peripheral spectrum of Jordan semi-triple products of operators, Linear Algebra Appl. 435 (2011), (638) W. Zhang and J. Hou, Maps preserving peripheral spectrum of generalized Jordan products of self-adjoint operators, Abstr. Appl. Anal. Volume 2014, Article ID , 8 pages. (639) W. Zhang and J. Hou, Maps preserving peripheral spectrum of generalized products of operators, Linear Algebra Appl. 468 (2015), (640) W. Zhang, J. Hou and X. Qi, Maps preserving peripheral spectrum of generalized Jordan products of operators, Acta Math. Sin. 31 (2015), [61] L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002),

72 72 (641) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), (642) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), [62] L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (643) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), (644) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), (645) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), (646) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, (647) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), (648) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), (649) P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), (650) P.S. Ji and C.P. Wei, Isometries and 2-local isometries on Cartan bimodule algebras in hyperfinite factors of type II 1, Acta Math. Sinica. 49 (2006), (651) A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), (652) S.O. Kim and J.S. Kim, Local automorphisms and derivations on M n, Proc. Amer. Math. Soc. 132 (2004), (653) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), (654) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear.

73 [63] F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (655) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), (656) F. Botelho and J. Jamison, Algebraic reflexivity of C(X, E) and Cambern s theorem, Studia Math. 186 (2008), (657) F. Botelho and J. Jamison, Topological reflexivity of spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009), (658) F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), (659) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), (660) F. Botelho and J. Jamison, Algebraic reflexivity of tensor product spaces, Houston J. Math. 36 (2010), (661) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), (662) F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (663) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), (664) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, (665) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), (666) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), (667) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), (668) A. Jimenéz-Vargas, A.M. Campoy and M. Villegas- Vallecillos, Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010),

74 74 (669) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), (670) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), (671) T.S.S.R.K. Rao, A note on the algebraic reflexivity of the group of surjective isometries of K(C(K)), Expo. Math. 26 (2008), [64] L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (672) R. An and J. Hou, Characterizations of Lie-skew multiplicative maps on operator algebras of indefinite inner product spaces, Publ. Math. (Debrecen) 77 (2010), (673) R. An, C. Xue and J. Hou, Equivalent characterization of derivations on operator algebras, Linear Multilinear Algebra, to appear. (674) Z. Bai and J. Hou, Characterizing isomorphisms between standard operator algebras by spectral functions, J. Oper. Theo. 54 (2005), (675) Z. Bai, J. Hou and S. Du, Additive maps preserving rankone operators on nest algebras, Linear and Multilinear Algebra 58 (2010), (676) A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinb. 136 (2006), (677) J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), (678) G. Chevalier, Lattice approach to Wigner-type theorems, Int. J. Theor. Phys. 44 (2005), (679) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (680) G. Chevalier, Wigner-type theorems for projections, Int. J. Theor. Phys. 47 (2008), (681) J. Cui, Linear maps leaving zeros of a polynomial invariant, Acta Math. Sinica 50 (2007), (682) J. Cui and J. Hou, Linear maps preserving indefinite orthogonality on C -algebras, Chinese Ann. Math., Ser. A 25 (2004), (683) J. Cui and J. Hou, Linear maps preserving elements annihilated by a polynomial XY Y X, Studia Math. 174 (2006),

75 (684) J. Cui and J. Hou, A characterization of indefiniteunitary invariant linear maps and relative results, Northeast. Math. J. 22(2006), (685) J. Cui and J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428 (2008), (686) J. Cui, J. Hou and C-G. Park, Indefinite orthogonality preserving additive maps, Arch. Math. 83 (2004), (687) G. Dolinar and B. Kuzma, General preservers of quasicommutativity, Canad. J. Math. 62 (2010), (688) C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), (689) H. Du and H.X. Cao, Generalization of Uhlhorn s theorem, J. Yanan Univ. Nat. Sci. 24 (2005), 7 8. (690) S.P. Du, J.C. Hou and Z.F. Bai, Additive maps preserving similarity or asymptotic similarity on B(H), Linear and Multilinear Algebra 55 (2007), (691) A. Duma and C. Vladimirescu, Non-decomposable inner product spaces, Math. Sci. Res. J. 8 (2004), (692) A. Fošner, Automorphisms of the poset of upper triangular idempotent matrices, Linear and Multilinear Algebra 53 (2005), (693) A. Fošner, Order preserving maps on the poset of upper triangular idempotent matrices, Linear Algebra Appl. 403 (2005), (694) A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), (695) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (696) K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), (697) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), (698) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), (699) J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), (700) J. Hou and L. Huang, Maps completely preserving idempotents and maps completely preserving square-zero operators, Israel J. Math. 176 (2010),

76 76 (701) J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), (702) J. Hou, C.K. Li and N.C. Wong, Maps preserving the spectrum of generalized Jordan product of operators, Linear Algebra Appl. 432 (2010), (703) J. Hou and X. Zhang, Ring isomorphisms and linear or additive maps preserving zero products on nest algebras, Linear Algebra Appl. 387 (2004), (704) L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), (705) L. Huang, Z.F. Lu and J.L. Li, Additive maps completely preserving skew idempotency between standard operator algebras, Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition) 32 (2011), (706) L. Jian, K. He, Q. Yuan and F. Wang, On partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID , 5 pages (707) M. Jiao, Maps preserving commutativity up to a factor on standard operator algebras, Journal of Mathematical Research with Applications 33 (2013), (708) B. Kuzma, Additive mappings preserving rank-one idempotents, Acta Math. Sin. 21 (2005), (709) P. Legiša, Automorphisms of M n partially ordered by the star order, Linear Multilinear Alg. 54 (2006), (710) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), (711) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear and Multilinear Alg. 54 (2006), (712) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on finite dimensional projective spaces over division rings, Linear and Multilinear Alg. 56 (2008), (713) L. Rodman and P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear and Multilinear Alg. 57 (2009), (714) P. Šemrl, Generalized symmetry transformations on quaternionic indefinite inner product spaces: An extension of quaternionic version of Wigner s theorem, Commun. Math. Phys. 242 (2003), (715) P. Šemrl, Order-preserving maps on the poset of idempotent matrices, Acta Sci. Math. (Szeged) 69 (2003),

77 (716) P. Šemrl, Applying projective geometry to transformations on rank one idempotents, J. Funct. Anal. 210 (2004), (717) P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), (718) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), (719) P. Šemrl, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), (720) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), (721) P. Šemrl, Maps on matrix and operator algebras, Jahresber. Deutsch. Math.-Verein. 108 (2006), (722) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), (723) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), (724) A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), (725) J. Xu, B. Zheng and H. Yao, Linear transformations between multipartite quantum systems that map the set of tensor product of idempotent matrices into idempotent matrix set, J. Funct. Space Appl., to appear. (726) H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, (727) W. Zhang, J. Hou and X. Qi, Maps preserving peripheral spectrum of generalized Jordan products of operators, Acta Math. Sin. 31 (2015), (728) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, [65] L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), (729) D.A.A. Ahmed and R. Tribak, Additivity of elementary maps on generalized matrix algebras, Journal of Algebra, Number Theory: Advances and Applications 13 (2015), (730) R. An and J. Hou, Jordan elementary map on operator algebras, Adv. in Math. (China) 41 (2012), (731) X.H. Cheng and W. Jing, Additivity of maps on triangular algebras, Electr. J. Lin. Alg. 17 (2008),

78 78 (732) S.O. Kim and C. Park, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), (733) P. Li, Elementary maps on nest algebras, J. Math. Anal. Appl. 320 (2006), (734) P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004), (735) P. Li and F. Lu, Elementary operators on J -subspace lattice algebras, Bull. Austral Math. Soc. 68 (2003), (736) P. Li and F. Lu, Additivity of elementary maps on rings, Commun. Alg. 32 (2004), (737) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), (738) P. Li and F. Lu, Jordan elementary operators on J - subspace lattice algebras algebras, Linear Algebra Appl., 428 (2008), (739) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), (740) Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), (741) W. Timmermann, Elementary operators on algebras of unbounded operators, Acta Math. Hung. 107 (2005) (742) L. Wang, Additivity of Jordan triple elementary maps on triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 33 (2012). (743) Y. Wang, The additivity of multiplicative maps on rings, Commun. Algebra 37 (2009), (744) Y. Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl. 434 (2011), (745) M. Wei, J. Zhang, Elementary maps on triangular algebra, J. Northwest Univ. 45 (2009), (746) M. Wei M, J.H. Zhang, Jordan-triple elementary maps and Jordan isomorphisms on triangular algebras, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), [66] L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), (747) SH.A. Ayupov and K.K. Kudaybergenov, 2-local derivations and automorphisms on B(H), J. Math. Anal. Appl. 395 (2012), (748) S. Ayupov, K. Kudaybergenov and A. Alauadinova, 2- Local derivations on matrix algebras over commutative regular algebras, Linear Algebra Appl. 439 (2013),

79 (749) SH.A. Ayupov, K.K. Kudaybergenov, B.O. Nurjanov and A.A. Alauadinov, Local and 2-local derivations on noncommutative Arens algebras, Math. Slovaca 64 (2014), (750) J. Bračič, Algebraic reflexivity for semigroups of operators, Electr. J. Lin. Alg. 18 (2009), (751) M. Burgos, F.J. Fernandéz-Polo, J.J. Garcés and A.M. Peralta, A Kowalski-Slodkowski theorem for 2-local *- homomorphisms on von Neumann algebras, RACSAM, to appear. (752) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), (753) J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), (754) J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), (755) M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), (756) L. Chen, F. Lu and T. Wang, Local and 2-local Lie derivations of operator algebras on Banach spaces, Integr. Equ. Oper. Theory 77 (2013), (757) Z. Chen and D. Wang, 2-Local automorphisms of finitedimensional simple Lie algebras, Linear Algebra Appl. 486 (2015) (758) M. Dobovišek, B. Kuzma, G. Lešnjak, C.K. Li and T. Petek, Mappings that preserve pairs of operators with zero triple Jordan product, Linear Algebra Appl. 426 (2007), (759) A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), (760) S.O. Kim and J.S. Kim, Local automorphisms and derivations on M n, Proc. Amer. Math. Soc. 132 (2004), (761) S.O. Kim and J.S. Kim, Local automorphisms and derivations on certain C -algebras, Proc. Amer. Math. Soc. 133 (2005), (762) C.K. Li, P. Šemrl and N.S. Sze, Maps preserving the nilpotency of products of operators, Linear Alg. Appl. 424 (2007), (763) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006),

80 80 (764) J.H. Liu and N.C. Wong, 2-local automorphisms of operator algebras, J. Math. Anal. Appl. 321 (2006), (765) F. Pop, On local representations of von Neumann algebras, Proc. Amer. Math. Soc. 132 (2004), (766) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear. (767) D. Wang, Q. Guan and D. Zhang, Local automorphisms of semisimple algebras and group algebras, Acta Math. Sci. 38 (2011), (768) X. Wang, Local derivations of a matrix algebra over a commutative ring, J. Math. Res. Expo. 31 (2011), (769) J. Xie and F. Lu, A note on 2-local automorphisms of digraph algebras Linear Algebra Appl. 378 (2004), (770) J.H. Zhang and H.X. Li, 2-local derivations on digraph algebras, Acta Math. Sin. 49 (2006), [67] L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), (771) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), (772) K. He and J. Hou, Distance preserving maps and completely distance preserving maps on the Schatten p-class, J. Shanxi Univ. Nat. Sci. Ed. 32 (2009), (773) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), (774) K. He and Q. Yuan, Non-linear isometries on Schatten-p class in atomic nest algebras, Abstr. Appl. Anal. Volume 2014, Article ID (775) L. Jian, K. He, Q. Yuan and F. Wang, On partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID , 5 pages (776) G. Nagy, Isometries on positive operators of unit norm, Publ. Math. (Debrecen) 82 (2013), (777) G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID , 9 pages. (778) P.B. Slater, Quantum and Fisher information from the Husimi and related distributions, J. Math. Phys. 47 (2006), Art. No (779) F. Ticozzi and L. Viola, Quantum information encoding, protection, and correctionfrom trace-norm isometries, Phys. Rev. A 81 (2010), [68] L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003),

81 (780) H.K. Du, C.Y. Deng and Q.H. Li, On the infimum problem of Hilbert space effects, Sci. China Ser. A 49 (2006), (781) W. Feldman, Lattice preserving maps on lattices of continuous functions, J. Math. Anal. Appl. 404 (2013), (782) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (783) S. Gudder and F. Latrémolière, Characterization of the sequential product on quantum effects, J. Math. Phys. 49 (2008), (784) T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), (785) J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), (786) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), (787) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), (788) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), (789) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), (790) L. Yuan and H.K. Du, A note on the infimum problem of Hilbert space effects, J. Math. Phys. 47 (2006), Art. No (791) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), (792) Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID , 5 pages. [69] L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), (793) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), (794) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (795) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012),

82 82 (796) G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), [70] L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), (797) G. Dolinar, A. Guterman and J. Marovt, Monotone transformations on B(H) with respect to the left-star and the right-star order, Math. Inequal. Appl. 17 (2014), (798) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), (799) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), (800) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), [71] L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), (801) J. Araujo, Multiplicative bijections of semigroups of interval-valued continuous functions, Proc. Amer. Math. Soc., 137 (2009), (802) F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan and S. Önal, Memorandum on multiplicative bijections and order, Semigroup Forum 79 (2009), (803) W. Feldman, Lattice preserving maps on lattices of continuous functions, J. Math. Anal. Appl., to appear. (804) D.J. Foulis, Square roots and inverses in E-rings, Rep. Math. Phys. 58 (2006), (805) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), (806) J. Marovt, Multiplicative bijections of C(X, I), Proc. Amer. Math. Soc. 134 (2006), (807) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), (808) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), (809) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), (810) H. Zhang and X. Wang, Local E-automorphisms on effect algebras, Pure Math. 2 (2012), [72] E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004),

83 (811) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), (812) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), [73] L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (813) Z. Bai and S. Du, Strong commutativity preserving maps on rings, Rocky Mountain J. Math. 44 (2014), (814) J. Cui, Q. Li, J. Hou and X. Qi, Some unitary similarity invariant sets preservers of skew Lie products, Linear Algebra Appl. 457 (2014), (815) G. Dolinar and B. Kuzma, General preservers of quasicommutativity, Canad. J. Math. 62 (2010), (816) G. Dolinar and B. Kuzma, General preservers of quasicommutativity on self-adjoint operators, J. Math. Anal. Appl. 364 (2010), (817) A. Fošner, Non-linear commutativity preserving maps on M n (R), Linear and Multilinear Algebra 53 (2005), (818) A. Fošner, Non-linear commutativity preserving maps on symmetric matrices, Publ. Math. (Debrecen), 71 (2007), (819) A. Fošner, A note on commutativity preservers on real matrices, Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009, pp (820) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), (821) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), (822) K. He and J. Hou, Non-linear maps on self-adjoint operators preserving numerical radius and numerical range of Lie product, Linear Multilinear Alg., to appear. (823) L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), (824) G. Ji and Y. Gao, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433 (2010), (825) P.K. Liau, W.L. Huang and C.K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl. 436 (2012),

84 84 (826) J.S Lin and C.K Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl. 432 (2010), (827) L. Liu, Strong commutativity preserving maps on von Neumann algebras, Linear Multilinear Alg. 63 (2015), (828) G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), (829) X.F. Qi and J.C. Hou, Nonlinear strong commutativity preserving maps on prime rings, Comm. Algebra 38 (2010), (830) X.F. Qi and J.C. Hou, Strong commutativity preserving maps on triangular rings, Oper. Matrices 6 (2012), (831) F.J. Zhang, Nonlinear strong *-commutativity preserving maps on factor von Neumann algebras, Fangzhi Gaoxiao Jichukexue Xuebao 25 (2012), (832) J.H. Zhang and F.J. Zhang, Nonlinear maps preserving Lie products on factor von Neumann algebras, Linear Algebra Appl. 429 (2008), (833) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, [74] L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) (834) M. Dobovišek, Maps from M n (F) to F that are multiplicative with respect to Jordan triple product, Publ. Math. (Debrecen) 73 (2008), (835) E. Gselmann, Jordan triple mappings on positive de?nite matrices, Aeq. Math., to appear. (836) B. Kolodziejek, The Lukacs-Olkin-Rubin theorem on symmetric cones through Gleason s theorem, Studia Math. 217 (2013), (837) B. Kolodziejek, Multiplicative Cauchy functional equation on symmetric cones, Aequat. Math. 89 (2015), (838) B. Kolodziejek, Lukacs-Olkin-Rubin theorem on symmetric cones without invariance of the quotient, J. Theor. Probab., to appear. [75] L. Molnár and W. Timmermann, Transformations on the sets of states and density operators, Linear Algebra Appl. 418 (2006), (839) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010),

85 [76] L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), (840) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), (841) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), [77] L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), (842) P. Ji, W. Qi, Z. Qin, Multiplicative Jordan triple isomorphisms on Jordan algebras, J. Shandong Univ. Nat. Sci. Ed. 44 (2009), 1 3. (843) A. Taghavi, Additive mappings on C -algebras preserving absolute values, Linear Multilinear Algebra 60 (2012), (844) A. Taghavi, Additive mappings on C -algebras subpreserving absolute values of products, Journal of Inequalities and Applications 2012, Article ID 161, 6 p., electronic only (2012). [78] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (845) J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, Maps preserving zero products, Studia Math. 193 (2009), (846) J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, On bilinear maps determined by rank one idempotents, Linear Algebra Appl. 432 (2009), (847) J. Alaminos, J. Extremera and A.R. Villena, Zero product preserving maps on Banach algebras of Lipschitz functions, J. Math. Anal. Appl. 369 (2010), (848) J. Alaminos, J. Extremera and A.R. Villena, Approximately spectrum-preserving maps, J. Funct. Anal. 261 (2011), (849) J. Alaminos, J. Extremera and A.R. Villena, Operators shrinking the Arveson spectrum, Publ. Math. Debrecen 80 (2012), (850) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), (851) Z. Bai and S. Du, Strong commutativity preserving maps on rings, Rocky Mountain J. Math. 44 (2014),

86 86 (852) M. Bessenyei, Functional equations and finite groups of substitutions, Amer. Math. Monthly 117 (2010), (853) M. Bohata and J. Hamhalter, Nonlinear maps on von Neumann algebras preserving the star order, Linear Multilinear Algebra 61 (2013), (854) M. Bohata and J. Hamhalter, Star order on JBW algebras, J. Math. Anal. Appl. 417 (2014), (855) F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), (856) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), (857) F. Botelho and T.S.S.R.K. Rao, On algebraic reflexivity of sets of surjective isometries between spaces of weak continuous functions, J. Math. Anal. Appl. 432 (2015), (858) J. Bračič, Algebraic reflexivity for semigroups of operators, Electr. J. Lin. Alg. 18 (2009), (859) M. Burgos, F.J. Fernndez-Polo, J.J. Garcés, J.M. Moreno and A.M. Peralta, Orthogonality preservers in C*- algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008), (860) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), (861) F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), (862) F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan and S. Önal, Memorandum on multiplicative bijections and order, Semigroup Forum 79 (2009), (863) J. Chmieliński, Orthogonality preserving property and its Ulam stability, in Functional Equations in Mathematical Analysis, Springer Optimization and Its Applications, 2012, Volume 52, Part 1, (864) S. Clark, C.K. Li and L. Rodman, Spectral radius preservers of products of nonnegative matrices, Banach J. Math. Anal. 2 (2008), (865) S. Dutta and T.S.S.R.K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), (866) A.B.A. Essaleh, M. Niazi and A.M. Peralta, Bilocal *- automorphisms of B(H) satisfying the 3-local property, Arch. Math. 104 (2015),

87 (867) D. Ethier, T. Lindberg, and A. Luttman, Polynomial identification in uniform and operator algebras, Ann. Funct. Anal. 1 (2010), (868) J.S. Farsani, Zero products preserving maps from the Fourier algebra of amenable groups, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), (869) A. Fošner, Commutativity preserving maps on M n (R), Glasnik Mat. 44 (2009), (870) A. Fošner, A note on commutativity preservers on real matrices, Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009, pp (871) A. Fošner, 2-local Jordan automorphisms on operator algebras, Studia Math. 209 (2012), (872) A. Fošner, 2-local mappings on algebras with involution, Ann. Funct. Anal. 5 (2014), (873) A. Fošner, Local generalized (α, β)-derivations, The Scientific World J. (2014), Article ID , 5 pp. (874) A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), (875) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (876) A. Fošner, Z. Huang, C.K. Li, Y.T. Poon, N.S. Sze, Linear maps preserving the higher numerical ranges of tensor product of matrices, Linear Multilinear Algebra 62 (2014), (877) M. Fošner and D. Ilišević, Generalized bicircular projections via rank preserving maps on the spaces of symmetric and antisymmetric operators, Oper. Matrices 5 (2011), (878) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), (879) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), (880) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), (881) O. Hatori, S. Lambert, A. Luttman, T. Miura, T. Tonev, and R. Yates Spectral preservers in commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (882) K. He, F. Sun and J. Hou, Separability of sequential isomorphisms on quantum effects in multipartite systems, J. Phys. A: Math. Theor. 48 (2015), (9pp). 87

88 88 (883) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), (884) C. Heunen and C. Horsman, Matrix multiplication is determined by orthogonality and trace, Linear Algebra Appl. 439 (2013), (885) Z. Huang, Weakening the conditions in some classical theorems on linear preserver problems, Linear Multilinear Alg., to appear. (886) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (887) G.K. Kumar and S.H. Kulkarni, Linear maps preserving pseudospectrum and condition spectrum, Banach J. Math. Anal. 6 (2012), (888) D.L.W. Kuo, M.C. Tsai, N.C. Wong and J. Zhang, Maps preserving Schatten p-norms of convex combinations, Abstr. Appl. Anal. (2014), Article ID , 5 pp. (889) C.W Leung, C.K. Ng and N.C. Wong, Linear orthogonality preservers of Hilbert C -modules, J. Operator Theory 71 (2014), (890) C.K. Li and L. Rodman, Preservers of spectral radius, numerical radius, or spectral norm of the sum on nonnegative matrices, Linear Algebra Appl. 430 (2009), (891) C.K. Li, P. Šemrl, L. Plevnik, Preservers of matrix pairs with a fixed inner product value, Oper. Matrices 6 (2012), (892) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), (893) M. Mbekhta, V. Mller and M. Oudghiri, Additive preservers of the ascent, descent and related subsets, J. Operator Theory 71 (2014), (894) T. Miura, D. Honma A generalization of peripherallymultiplicative surjections between standard operator algebras, Cent. Eur. J. Math. 7 (2009), (895) G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), (896) G. Nagy, Isometries on positive operators of unit norm, Publ. Math. (Debrecen) 82 (2013), (897) G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID , 9 pages. (898) V. Pavlovič, Remarks and comments on some recent results, Filomat 29 (2015), (899) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear.

89 (900) P. Šemrl, Comparability preserving maps on bounded observables, Integral Equations Operator Theory 62 (2008), (901) P. Šemrl, Local automorphisms of standard operator algebras, J. Math. Anal. Appl. 371 (2010), (902) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), (903) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), (904) P. Šemrl and A.R. Sourour, Order preserving maps on hermitian matrices, J. Austral. Math. Soc. 95 (2013), (905) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), (906) P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) (907) E. Størmer, Positive Linear Maps of Operator Algebras, Springer-Verlag, Berlin Heidelberg, (908) A. Tajmouati and A. El Bakkali, Linear maps preserving the Kato spectrum, Int. Journal of Math. Analysis 6 (2012), (909) T. Tonev, Weak multiplicative operators on function algebras without units, Banach Cent. Publ. 91 (2010), (910) T. Tonev and A. Luttman, Algebra isomorphisms between standard operator algebras, Studia Math. 191 (2009), (911) T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl. 357 (2009), (912) J. Xu, B. Zheng and A. Fošner, Linear maps preserving tensor product of rank-one Hermitian matrices, J. Aust. Math. Soc. 98 (2015), (913) L. Yang, W. Zhang and J. Xu, Linear maps on upper triangular matrices spaces preserving idempotent tensor products, Abstr. Appl. Anal. (2014), Article ID , 8 pages (914) Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID , 5 pages. (915) B. Zheng, J. Xu nd A. Fošner, Linear maps preserving idempotents of tensor products of matrices, Linear Alg. Appl. 470 (2015), (916) B. Zheng, J. Xu nd A. Fošner, Linear maps preserving rank of tensor products of matrices, Linear Multilinear Alg. 63 (2015),

90 90 [79] L. Molnár and P. Šemrl, Elementary operators on self-adjoint operators, J. Math. Anal. Appl. 327 (2007), (917) D.J. Kečkić Cyclic kernels of elementary operators on a reflexive Banach space, Linear Algebra Appl. 438 (2013), (918) Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), [80] L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007), (919) K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), (920) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), [81] L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), (921) M. Bohata, Star order on operator and function algebras, Publ. Math. Debrecen 79 (2001), (922) J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), (923) E. Turilova, Automorphisms of spectral lattices of unbounded positive operators, Lobachevskii J. Math. 35 (2014), (924) E. Turilova, Automorphisms of spectral lattices of positive contractions on von Neumann algebras, Lobachevskii J. Math. 35 (2014), [82] G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), (925) M. Bohata, Star order on operator and function algebras, Publ. Math. Debrecen 79 (2001), (926) M. Bohata and J. Hamhalter, Nonlinear maps on von Neumann algebras preserving the star order, Linear Multilinear Algebra 61 (2013), (927) M. Bohata and J. Hamhalter, Star order on JBW algebras, J. Math. Anal. Appl. 417 (2014), (928) J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), (929) X. Fang, N.S. Sze and X.M. Xu, The Cuntz comparison in the standard C -algebra, Abstr. Appl. Anal. 2014, Article ID , 4 pages.

91 [83] L. Molnár, Isometries of the spaces of bounded frame functions, J. Math. Anal. Appl. 338 (2008), (930) K. He and Q. Yuan, Non-linear isometries on Schatten-p class in atomic nest algebras, Abstr. Appl. Anal. Volume 2014, Article ID [84] L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), (931) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), (932) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), (933) G. Ji and Y. Gao, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433 (2010), (934) H. Shi, G. Ji, Maps preserving norms of Jordan products on the space of self-adjoint operators, J. Shandong Univ. Nat. Sci. Ed.45 (2010), [85] L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), (935) G. Dolinar and B. Kuzma, General preservers of quasicommutativity, Canad. J. Math. 62 (2010), (936) G. Dolinar and B. Kuzma, General preservers of quasicommutativity on self-adjoint operators, J. Math. Anal. Appl. 364 (2010), (937) G. Dolinar and B. Kuzma, General preservers of quasicommutativity on Hermitian matrices, Electr. J. Lin. Alg. 17 (2008), (938) M. Jiao, Maps preserving commutativity up to a factor on standard operator algebras, Journal of Mathematical Research with Applications 33 (2013), (939) M. Jiao and X. Qi, Additive maps preserving commutativity up to a factor on nest algebras, Linear Multilinear Alg. 63 (2015), (940) P.K. Liau, W.L. Huang and C.K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl. 436 (2012), (941) C.K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math. 166 (2012), (942) C.K. Liu and P.K Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra 59 (2011),

92 92 (943) H. Radjavi and P. Šemrl, Linear maps preserving quasicommutativity, Studia Math. 184 (2008), [86] L. Molnár and W. Timmermann, Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor. 42 (2009), (944) G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID , 9 pages. [87] L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), (945) F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, Springer and Hindustan Book Agance, New Delhi, India 2014, 332 p. (946) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), (947) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), (948) P. Szokol, M.-C. Tsai and J. Zhang, Preserving problems of geodesic-affine maps and related topics on positive definite matrices, Linear Algebra Appl. 483 (2015), [88] L. Molnár, Maps preserving the harmonic mean or the parallel sum of positive operators, Linear Algebra Appl. 430 (2009), (949) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), [89] L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), (950) S. Cobzas and M.D. Rus, Normal cones and Thompson metric, Topics in Mathematical Analysis and Applications Springer Optimization and Its Applications Volume 94, 2014, pp (951) B. Lemmens and C. Walsh, Isometries of Polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011), (952) O. Hatori, Algebraic properties of isometries between groups of invertible elements in Banach algebras, J. Math. Anal. Appl. 376 (2011) (953) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), (954) O. Hatori, K. Kobayashi, T. Miura and S.E. Takahasi, Reflections and a generalization of the Mazur-Ulam theorem, Rocky Mountain J. Math. 42 (2012),

93 (955) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), [90] L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), (956) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), (957) Z. Léka, A note on central moments in C -algebras, J. Math. Ineq. 9 (2015), (958) M.A. Rieffel, Standard deviation is a strongly Leibniz seminorm, New York J. Math., 20 (2014), [91] L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), (959) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), (960) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), [92] L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), (961) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), (962) L. Jian, K. He, Q. Yuan and F. Wang, emphon partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID , 5 pages (963) Y. Li and P. Busch, Von Neumann entropy and majorization, J. Math. Anal. Appl. 408 (2013), (964) A. Sanami, A characterization of the Helmholtz free energy, J. Math. Phys. 54 (2013), (965) A. Sanami, A characterization of the entropy-gibbs transformations, Iran. J. Math. Chem. 5 (2014), (966) X. Xia, Y. Jin, Y. Shang and L. Chen, Improved relativeentropy method for eccentricity filtering in roundness measurement based on information optimization, Research Journal of Applied Sciences, Engineering and Technology (RJASET) 5 (2013), [93] L. Molnár, Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math. 9 (2011),

94 94 (967) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), [94] L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), (968) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), (969) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), (970) L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), [95] L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), (971) A. Bourhim, M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), (972) A. Bourhim, J. Mashreghi, and A. Stepanyan, Maps preserving the local spectrum of triple product of operators, Linear Multilinear Algebra 63 (2015), (973) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), (974) O. Hatori, Isometries on the spetial unitary group, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp [96] L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), (975) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), [97] O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), (976) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014),

95 [98] O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), (977) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), [99] F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), (978) Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner?s theorem, Phys. Lett. A 378 (2014), (979) G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), [100] L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), (980) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), (981) O. Hatori, Isometries on the spetial unitary group, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp [101] O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), (982) S. Cobzas and M.D. Rus, Normal cones and Thompson metric, Topics in Mathematical Analysis and Applications Springer Optimization and Its Applications Volume 94, 2014, pp (983) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), (984) P. Szokol, M.-C. Tsai and J. Zhang, Preserving problems of geodesic-affine maps and related topics on positive definite matrices, Linear Algebra Appl. 483 (2015), [102] L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), (985) C. Costara,Automatic continuity for linear surjective maps compressing the point spectrum, Oper. Matrices 9 (2015),

96 96 (986) A.B.A. Essaleh, M. Niazi and A.M. Peralta, Bilocal *- automorphisms of B(H) satisfying the 3-local property, Arch. Math. 104 (2015), (987) A. Ben Ali Essaleh, A.M. Peralta, M.I. Ramírez, Weaklocal derivations and homomorphisms on C*-algebras, Linear Multilinear Alg., to appear. [103] L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), (988) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), [104] L. Molnár, Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear Multilinear Alg. 63 (2015), (989) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), [105] L. Molnár, P. Šemrl and A.R. Sourour, Bilocal automorphisms, Oper. Matrices 9 (2015), (990) C. Costara,Automatic continuity for linear surjective maps compressing the point spectrum, Oper. Matrices 9 (2015), [106] L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, (991) F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), (992) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), (993) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), (994) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005),

97 97 LIST OF INDEPENDENT CITATIONS (without self- or co-authors citations) ordered according to the citing work [1] Z. Abdelali, A. Achchi and R. Marzouki, Maps preserving the local spectrum ofskew-product of operators, Linear Algebra Appl. 485 (2015), (1) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [2] T. Abe, S. Akiyama, and O. Hatori, Isometries of the special orthogonal group, Linear Algebra Appl. 439 (2013), (2) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [3] D.A.A. Ahmed and R. Tribak, Additivity of elementary maps on generalized matrix algebras, Journal of Algebra, Number Theory: Advances and Applications 13 (2015), (3) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (4) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [4] A. Aizpuru and F. Rambla, There s something about the diameter, J. Math. Anal. Appl. 330 (2007), (5) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [5] A. Aizpuru and F. Rambla, Diameter preserving linear bijections and C 0 (L) spaces, Bull. Belgian Math. Soc. 17 (2010), (6) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [6] A. Aizpuru and M. Tamayo, On diameter preserving linear maps, J. Korean Math. Soc. 45 (2008), (7) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [7] A. Aizpuru and M. Tamayo, Linear bijections which preserve the diameter of vector-valued maps, Linear Algebra Appl. 424 (2007),

98 98 (8) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [8] J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, Maps preserving zero products, Studia Math. 193 (2009), (9) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [9] J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, On bilinear maps determined by rank one idempotents, Linear Algebra Appl. 432 (2009), (10) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [10] J. Alaminos, J. Extremera and A.R. Villena, Zero product preserving maps on Banach algebras of Lipschitz functions, J. Math. Anal. Appl. 369 (2010), (11) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [11] J. Alaminos, J. Extremera and A.R. Villena, Approximately spectrum-preserving maps, J. Funct. Anal. 261 (2011), (12) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [12] J. Alaminos, J. Extremera and A.R. Villena, Operators shrinking the Arveson spectrum, Publ. Math. Debrecen 80 (2012), (13) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [13] H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), (14) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (15) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002),

99 (16) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (17) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), [14] S. Ali and N.A. Dar, On left centralizers of prime rings with involution, Palestine Journal of Mathematics 3 (2014), (18) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [15] S. Ali and C. Haetinger, On Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat. 26 (2008), (19) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [16] G. An and J. Hou, Characterizations of isomorphisms by multiplicative maps on operator algebras, Northeast. Math. J. 17 (2001), (20) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (21) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), [17] G. An and J. Hou, Rank-preserving multiplicative maps on B(X), Linear Algebra Appl. 342 (2002), (22) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (23) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), [18] G. An and J. Hou, Multiplicative maps on matrix algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 16 (2002), 1 4. (24) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (25) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), [19] R.L. An and J.C. Hou, Characterizations of Jordan -skew multiplicative maps on operator algebras of indefinite inner product spaces, Chinese Ann. Math. 26 (2005),

100 100 (26) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (27) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [20] R.L. An and J.C. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), (28) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (29) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [21] R.L. An and. J.C. Hou, A characterization of *-automorphism on B(H), Acta Math. Sin. 26 (2010), (30) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (31) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [22] R. An and J. Hou, Characterizations of Lie-skew multiplicative maps on operator algebras of indefinite inner product spaces, Publ. Math. (Debrecen) 77 (2010), (32) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [23] R. An and J. Hou, Jordan elementary map on operator algebras, Adv. in Math. (China) 41 (2012), (33) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (34) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [24] R.L. An and J.C. Hou, Jordan ring isomorphism on the space of symmetric operators, Acta Math. Sin. 55 (2012), (35) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000),

101 101 (36) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [25] R. An, C. Xue and J. Hou, Equivalent characterization of derivations on operator algebras, Linear Multilinear Algebra, to appear. (37) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [26] P. Ara and M. Mathieu, Local multipliers of C*-algebras, Springer Monographs in Mathematics. Springer-Verlag, London, (38) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), [27] J. Araujo, Linear biseparating maps between spaces of vectorvalued differentiable functions and automatic continuity, Adv. Math. 187 (2004), (39) L. Molnár, On rings of differentiable functions, Grazer Math. Ber. 327 (1996), [28] J. Araujo, Multiplicative bijections of semigroups of intervalvalued continuous functions, Proc. Amer. Math. Soc., 137 (2009), (40) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), [29] J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal. Appl. 282 (2003), (41) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [30] M. Ashraf and S. Ali, On (α, β) -derivations in H -algebras, Adv. Algebra 2 (2009), (42) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [31] S. Artstein-Avidan and B. A. Slomka, Order isomorphisms in cones and a characterization of duality for ellipsoids, Sel. Math. New Ser. 18 (2012), (43) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001),

102 102 [32] M. Ashraf and M.R. Mozumder, On Jordan α -centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences 7 (2012), (44) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [33] M. Ashraf, N. Rehman, S. Ali and M.R. Mozumder, On generalized (θ, φ)-derivations in semiprime rings with involution, Math. Slovaca 62 (2012), (45) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [34] M.J. Atteya, On generalized derivations of semiprime rings, Int. J. Algebra 4 (2010), (46) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [35] M.J. Atteya, A note on generalized Jordan derivations in semiprime rings, Mathematics and Statistics 3 (2015), 7 9. (47) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [36] M.J. Atteya and D.I. Resan, Commuting derivations of semiprime rings, Int. J. Contemp. Math. Sciences 6 (2011), (48) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [37] SH.A. Ayupov and K.K. Kudaybergenov, 2-local derivations and automorphisms on B(H), J. Math. Anal. Appl. 395 (2012), (49) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [38] S. Ayupov, K. Kudaybergenov and A. Alauadinova, 2-Local derivations on matrix algebras over commutative regular algebras, Linear Algebra Appl. 439 (2013), (50) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [39] SH.A. Ayupov, K.K. Kudaybergenov, B.O. Nurjanov and A.A. Alauadinov, Local and 2-local derivations on noncommutative Arens algebras, Math. Slovaca 64 (2014), (51) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003),

103 103 [40] Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), (52) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (53) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (54) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (55) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (56) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (57) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), [41] Z. Bai and S. Du, Maps preserving products XY Y X on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), (58) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (59) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [42] (1) Z. Bai and S. Du, Strong commutativity preserving maps on rings, Rocky Mountain J. Math. 44 (2014), (60) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (61) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [43] Z. Bai and J. Hou The additive maps on operator algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 15 (2001), 1 6. (62) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [44] Z. Bai and J. Hou, Linear maps and additive maps that preserve operators annihilated by a polynomial, J. Math. Anal. Appl. 271 (2002),

104 104 (63) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [45] Z. Bai and J. Hou, Additive maps preserving orthogonality or commuting with. k, Acta Mathematica Sinica 45 (2002), (64) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [46] Z. Bai and J. Hou, Characterizing isomorphisms between standard operator algebras by spectral functions, J. Oper. Theo. 54 (2005), (65) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (66) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [47] Z. Bai, J. Hou and S. Du, Additive maps preserving rank-one operators on nest algebras, Linear and Multilinear Algebra 58 (2010), (67) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), (68) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [48] D. Bakič and B. Guljaš, Operators on Hilbert H -modules, J. Operator Theory 46 (2001), (69) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), [49] D. Bakič and B. Guljaš, Hilbert C -modules over C -algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), (70) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), (71) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999),

105 105 [50] D. Bakič and B. Guljaš, Wigner s theorem in Hilbert C - modules over C -algebras of compact operators, Proc. Amer. Math. Soc. 130 (2002), (72) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (73) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [51] D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), (74) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), (75) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (76) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [52] Banić, D. Ilišević and S Varošanec, Bessel and Grüss type inequalities in inner product modules, Proc. Edinburgh Math. Soc. 50 (2007), (77) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), [53] M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), (78) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (79) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (80) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (81) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (82) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), (83) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (84) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000),

106 106 (85) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (86) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), [54] B.A. Barnes and A.K. Roy, Diameter preserving maps on various classes of function spaces, Studia Math. 153 (2002), (87) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [55] P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), (88) L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), (89) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (90) L. Molnár, The range of a Jordan *-derivation on an H - algebra, Acta Math. Hung. 72 (1996), (91) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), (92) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [56] P. Battyányi, Jordan *-derivations with respect to the Jordanproduct, Publ. Math. (Debrecen) 48 (1996), (93) L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), (94) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (95) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), (96) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [57] K.I. Beidar, M. Brešar, M.A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear Algebra Appl. 312 (2000), (97) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [58] K.I. Beidar, M. Brešar and M.A. Chebotar, Functional identities on upper triangular matrix algebras, J. Math. Sci. 102 (2000),

107 107 (98) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [59] A. Ben Ali Essaleh, A.M. Peralta, M.I. Ramírez, Weak-local derivations and homomorphisms on C*-algebras, Linear Multilinear Alg., to appear. (99) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (100) L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), [60] M. Bendaoud, Preservers of local spectrum of matrix Jordan triple products, Linear Algebra Appl. 471 (2015), (101) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [61] M. Bendaoud, M. Jabbar and M. Sarih Preservers of local spectra of operator products, Linear and Multilinear Algebra 63 (2015), (102) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [62] I. Bengtssone and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, (103) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), [63] D. Benkovič, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl. 397 (2005), (104) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [64] D. Benkovič and D. Eremita, Characterizing left centralizers by their action on a polynomial, Publ. Math. (Debrecen) 64 (2004), (105) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [65] M. Bessenyei, Functional equations and finite groups of substitutions, Amer. Math. Monthly 117 (2010),

108 108 (106) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [66] A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinb. 136 (2006), (107) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [67] C. Boboc, S. Dăscălescu and L. van Wyk, Jordan isomorphisms of 2-torsionfree triangular rings, Linear and Multilinear Alg., to appear. (108) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [68] A. Bodaghi, S.Y. Jang and C. Park, On the stability of Jordan *-derivation pairs, Results. Math. 64 (2013), (109) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [69] M. Bohata, Star order on operator and function algebras, Publ. Math. Debrecen 79 (2001), (110) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), (111) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), [70] M. Bohata and J. Hamhalter, Nonlinear maps on von Neumann algebras preserving the star order, Linear Multilinear Algebra 61 (2013), (112) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), (113) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [71] M. Bohata and J. Hamhalter, Star order on JBW algebras, J. Math. Anal. Appl. 417 (2014), (114) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007),

109 109 (115) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [72] A. Bonami, G. Garrigos and P. Jaming, Discrete radar ambiguity problems, Appl. Comput. Harmon. Anal. 23 (2007), (116) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), [73] F. Botelho and J. Jamison, Algebraic and topological reflexivity properties of l p (X) spaces, J. Math. Anal. Appl., 346 (2008), (117) L. Molnár and B. Zalar, On automatic surjectivity of Jordan homomorphisms, Acta Sci. Math. (Szeged) 61 (1995), (118) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), [74] F. Botelho and J. Jamison, Algebraic reflexivity of C(X, E) and Cambern s theorem, Studia Math. 186 (2008), (119) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (120) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [75] F. Botelho and J. Jamison, Topological reflexivity of spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009), (121) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (122) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [76] F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), (123) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (124) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002),

110 110 (125) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [77] F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), (126) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (127) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (128) L. Molnár, A reflexivity problem concerning the C - algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), (129) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (130) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [78] F. Botelho and J. Jamison, Algebraic reflexivity of tensor product spaces, Houston J. Math. 36 (2010), (131) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (132) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [79] F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), (133) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (134) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (135) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Soc. 42 (1999), (136) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000),

111 111 (137) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [80] F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (138) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Soc. 42 (1999), (139) L. Molnár, A reflexivity problem concerning the C - algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), (140) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [81] F. Botelho and T.S.S.R.K. Rao, On algebraic reflexivity of sets of surjective isometries between spaces of weak continuous functions, J. Math. Anal. Appl. 432 (2015), (141) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [82] N. Boudi and M. Mbekhta, Additive maps preserving strongly generalized inverses, J. Operator Theory 64 (2010), (142) L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), [83] A. Bourhim, M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), (143) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (144) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), [84] A. Bourhim and J. Mashreghi, Maps preserving the local spectrum of product of operators, Glasgow Math. J. 57 (2015),

112 112 (145) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [85] A. Bourhim, J. Mashreghi, and A. Stepanyan, Nonlinear maps preserving the minimum and surjectivity moduli, Linear Algebra Appl. 463 (2014), (146) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [86] A. Bourhim, J. Mashreghi, and A. Stepanyan, Maps preserving the local spectrum of triple product of operators, Linear Multilinear Algebra 63 (2015), (147) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), [87] J. Bračič, Algebraic reflexivity for semigroups of operators, Electr. J. Lin. Alg. 18 (2009), (148) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), (149) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [88] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Royal Soc. Edinburgh 137 (2007), (150) L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. [89] M. Brešar and M. Fošner, On rings with involution equipped with some new product, Publ. Math. (Debrecen) 57 (2000), (151) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [90] M. Brešar and Š. Špenko Determining elements in Banach algebras through spectral properties, J. Math. Anal. Appl. 393 (2012), (152) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

113 113 [91] M. Burgos, F.J. Fernndez-Polo, J.J. Garcés, J.M. Moreno and A.M. Peralta, Orthogonality preservers in C*-algebras, JB*- algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008), (153) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [92] M. Burgos, F.J. Fernandéz-Polo, J.J. Garcés and A.M. Peralta, A Kowalski-Slodkowski theorem for 2-local *-homomorphisms on von Neumann algebras, RACSAM, to appear. (154) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [93] M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), (155) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (156) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (157) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), (158) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (159) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), [94] M. Burgos, J.J. Garcés and A.M. Peralta, Automatic continuity of biorthogonality preservers between compact C -algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011), (160) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [95] M. Burgos, A. Jiménez-Vargas and M. Villegas-Vallecillos, Nonlinear conditions for weighted composition operators between Lipschitz algebras, J. Math. Anal. Appl. 359 (2009), (161) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

114 114 [96] M. Burgos, A. Jiménez-Vargas and M. Villegas-Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), (162) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (163) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (164) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (165) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), (166) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (167) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [97] F. Cabello Sánchez, Diameter preserving linear maps and isometries, Arch. Math. 73 (1999), (168) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [98] F. Cabello Sánchez, Diameter preserving linear maps and isometries II, Proc. Indian Acad. Sci. 110 (2000), (169) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [99] F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), (170) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (171) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (172) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (173) L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998),

115 115 (174) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (175) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (176) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), [100] F. Cabello Sánchez, Convex transitive norms on spaces of continuous functions, Bull. London. Math. Soc. 37 (2005), (177) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [101] F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), (178) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (179) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (180) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, [102] F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), (181) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (182) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (183) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [103] F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan and S. Önal, Memorandum on multiplicative bijections and order, Semigroup Forum 79 (2009),

116 116 (184) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), (185) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [104] A. Cabello Sánchez and F. Cabello Sánchez, Maximal norms on Banach spaces of continous functions, Math. Proc. Camb. Philos. Soc. 129 (2000), (186) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [105] G. Cassinelli, E. De Vito, P.J. Lahti and A. Levrero, The Theory of Symmetry Actions in Quantum Mechanics, Lecture Notes in Physics 654, Springer, (187) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (188) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), [106] J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), (189) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (190) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (191) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [107] J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), (192) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (193) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003),

117 117 [108] M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), (194) L. Molnár, On the range of a normal Jordan *- derivation, Comment. Math. Univ. Carolinae 35 (1994), (195) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (196) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), [109] M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), (197) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (198) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (199) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (200) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (201) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (202) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), [110] M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), (203) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (204) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (205) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (206) L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002), (207) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003),

118 118 [111] M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), (208) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (209) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (210) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [112] L. Chen, F. Lu and T. Wang, Local and 2-local Lie derivations of operator algebras on Banach spaces, Integr. Equ. Oper. Theory 77 (2013), (211) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [113] Z. Chen and D. Wang, 2-Local automorphisms of finitedimensional simple Lie algebras, Linear Algebra Appl. 486 (2015) (212) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [114] X.H. Cheng and W. Jing, Additivity of maps on triangular algebras, Electr. J. Lin. Alg. 17 (2008), (213) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (214) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [115] W.S. Cheung, S. Fallat and C.K. Li, Multiplicative preservers on semigroups of matrices, Linear Algebra Appl. 355 (2002), (215) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), [116] W.S. Cheung and C.K. Li, Linear operators preserving generalized numerical ranges and radii on certain triangular algebras of matrices, Canad. Math. Bull. 44 (2001), (216) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [117] G. Chevalier, Lattice approach to Wigner-type theorems, Int. J. Theor. Phys. 44 (2005),

119 119 (217) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (218) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [118] G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), (219) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (220) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (221) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (222) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (223) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (224) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), (225) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (226) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [119] G. Chevalier, Wigner-type theorems for projections, Int. J. Theor. Phys. 47 (2008), (227) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (228) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [120] J. Chmieliński, Orthogonality preserving property and its Ulam stability, in Functional Equations in Mathematical Analysis,

120 120 Springer Optimization and Its Applications, 2012, Volume 52, Part 1, (229) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [121] J. Chmieliński, D. Ilišević, M.S. Moslehian and G.H. Sadeghi, Perturbation of the Wigner equation in inner product C - modules, J. Math. Phys. 49 (2008), (230) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [122] W.L. Chooi, Rank-one non-increasing additive maps between block triangular matrix algebras, Linear and Multilinear Algebra 58 (2010), (231) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [123] W.L. Chooi and M.H. Lim, Rank-one nonincreasing mappings on triangular matrices and some related preserver problems, Linear Multilinear Alg. 49 (2001), (232) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [124] W.L. Chooi and M.H. Lim, Coherence invariant mappings on block triangular matrix spaces, Linear Algebra Appl. 346 (2002), (233) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [125] W.L. Chooi and M.H. Lim, Some linear preserver problems on block triangular matrix algebras, Linear Algebra Appl. 370 (2003), (234) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [126] W.L. Chooi and M.H. Lim, Additive rank-one preserver on block triangular matrix spaces, Linear Algebra Appl. 416 (2006), (235) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998),

121 121 [127] S. Clark, C.K. Li and L. Rodman, Spectral radius preservers of products of nonnegative matrices, Banach J. Math. Anal. 2 (2008), (236) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [128] S. Cobzas and M.D. Rus, Normal cones and Thompson metric, Topics in Mathematical Analysis and Applications Springer Optimization and Its Applications Volume 94, 2014, pp (237) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), (238) O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), [129] C. Costara, Automatic continuity for linear surjective maps compressing the point spectrum, Oper. Matrices 9 (2015), (239) L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), (240) L. Molnár, P. Šemrl and A.R. Sourour, Bilocal automorphisms, Oper. Matrices 9 (2015), [130] J. Cui, Linear maps leaving zeros of a polynomial invariant, Acta Math. Sinica 50 (2007), (241) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [131] J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), (242) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (243) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), (244) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), [132] J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or tr-rank, Bull. Austral. Math. Soc. 65 (2002),

122 122 (245) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), (246) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [133] J. Cui and J. Hou, Linear maps preserving ideals of C - algebras, Proc. Amer. Math. Soc. 131 (2003), (247) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [134] J. Cui and J. Hou, Linear maps preserving idempotence on nest algebras, Acta Math. Sinica 20 (2004), (248) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [135] J. Cui and J. Hou, Linear maps preserving indefinite orthogonality on C -algebras, Chinese Ann. Math., Ser. A 25 (2004), (249) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (250) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [136] J. Cui and J. Hou, Linear maps preserving elements annihilated by a polynomial XY Y X, Studia Math. 174 (2006), (251) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (252) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [137] J. Cui and J. Hou, A characterization of indefinite-unitary invariant linear maps and relative results, Northeast. Math. J. 22(2006), (253) V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998),

123 123 (254) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [138] J. Cui and J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428 (2008), (255) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [139] J. Cui, J. Hou and B. Li, Linear preservers on upper triangular operator matrix algebras, Linear Algebra Appl. 336 (2001), (256) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [140] J. Cui, J. Hou and C-G. Park, Indefinite orthogonality preserving additive maps, Arch. Math. 83 (2004), (257) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (258) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [141] J. Cui and C.K. Li, Maps preserving product XY Y X on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), (259) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [142] J. Cui and C.K. Li, Maps preserving peripheral spectrum of Jordan products of operators, Oper. Matrices 6 (2012), (260) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [143] J. Cui, C.K. Li and Y.T. Poon, Pseudospectra of special operators and pseudospectrum preservers, J. Math. Anal. Appl. 419 (2014), (261) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

124 124 [144] J. Cui, Q. Li, J. Hou and X. Qi, Some unitary similarity invariant sets preservers of skew Lie products, Linear Algebra Appl. 457 (2014), (262) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (263) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [145] J. Cui and C. Park, Maps preserving strong skew Lie product on factor Von Neumann algebras, Acta Math. Sci. (Ser. B Engl. Ed.) 32 (2012), (264) L. Molnár, On the range of a normal Jordan *- derivation, Comment. Math. Univ. Carolinae 35 (1994), (265) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [146] L. Dai and F. Lu, Nonlinear maps preserving Jordan *- products, J. Math. Anal. Appl. 409 (2014), (266) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [147] M.N. Daif and M.S. Tammam El-Sayiad, An identity related to generalized derivations, Internat. J. Algebra 1 (2007), (267) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [148] M.N. Daif and M.S. Tammam El-Sayiad, On generalized derivations of semiprime rings with involution, Internat. J. Algebra 1 (2007), (268) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [149] S. Dăscălescu, S. Preduţ, L. van Wyk, Jordan isomorphisms of generalized structural matrix rings, Linear Multilinear Alg. 61 (2013), (269) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [150] J. Dauxois, G.M. Nkiet, Y. Romain, Canonical analysis relative to a closed subspace, Linear Algebra Appl. 388 (2004), (270) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001),

125 125 [151] Q. Di and J. Hou, Maps preserving numerical range of products of operators, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 19 (2005), 1 4. (271) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [152] M. Dobovišek, Maps from M n (F) to F that are multiplicative with respect to Jordan triple product, Publ. Math. (Debrecen) 73 (2008), (272) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (273) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) [153] M. Dobovišek, Maps from M 2 (F) to M 3 (F) that are multiplicative with respect to the Jordan triple product, Aequationes Math., 85 (2013), (274) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [154] M. Dobovišek, B. Kuzma, G. Lešnjak, C.K. Li and T. Petek, Mappings that preserve pairs of operators with zero triple Jordan product, Linear Algebra Appl. 426 (2007), (275) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [155] G. Dolinar, Maps on M n preserving Lie products, Publ. Math. (Debrecen) 71 (2007), (276) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [156] G. Dolinar, A. Guterman and J. Marovt, Monotone transformations on B(H) with respect to the left-star and the right-star order, Math. Inequal. Appl. 17 (2014), (277) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), [157] G. Dolinar and B. Kuzma, General preservers of quasicommutativity, preprint, Canad. J. Math. 62 (2010), (278) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002),

126 126 (279) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (280) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), [158] G. Dolinar and B. Kuzma, General preservers of quasicommutativity on self-adjoint operators, J. Math. Anal. Appl. 364 (2010), (281) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (282) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), [159] G. Dolinar and B. Kuzma, General preservers of quasicommutativity on Hermitian matrices, Electr. J. Lin. Alg. 17 (2008), (283) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), [160] C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), (284) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (285) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (286) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [161] H. Du and H.X. Cao, Generalization of Uhlhorn s theorem, J. Yanan Univ. Nat. Sci. 24 (2005), 7 8. (287) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [162] H. Du and H.X. Cao, Some remarks on Wigner s theorem, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009),

127 127 (288) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (289) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [163] H.K. Du, C.Y. Deng and Q.H. Li, On the infimum problem of Hilbert space effects, Sci. China Ser. A 49 (2006), (290) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), [164] S.P. Du, J.C. Hou and Z.F. Bai, Additive maps preserving similarity or asymptotic similarity on B(H), Linear and Multilinear Algebra 55 (2007), (291) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [165] Y. Du and Y. Wang, Additivity of Jordan maps on triangular algebras, Linear Multiliear Alg. 60 (2012), (292) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [166] Y. Du and Y. Wang, Jordan homomorphisms of upper triangular matrix rings over a prime ring, Linear Algebra Appl. 458 (2014), (293) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [167] A. Duma and C. Vladimirescu, Non-decomposable inner product spaces, Math. Sci. Res. J. 8 (2004), (294) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [168] S. Dutta and T.S.S.R.K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), (295) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (296) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.

128 128 [169] R. El Harti and M Mabrouk, Maps compressing and expanding the numerical range on C -algebras, Linear Multilinear Alg., to appear. (297) L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), [170] A.B.A. Essaleh, M. Niazi and A.M. Peralta, Bilocal *- automorphisms of B(H) satisfying the 3-local property, Arch. Math. 104 (2015), (298) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (299) L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), [171] D. Ethier, T. Lindberg, and A. Luttman, Polynomial identification in uniform and operator algebras, Ann. Funct. Anal. 1 (2010), (300) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (301) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [172] X. Fang, N.S. Sze and X.M. Xu, The Cuntz comparison in the standard C -algebra, Abstr. Appl. Anal. 2014, Article ID , 4 pages. (302) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), [173] A.K. Faraj and A.H. Majeed, On Left σ-centralizers of Jordan ideals and generalized Jordan left (σ, τ)-derivations of prime rings, Eng. and Tech. Journal 29 (2011), (303) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [174] J.S. Farsani, Zero products preserving maps from the Fourier algebra of amenable groups, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), (304) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.

129 129 [175] W. Feldman, Lattice preserving maps on lattices of continuous functions, J. Math. Anal. Appl. 404 (2013), (305) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), (306) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), [176] S. Feng, Additivity of elementary maps on nest subalgebras of von Neumann algebra, J. Baoji College Arts Sci. Nat. Sci. 28 (2008), (307) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), [177] S. Feng and J.H. Zhang, Additivity of elementary maps on nest subalgebra of von Neumann algebra, J. Xi an Univ. Art Sci. Nat. Sci. Ed. 9 (2006), (308) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [178] R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, (309) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (310) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), (311) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (312) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (313) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), [179] J.J. Font and M. Hosseini, Diameter preserving mappings between function algebras, Taiwanese J. Math. 15 (2011), (314) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998),

130 130 [180] J.J. Font and M. Sanchis, A characterization of locally compact spaces with homeomorphic one-point compactifications, Topology Appl., 121 (2002), (315) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [181] J.J. Font and M. Sanchis, Extreme points and the diameter norm, Rocky Mountain J. Math. 34 (2004), (316) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [182] A. Fošner, Automorphisms of the poset of upper triangular idempotent matrices, Linear and Multilinear Algebra 53 (2005), (317) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), (318) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [183] A. Fošner, Order preserving maps on the poset of upper triangular idempotent matrices, Linear Algebra Appl. 403 (2005), (319) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), (320) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [184] A. Fošner, Non-linear commutativity preserving maps on M n (R), Linear and Multilinear Algebra 53 (2005), (321) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [185] A. Fošner, Non-linear commutativity preserving maps on symmetric matrices, Publ. Math. (Debrecen), 71 (2007), (322) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), [186] A. Fošner, Commutativity preserving maps on M n (R), Glasnik Mat. 44 (2009),

131 131 (323) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [187] A. Fošner, A note on commutativity preservers on real matrices, Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009, pp (324) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), (325) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [188] A. Fošner, 2-local Jordan automorphisms on operator algebras, Studia Math. 209 (2012), (326) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [189] A. Fošner, 2-local mappings on algebras with involution, Ann. Funct. Anal. 5 (2014), (327) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [190] A. Fošner, Local generalized (α, β)-derivations, The Scientific World J. (2014), Article ID , 5 pp. (328) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [191] A. Fošner and M. Fošner, On superderivations and local superderivations, Taiwanese J. Math. 11 (2007), (329) L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. [192] A. Fošner and M. Fošner, On ɛ-derivations and local ɛ- derivations, Acta Math. Sin. 26 (2010), (330) L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. [193] A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), (331) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998),

132 132 (332) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (333) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (334) L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002), (335) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (336) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), (337) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), (338) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [194] A. Fošner, Z. Huang, C.K. Li, Y.T. Poon, N.S. Sze, Linear maps preserving the higher numerical ranges of tensor product of matrices, Linear Multilinear Algebra 62 (2014), (339) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [195] A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), (340) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp (341) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (342) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [196] A. Fošner and N. Peršin, On certain functional equation related to two-sided centralizers, Aeq. Math. Aeq. Math. 85 (2013), (343) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995),

133 133 [197] A. Fošner and J. Vukman, Some functional equations on standard operator algebras, Acta Math. Hung. 118 (2008), (344) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [198] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), (345) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [199] M. Fošner and D. Ilišević, Generalized bicircular projections via rank preserving maps on the spaces of symmetric and antisymmetric operators, Oper. Matrices 5 (2011), (346) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [200] M. Fošner and J. Vukman, An equation related to two-sided centralizers in prime rings, Rocky Mountain J. Math. 41 (2011), (347) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [201] D.J. Foulis, Square roots and inverses in E-rings, Rep. Math. Phys. 58 (2006), (348) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), [202] D.J. Foulis, Observables, states, and symmetries in the context of CB-effect algebras, Rep. Math. Phys. 60 (2007), (349) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), [203] A. Galántai, Subspaces, angles and pairs of orthogonal projections, Linear and Multilinear Algebra, 56 (2008), (350) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), [204] H. Gao, Jordan-triple multiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), (351) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (352) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy

134 134 and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [205] H.L Gau and C.K. Li, C -isomorphisms, Jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc. 135 (2007), (353) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [206] Gy.P. Gehér, An elementary proof for the non-bijective version of Wigners theorem, Phys. Lett. A 378 (2014), (354) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (355) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (356) F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), [207] Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), (357) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (358) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (359) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (360) L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), [208] Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), (361) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (362) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.

135 135 (363) L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), (364) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), [209] A.G. Ghazanfari and S.S. Dragomir Bessel and Grüss type inequalities in inner product modules over Banach *-algebras, J. Inequal. Appl. Volume 2011, Article ID , 16 pages. (365) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), [210] L. Gong, X. Qi, J. Shao and F. Zhang, Strong (skew) ξ-lie commutativity preserving maps on algebras, Cogent Mathematics (2015), 2: (366) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [211] F. González and V.V. Uspenskij, On homomorphisms of groups of integer-valued functions, Extracta Math. 14 (1999), (367) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [212] O. Gölbaşi and E. Koç, Notes on Jordan (σ, τ) -derivations and Jordan triple (σ, τ) -derivations, Aeq. Math. 85 (2013), (368) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [213] S.A. Grigoryan and T.V. Tonev, Shift-invariant Uniform Algebras on Groups, Monografie Matematyczne, Vol. 68, Birkhäuser Verlag, (369) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [214] E. Gselmann, Jordan triple mappings on positive denite matrices, Aeq. Math., to appear. (370) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) [215] R.J. Gu and P.S. Ji, Jordan triple maps of triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 20 (2007), (371) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000),

136 136 [216] S. Gudder and R. Greechie, Sequential products on effect algebras, Rep. Math. Phys. 49 (2002), (372) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), [217] S. Gudder and F. Latrémolière, Characterization of the sequential product on quantum effects, J. Math. Phys. 49 (2008), (373) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), [218] M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), (374) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (375) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (376) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (377) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (378) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [219] M. Győry, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), (379) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (380) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (381) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (382) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (383) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001),

137 137 [220] M. Győry, A new proof of Wigner s theorem, Rep. Math. Phys. 54 (2004), (384) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (385) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), [221] M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), (386) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (387) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (388) L. Molnár, A proper standard C -algebra whose automorphism and isometry groups are topologically reflexive, Publ. Math. (Debrecen) 52 (1998), (389) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (390) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (391) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), [222] D. Hadwin and J.K. Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004), (392) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), [223] J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, (393) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (394) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [224] J. Hamhalter, Spectral order of operators and range projections, J. Math. Anal. Appl. 331 (2007),

138 138 (395) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), [225] J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), (396) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), (397) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), (398) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (399) L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), [226] X. Hao, P. Ren and R.L. An, Jordan semi-triple multiplicative maps on symmetric matrices, Advances in Linear Algebra and Matrix Theory 3 (2013), (400) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (401) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [227] O. Hatori, Algebraic properties of isometries between groups of invertible elements in Banach algebras, J. Math. Anal. Appl. 376 (2011) (402) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), [228] O. Hatori, Isometries of the unitary groups in C -algebras, Studia Math. 221 (2014), (403) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), (404) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (405) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009),

139 139 (406) L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), (407) L. Molnár, Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math. 9 (2011), (408) L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), [229] O. Hatori, Isometries on the spetial unitary group, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp (409) L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), (410) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), [230] O. Hatori, K. Hino, T. Miura and H. Oka, Peripherally monomial-preserving maps between uniform algebras, Mediterr. J. Math. 6 (2009), (411) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [231] O. Hatori, G. Hirasawa and T. Miura, Additively spectralradius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math. 8 (2010), (412) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [232] O. Hatori, T. Ishii, T. Miura and S. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, 2003, pp (413) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), (414) L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000),

140 140 [233] O. Hatori, A. Jimenez-Vargas and M. Villegas-Vallecillos, Maps which preserve norms of non-symmetrical quotients between groups of exponentials of Lipschitz functions, J. Math. Anal. Appl. 415 (2014), (415) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [234] O. Hatori, K. Kobayashi, T. Miura and S.E. Takahasi, Reflections and a generalization of the Mazur-Ulam theorem, Rocky Mountain J. Math. 42 (2012), (416) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), [235] O. Hatori, S. Lambert, A. Luttman, T. Miura, T. Tonev, and R. Spectral preservers in commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (417) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (418) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [236] O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006), (419) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [237] O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), (420) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [238] O. Hatori, T. Miura and H. Oka, An example of multiplicatively spectrum-preserving maps between non-isomorphic semi-simple

141 141 commutative Banach algebras, Nihonkai Math. J. 18 (2007), (421) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [239] O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), (422) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (423) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (424) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (425) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (426) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, [240] O. Hatori, T. Miura, H. Oka and H. Takagi, Peripheral multiplicativity of maps on uniformly closed algebras of continuous functions which vanish at infinity, Tokyo J. of Math. 32 (2009), (427) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [241] O. Hatori, T. Miura, R. Shindo and H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo 59 (2010), (428) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [242] K. He and J. Hou, Distance preserving maps and completely distance preserving maps on the Schatten p-class, J. Shanxi Univ. Nat. Sci. Ed. 32 (2009), (429) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003),

142 142 [243] K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), (430) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (431) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (432) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [244] K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), (433) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (434) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (435) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (436) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), [245] K. He and J. Hou, Non-linear maps on self-adjoint operators preserving numerical radius and numerical range of Lie product, Linear Multilinear Alg., to appear. (437) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [246] K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), (438) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (439) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (440) L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007),

143 143 [247] K. He, F. Sun and J. Hou, Separability of sequential isomorphisms on quantum effects in multipartite systems, J. Phys. A: Math. Theor. 48 (2015), (9pp). (441) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (442) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [248] K. He and Q. Yuan, Non-linear isometries on Schatten-p class in atomic nest algebras, Abstr. Appl. Anal. Volume 2014, Article ID (443) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), (444) L. Molnár, Isometries of the spaces of bounded frame functions, J. Math. Anal. Appl. 338 (2008), [249] K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), (445) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (446) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (447) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), (448) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), (449) L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), [250] H. Heinosaari, A simple sufficient condition for the coexistence of quantum effects, J. Phys. A: Math. Theor. 46 (2013), (450) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), [251] H. Heinosaari, D. Reitzner and P. Stano, Notes on joint measurability of quantum observables, Found. Phys. 38 (2008), (451) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001),

144 144 [252] T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), (452) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (453) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (454) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), [253] C. Heunen and C. Horsman, Matrix multiplication is determined by orthogonality and trace, Linear Algebra Appl. 439 (2013), (455) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [254] F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, Springer and Hindustan Book Agance, New Delhi, India 2014, 332 p. (456) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), [255] G. Hirasawa, T. Miura and R. Shindo, A generalization of the Banach-Stone theorem for commutative Banach algebras, Nihonkai Math. J. 21 (2010), (457) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [256] G. Hirasawa, T. Miura and H. Takagi, Spectral radii conditions for isomorphisms between unital semisimple commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp (458) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [257] G. Hirasawa and H. Oka, A polynomially spectrum preserving map between uniform algebras, Nihonkai Math. J. 21 (2010), (459) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

145 145 [258] M. Hongan, N.U. Rehman and R.M. Al-Omary On Lie Ideals and Jordan triple derivations in rings, Rend. Sem. Mat. Univ. Padova 125 (2011), (460) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [259] D. Honma, Surjections on the algebras of continuous functions which preserve peripheral spectrum, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp (461) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [260] D. Honma, Norm-preserving surjections on the algebras of continuous functions, Rocky Mount. J. Math. 39 (2009), (462) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [261] S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), (463) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), (464) L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), (465) O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), (466) O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), (467) L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), (468) O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), (469) L. Molnár, Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear Multilinear Alg., to appear.

146 146 [262] M. Hosseini and M. Amini, Peripherally multiplicative maps between Figa-Talamanca-Herz algebras, Publ. Math. (Debrecen) 86 (2015), (470) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [263] M. Hosseini and J.J. Font, Norm-additive in modulus maps between function algebras, Banach J. Math. Anal. 8 (2014), (471) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [264] M. Hosseini and F. Sady, Multiplicatively range-preserving maps between Banach function algebras, J. Math. Anal. Appl. 357 (2009), (472) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [265] M. Hosseini and F. Sady, Multiplicatively and non-symmetric multiplicatively norm-preserving maps, Cent. Eur. J. Math. 8 (2010), (473) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [266] M. Hosseini and F. Sady, Weighted composition operators on C(X) and Lip c (X, α), Tokyo J. of Math. 35 (2012), (474) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [267] M. Hosseini and F. Sady, Banach function algebras and certain polynomially norm-preserving maps, Banach J. Math. Anal. 6 (2012), (475) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [268] M. Hosseini and F. Sady, Maps between Banach function algebras satisfying certain norm conditions, Cent. Eur. J. Math. 11 (2013), (476) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

147 147 [269] J. Hou and J. Cui, Rank-1 preserving linear maps on nest algebras, Linear Algebra Appl. 369 (2003), (477) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [270] J. Hou and J. Cui, Completely rank nonincreasing linear maps on nest algebras, Proc. Amer. Math. Soc. 132 (2004), (478) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [271] J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc. 134 (2006), (479) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [272] J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), (480) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (481) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (482) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), [273] J. Hou and L. Huang, Maps completely preserving idempotents and maps completely preserving square-zero operators, Israel J. Math. 176 (2010), (483) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [274] J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), (484) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (485) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

148 148 (486) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [275] J. Hou, C.K. Li and N.C. Wong, Maps preserving the spectrum of generalized Jordan product of operators, Linear Algebra Appl. 432 (2010), (487) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [276] J. Hou and X. Zhang, Ring isomorphisms and linear or additive maps preserving zero products on nest algebras, Linear Algebra Appl. 387 (2004), (488) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [277] F.G. Hu, Multiplicative maps on matrices preserving the Frobenius norm, J. Hubei Inst. National. Nat. Sci. 25 (2007), (489) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (490) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), [278] L. Huang, L. Chen and F. Lu, Characterizations of automorphisms of operator algebras on Banach spaces, J. Math. Anal. Appl. 430 (2015), (491) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), [279] L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), (492) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (493) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (494) L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011),

149 149 [280] L. Huang, Z.F. Lu and J.L. Li, Additive maps completely preserving skew idempotency between standard operator algebras, Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition) 32 (2011), (495) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [281] Z. Huang, Weakening the conditions in some classical theorems on linear preserver problems, Linear Multilinear Alg., to appear. (496) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [282] D. Huo, B. Zheng, J. Xua and H. Liu, Nonlinear mappings preserving Jordan multiple product on factor von Neumann algebras, Linear Multilinear Alg. 63 (2015), (497) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [283] D. Ilišević, Molnár-dependence in a pre-hilbert module over an H -algebra, Acta Math. Hungar. 101 (2003), (498) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), [284] D. Ilišević, Equations arising from Jordan *-derivation pairs, Aequationes Math. 67 (2004), (499) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [285] D. Ilišević, Quadratic functionals on modules over complex Banach *-algebras with an approximate identity, Studia Math. 171 (2005), (500) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [286] D. Ilišević, Quadratic functionals on modules over alternative *-rings, Studia Sci. Math. Hung. 42 (2005), (501) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [287] D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 +βxay +A = 0, Linear Algebra Appl. 429 (2008),

150 150 (502) L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), (503) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), (504) V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), [288] D. Ilisevič and A. Turnšek, Stability of the Wigner equation - a singular case, J. Math. Anal. Appl. 429 (2015), (505) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), [289] D. Ilišević and A. Turněk, A quantitative version of Hersteins theorem for Jordan *-isomorphisms, Linear Multilinear Alg., to appear. (506) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), [290] D. Ilišević and S. Varošanec, Grüss type inequalitiesin inner product modules, Proc. Amer. Math. Soc. 133 (2005), (507) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), [291] K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), (508) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (509) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (510) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), (511) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (512) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000),

151 151 (513) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [292] A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (514) L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), (515) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (516) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (517) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [293] G. Ji and Y. Gao, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433 (2010), (518) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (519) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), [294] P. Ji, Additivity of Jordan maps on Jordan algebras, Linear Algebra Appl. 431 (2009), (520) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [295] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), (521) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [296] P. Ji, W. Qi, Z. Qin, Multiplicative Jordan triple isomorphisms on Jordan algebras, J. Shandong Univ. Nat. Sci. Ed. 44 (2009), 1 3.

152 152 (522) L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), [297] P. Ji, L. Sun, J. Chen, Jordan multiplicative isomorphisms on spin factors, J. Shandong Univ. Nat. Sci. Ed. 46 (2011), 1 3. (523) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [298] P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), (524) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (525) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (526) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), [299] P.S. Ji and C.P. Wei, Isometries and 2-local isometries on Cartan bimodule algebras in hyperfinite factors of type II 1, Acta Math. Sinica. 49 (2006), (527) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), [300] Jian, K. H, Q. Yuan and F. Wang, On partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID , 5 pages (528) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (529) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), (530) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), [301] M. Jiao, Maps preserving commutativity up to a factor on standard operator algebras, Journal of Mathematical Research with Applications 33 (2013), (531) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002),

153 153 (532) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), [302] M. Jiao and X. Qi, Additive maps preserving commutativity up to a factor on nest algebras, Linear Multilinear Alg. 63 (2015), (533) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), [303] A. Jiménez-Vargas, Linear bijections preserving the Hölder seminorm, Proc. Amer. Math. Soc. 135 (2007), (534) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [304] A. Jimenéz-Vargas, A.M. Campoy and M. Villegas-Vallecillos, Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010), (535) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (536) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (537) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), [305] A. Jiménez-Vargas, K. Lee, A. Luttman and M. Villegas- Vallecillos, Generalized weak peripheral multiplicativity in algebras of Lipschitz functions, Cent. Eur. J. Math. 11 (2013), (538) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [306] A. Jimenez-Vargas, A. Luttman and M. Villegas-Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain J. Math. 40 (2010), (539) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [307] A. Jiménez-Vargas and M.A. Navarro, Hölder seminorm preserving linear bijections and isometries, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009),

154 154 (540) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [308] A. Jiménez-Vargas and M. Villegas-Vallecillos, Lipschitz algebras and peripherally-multiplicative maps, Acta Math. Sinica 24 (2008), (541) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [309] A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), (542) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (543) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (544) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [310] W. Jing, P. Li and S. Lu, Additive mappings that preserve rank one nilpotent operators, Linear Algebra Appl. 367 (2003), (545) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [311] W. Jing and F. Lu, Additivity of Jordan (triple) derivations on rings, Linear and Multilinear Algebra 40 (2012), (546) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [312] W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), (547) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (548) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (549) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998),

155 155 [313] W. Jing, S. Lu and G. Han, On topological reflexivity of the spaces of derivations on operator algebras, Appl. Math. J. Chinese Univ. Ser. A 17 (2002), (550) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (551) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), [314] D.J. Kečkić Cyclic kernels of elementary operators on a reflexive Banach space, Linear Algebra Appl. 438 (2013), (552) L. Molnár and P. Šemrl, Elementary operators on selfadjoint operators, J. Math. Anal. Appl. 327 (2007), [315] S.O. Kim, Linear maps preserving ideals of C -algebras, Proc. Amer. Math. Soc. 129 (2001), (553) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [316] S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), (554) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (555) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (556) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (557) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (558) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), [317] S.O. Kim and J.S. Kim, Local automorphisms and derivations on M n, Proc. Amer. Math. Soc. 132 (2004), (559) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (560) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [318] S.O. Kim and J.S. Kim, Local automorphisms and derivations on certain C -algebras, Proc. Amer. Math. Soc. 133 (2005),

156 156 (561) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), (562) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [319] S.O. Kim and C. Park, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), (563) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (564) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [320] B. Kolodziejek, The Lukacs-Olkin-Rubin theorem on symmetric cones through Gleason s theorem, Studia Math. 217 (2013), (565) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) [321] B. Kolodziejek, Multiplicative Cauchy functional equation on symmetric cones, Aequat. Math. 89 (2015), (566) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) [322] B. Kolodziejek, Lukacs-Olkin-Rubin theorem on symmetric cones without invariance of the quotient, J. Theor. Probab., to appear. (567) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) [323] I. Kosi-Ulbl and J. Vukman, An identity related to derivations of standard operator algebras and semisimple H -algebras, CUBO A Math. J. 12 (2010), (568) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [324] G.K. Kumar and S.H. Kulkarni, Linear maps preserving pseudospectrum and condition spectrum, Banach J. Math. Anal. 6 (2012), (569) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.

157 157 [325] D.L.W. Kuo, M.C. Tsai, N.C. Wong and J. Zhang, Maps preserving Schatten p-norms of convex combinations, Abstr. Appl. Anal. (2014), Article ID , 5 pp. (570) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (571) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [326] B. Kuzma, Additive mappings preserving rank-one idempotents, Acta Math. Sin. 21 (2005), (572) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [327] P. Lahti, M. M aczynski and K. Ylinen, Unitary and antiunitary operators mapping vectors to paralell or to orthogonal ones, with applications to symmetry transformations, Lett. Math. Phys. 55 (2001), (573) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), [328] S. Lambert, A. Luttman and T. Tonev, Weakly peripherallymultiplicative mappings between uniform algebras, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp (574) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [329] K. Lee, Characterizations of peripherally multiplicative mappings between real function algebras, Publ. Math. (Debrecen) Publ. Math. Debrecen 84 (2014), (575) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [330] K. Lee, A multiplicative Banach-Stone theorem, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp (576) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

158 158 [331] K. Lee and A. Luttman, Generalizations of weakly peripherally multiplicative maps between uniform algebras, J. Math. Anal. Appl. 375 (2011), (577) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [332] P. Legiša, Automorphisms of M n partially ordered by the star order, Linear Multilinear Alg. 54 (2006), (578) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [333] Z. Léka, A note on central moments in C -algebras, J. Math. Ineq. 9 (2015), (579) L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), [334] B. Lemmens and C. Walsh, Isometries of Polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011), (580) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), [335] G. Lešnjak and N.S. Sze, On injective Jordan semi-triple maps of matrix algebras, Linear Algebra Appl. 414 (2006), (581) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [336] C.W Leung, C.K. Ng and N.C. Wong, Linear orthogonality preservers of Hilbert C -modules, J. Operator Theory 71 (2014), (582) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (583) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [337] C.W. Leung, C.W. Tsai and N.C. Wong, Linear disjointness preservers of W -algebras, Math. Z. 270 (2012), (584) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999),

159 159 [338] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY +Y X on factor von Neumann algebras, Linear Algebra Appl. 438 (2013) (585) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [339] C. Li, F. Lu and X. Fang, Non-linear ξ-jordan *-derivations on von Neumann algebras, Linear Multilinear Alg. 62 (2014), (586) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [340] C.K. Li and E. Poon, Schur product of matrices and numerical radius (range) preserving maps, Linear Alg. Appl. 424 (2007), (587) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [341] C.K. Li and L. Rodman, Preservers of spectral radius, numerical radius, or spectral norm of the sum on nonnegative matrices, Linear Algebra Appl. 430 (2009), (588) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [342] C.K. Li, P. Šemrl, L. Plevnik, Preservers of matrix pairs with a fixed inner product value, Oper. Matrices 6 (2012), (589) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [343] C.K. Li, P. Šemrl and N.S. Sze, Maps preserving the nilpotency of products of operators, Linear Alg. Appl. 424 (2007), (590) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (591) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [344] J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, J. Math. Study 37 (2004), (592) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998),

160 160 (593) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [345] J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, Front. Math. China 1 (2006), (594) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (595) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [346] P. Li, Elementary maps on nest algebras, J. Math. Anal. Appl. 320 (2006), (596) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (597) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [347] P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004), (598) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (599) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (600) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [348] P. Li and F. Lu, Elementary operators on J -subspace lattice algebras, Bull. Austral Math. Soc. 68 (2003), (601) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (602) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [349] P. Li and F. Lu, Additivity of elementary maps on rings, Commun. Alg. 32 (2004), (603) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (604) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002),

161 161 [350] P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), (605) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (606) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (607) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp (608) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [351] P. Li and F. Lu, Jordan elementary operators on J -subspace lattice algebras algebras, Linear Algebra Appl., 428 (2008), (609) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (610) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [352] Y. Li and P. Busch, Von Neumann entropy and majorization, J. Math. Anal Appl. 408 (2013), (611) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), [353] Y. Li and Z. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Algebra 22 (2011), (612) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [354] P.K. Liau, W.L. Huang and C.K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl. 436 (2012), (613) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (614) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008),

162 162 [355] J.S Lin and C.K Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl. 432 (2010), (615) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [356] Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), (616) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (617) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (618) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (619) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (620) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (621) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [357] Z. Ling and F. Lu, Jordan maps of nest algebras, Linear Algebra Appl. 387 (2004), (622) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [358] C.K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math. 166 (2012), (623) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), [359] C.K. Liu and P.K Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra 59 (2011), (624) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008),

163 163 [360] C.K. Liu and W.Y. Tsai, Jordan isomorphisms of upper triangular matrix rings, Linear Algebra Appl. 426 (2007), (625) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [361] J.H. Liu and N.C. Wong, 2-local automorphisms of operator algebras, J. Math. Anal. Appl. 321 (2006), (626) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [362] J.H. Liu, N.C. Wong, Local automorphisms of operator algebras, Taiwanese J. Math. 11 (2007), (627) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (628) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), [363] L. Liu, Strong commutativity preserving maps on von Neumann algebras, Linear Multilinear Alg. 63 (2015), (629) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [364] F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002), (630) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (631) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), [365] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), (632) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [366] F. Lu, Jordan maps on associative algebras, Commun. Algebra 31 (2003), (633) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp

164 164 [367] F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), (634) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (635) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [368] F. Lu, Jordan derivable maps of prime rings, Commun. Algebra 38 (2010), (636) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [369] F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010), (637) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (638) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [370] F. Lu and J. Xie, Multiplicative mappings of rings, Acta Math. Sinica 22 (2006), (639) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), (640) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), [371] A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Europ. J. Math., 6 (2008), (641) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [372] A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135 (2007), (642) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [373] L. Maccone, Information-disturbance tradeoff in quantum measurements, Phys. Rev. A 73 (2006),

165 165 (643) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), [374] M. Maczynski and E. Scheffold, On elementary operators of length 1 and some order intervals in B s (H), Acta Sci. Math. (Szeged) 70 (2004), (644) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (645) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), [375] H.A. Mahdi and A.H. Majeed, Derivable maps of prime rings, Iraqi J. Sci. 54 (2013), (646) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [376] Abdul-Rahman H. Majeed and A.H. Mahmood, Dependent elements of biadditive mappings on semiprime rings, Journal of Al-Nahrain University 18 (2015), (647) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [377] Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), (648) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (649) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (650) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (651) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (652) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (653) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), (654) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002),

166 166 [378] A. Maouche, Spectrum preserving mappings in Banach algebras, Far East J. Math. Sci. 21 (2006), (655) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [379] M. Marciniak, On extremal positive maps acting between type I factors, M. Bożejko (ed.) et al., Noncommutative harmonic analysis with applications to probability. II: Banach Center Publ. 89 (2010), (656) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), [380] L.W. Marcoux, H. Radjavi and A.R. Sourour, Multiplicative maps that are close to an automorphism on algebras of linear transformations, Studia Math. 214 (2013), (657) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), [381] J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), (658) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (659) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (660) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), (661) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), (662) E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004), [382] J. Marovt, Multiplicative bijections of C(X, I), Proc. Amer. Math. Soc. 134 (2006), (663) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), [383] J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006),

167 167 (664) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (665) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (666) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), (667) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), (668) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), (669) E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004), [384] J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), (670) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (671) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), (672) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), (673) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (674) L. Molnár and W. Timmermann, Transformations on the sets of states and density operators, Linear Algebra Appl. 418 (2006), [385] J. Marovt and T. Petek, Automorphisms of Hilbert space effect algebras equipped with Jordan triple product, the twodimensional case, Publ. Math. (Debrecen) 66 (2005), (675) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), [386] M. Mathieu, Elementary operators on Calkin algebras, Irish Math. Soc. Bulletin 46 (2001), (676) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000),

168 168 [387] M. Mbekhta, V. Mller and M. Oudghiri, Additive preservers of the ascent, descent and related subsets, J. Operator Theory 71 (2014), (677) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [388] Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), (678) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (679) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (680) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (681) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), [389] T. Miura, A representation of ring homomorphisms on commutative Banach algebras, Scient. Math. Japon. 53 (2001), (682) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), [390] T. Miura, A representation of ring homomorphisms on unital regular commutative Banach algebras, Math. J. Okoyama Univ. 44 (2002), (683) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), [391] T. Miura, D. Honma A generalization of peripherallymultiplicative surjections between standard operator algebras, Cent. Eur. J. Math. 7 (2009), (684) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (685) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.

169 169 [392] T. Miura, D. Honma and R. Shindo, Divisibly norm-preserving maps between commutative Banach algebras, Rocky Mountain J. Math. 41 (2011), (686) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [393] T. Miura and S. Takahasi, Ring homomorphisms on real Banach algebras, Int. J. Math. Math. Sci. 48 (2003), (687) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), [394] T. Miura, S.E. Takahasi and N. Niwa Prime ideals and complex ring homomorphisms on a commutative algebra, Publ. Math. (Debrecen) 70 (2006), (688) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), [395] T. Miura, S.E. Takahasi and N. Niwa Ring homomorphisms on commutative regular Banach algebras, Nihonkai Math. J. 19 (2008), (689) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), (690) L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), [396] T. Miura, S.E. Takahasi, N. Niwa and H. Oka, On surjective ring homomorphisms between semi-simple commutative Banach algebras, Publ. Math. (Debrecen) 73 (2008), (691) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), [397] T. Miura and T. Tonev, Mappings onto multiplicative subsets of function algebras and spectral properties of their products, Ark. Mat. 53 (2015), (692) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [398] G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009),

170 170 (693) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), (694) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), (695) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [399] G. Nagy, Isometries on positive operators ofunit norm, Publ. Math. (Debrecen) 82 (2013), (696) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), (697) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [400] G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID , 9 pages. (698) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), (699) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (700) L. Molnár and W. Timmermann, Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor. 42 (2009), [401] G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), (701) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), (702) F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), [402] M. Najafi Tavani, Peripherally multiplicative operators on unital commutative Banach algebras, Banach J. Math. Anal. 9 (2015), (703) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

171 171 [403] J.C. Navarro Pascual and M.G. Sanchez Lirola, Diameter, extreme points and topology, Studia Math. 191 (2009), (704) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [404] T.W. Palmer, Banach Algebras and the General Theory of *- Algebras, vol. II., Cambridge University Press, (705) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), (706) L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), (707) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), (708) L. Molnár, The range of a Jordan *-derivation on an H -algebra, Acta Math. Hung. 72 (1996), [405] F.F. Pan, The characterization of the local linear mappings on the subalgebra of matrix algebra M 3 (C), J. Xi an Univ. Post and Telecomm., 11 (2006), (709) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), [406] Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), (710) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (711) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), (712) L. Molnár and P. Šemrl, Elementary operators on selfadjoint operators, J. Math. Anal. Appl. 327 (2007), [407] V. Pavlovič, Remarks and comments on some recent results, Filomat 29 (2015), (713) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, A.M. Peralta, A note on 2-local representations of C -algebras, Operators and Matrices, to appear. (714) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996),

172 172 (715) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (716) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), (717) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), (718) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [408] T. Petek, Spectrum and commutativity preserving mappings on triangular matrices, Linear Algebra Appl. 357 (2002), (719) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [409] F. Pop, On local representations of von Neumann algebras, Proc. Amer. Math. Soc. 132 (2004), (720) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), (721) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [410] S. Pulmannová, Tensor products of Hilbert space effect algebras, Rep. Math. Phys. 53 (2004), (722) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), [411] J. Qi, G. Ji, Linear maps preserving idempotency of products of matrices on upper triangular matrix algebras, Commun. Math. Res. 25 (2009), (723) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [412] X.F. Qi, Characterization of centralizers on rings and operator algebras, Acta Math. Sin. 56 (2013), (724) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [413] X.F. Qi, S.P. Du and J.C. Hou, Two kinds of additive maps on operator algebras, J. Shanxi Normal Univ. Nat. Sci. Ed. 20 (2006), 1-3.

173 173 (725) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [414] X. Qi, S. Du and J. Hou, Characterization of centralizers, Acta Math. Sin., Chin. Ser. 51 (2008), (726) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [415] X.F. Qi and J.C. Hou, Nonlinear strong commutativity preserving maps on prime rings, Comm. Algebra 38 (2010), (727) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [416] X. Qi and J. Hou, Additivity of Lie multiplicative maps on triangular algebras Linear Multilinear Algebra 59 (2011), (728) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [417] X.F. Qi and J.C. Hou, Strong commutativity preserving maps on triangular rings, Oper. Matrices 6 (2012), (729) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [418] X. Qi and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Anal. Appl. 397 (2012), (730) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), [419] X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin., Eng. Ser. 29 (2013), (731) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [420] J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), (732) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (733) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp

174 174 (734) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), (735) L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), [421] F. Qu, A class of bijective maps preserving *-multiplicativity on B(H), J. Baoji College Arts Sci. Nat. Sci. 29 (2009), (736) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), [422] M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), (737) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (738) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), (739) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [423] M. Radjabalipour, K. Seddighi and Y. Taghavi, Additive mappings on operator algebras preserving absolute values, Linear Algebra Appl. 327 (2001), (740) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [424] M. Radjabalipour and Y. Taghavi, Characterisations of *-homomorphisms of B(H) into B(K), Proceedings of the 31st Iranian Mathematics Conference (Tehran, 2000), , Univ. Tehran, Tehran, (741) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [425] M. Radjabalipour and P. Torabian, On nonlinear preservers of weak matrix majorization, Bull. Iranian Math. Soc. 32 (2006),

175 175 (742) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), [426] H. Radjavi and P. Šemrl, Linear maps preserving quasicommutativity, Studia Math. 184 (2008), (743) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), [427] N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), (744) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [428] N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras II, Proc. Edinb. Math. Soc. 48 (2005), (745) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [429] N.V. Rao, T.V. Tonev and E.T. Toneva, Uniform algebra isomorphisms and peripheral spectra, In: Topological Algebras (Eds. A. Malios and M. Haralampidu), Contemporary Math. 427 (2007), (746) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [430] T.S.S.R.K. Rao, Local surjective isometries of function spaces, Expositiones Math. 18 (2000), (747) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), [431] T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), (748) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (749) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999),

176 176 (750) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (751) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (752) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, [432] T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), (753) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (754) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (755) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), (756) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), (757) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, [433] T.S.S.R.K. Rao, A note on the algebraic reflexivity of the group of surjective isometries of K(C(K)), Expo. Math. 26 (2008), (758) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), (759) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), [434] T.S.S.R.K. Rao, Nice surjections on spaces of operators, Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), (760) V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998),

177 177 [435] T.S.S.R.K. Rao and A.K. Roy, Diameter preserving linear bijections of functions spaces, J. Austral. Math. Soc. 70 (2001), (761) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), [436] N. ur Rehman, Jordan triple (α, β) -derivations on semiprime rings with involution, Hacettepe J. Math. Stat. 42 (2013), (762) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [437] M.A. Rieffel, Standard deviation is a strongly Leibniz seminorm, New York J. Math., 20 (2014), (763) L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 [438] A. Rivas, S.F. Huelga and M. Plenio, Quantum non- Markovianity: characterization, quantification and detection, Rep. Progr. Phys. 77 (2014), , 26 pp. (764) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), [439] L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear and Multilinear Alg. 54 (2006), (765) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (766) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [440] L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on finite dimensional projective spaces over division rings, Linear and Multilinear Alg. 56 (2008), (767) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (768) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [441] L. Rodman and P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear and Multilinear Alg. 57 (2009),

178 178 (769) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (770) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [442] A. Sanami, A characterization of the Helmholtz free energy, J. Math. Phys. 54 (2013), (771) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), [443] A. Sanami, A characterization of the entropy-gibbs transformations, Iran. J. Math. Chem. 5 (2014), (772) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), [444] K. Seddighi and Y. Taghavi, Mappings on spaces of continuous functions, Southeast Asian Bull. Math. 24 (2000), (773) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), [445] P. Šemrl, Generalized symmetry transformations on quaternionic indefinite inner product spaces: An extension of quaternionic version of Wigner s theorem, Commun. Math. Phys. 242 (2003), (774) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (775) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [446] P. Šemrl, Orthogonality preserving transformations on the set of n-dimensional subspaces of a Hilbert space, Illinois J. Math. 48 (2004), (776) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), [447] P. Šemrl, Order-preserving maps on the poset of idempotent matrices, Acta Sci. Math. (Szeged) 69 (2003),

179 179 (777) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [448] P. Šemrl, Applying projective geometry to transformations on rank one idempotents, J. Funct. Anal. 210 (2004), (778) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (779) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [449] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), (780) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [450] P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), (781) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (782) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (783) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (784) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [451] P. Šemrl, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), (785) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (786) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [452] P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006),

180 180 (787) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (788) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), (789) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (790) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), (791) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (792) L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp , Birkhäuser, (793) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp (794) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [453] P. Šemrl, Maps on matrix and operator algebras, Jahresber. Deutsch. Math.-Verein. 108 (2006), (795) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [454] P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), (796) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (797) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (798) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (799) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000),

181 181 (800) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), (801) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (802) L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp , Birkhäuser, (803) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [455] P. Šemrl, Linear Preserver Problems, In Handbook of Linear Algebra (L. Hogben edt.) Discrete Mathematics and its Applications, Chapman and Hall, 2007, (804) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), [456] P. Šemrl, Non-linear commutativity preserving maps on hermitian matrices, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), (805) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), [457] P. Šemrl, Comparability preserving maps on bounded observables, Integral Equations Operator Theory 62 (2008), (806) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (807) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [458] P. Šemrl, Local automorphisms of standard operator algebras, J. Math. Anal. Appl. 371 (2010), (808) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [459] P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), (809) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (810) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001),

182 182 (811) L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), (812) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (813) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), [460] P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), (814) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (815) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (816) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (817) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), (818) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [461] P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), (819) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (820) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (821) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (822) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (823) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), (824) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003),

183 183 (825) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), (826) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, (827) L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007), (828) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), (829) CML09f L. Molnár, Maps preserving the harmonic mean or the parallel sum of positive operators, Linear Algebra Appl. 430 (2009), [462] P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) (830) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), (831) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), (832) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [463] P. Šemrl and A.R. Sourour, Order preserving maps on hermitian matrices, J. Austral. Math. Soc. 95 (2013), (833) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), (834) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [464] H. Shi, G. Ji, Maps preserving norms of Jordan products on the space of self-adjoint operators, J. Shandong Univ. Nat. Sci. Ed.45 (2010), (835) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), [465] R. Shindo, Norm conditions for real-algebra isomorphisms between uniform algebras, Centr. Eur. Math. J. 8 (2010), (836) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

184 184 [466] R. Shindo, Maps between uniform algebras preserving norms of rational functions, Mediterr. J. Math. 8 (2011), (837) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [467] R. Shindo, Weakly-peripherally multiplicative conditions and isomorphisms between uniform algebras, Publ. Math. (Debrecen) 78 (2011), (838) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [468] R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), (839) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), (840) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), (841) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), (842) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), (843) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [469] N. Širovnik and J. Vukman, A result concerning two-sided centralizers on algebras with involution, Oper. Matrices 7 (2013), (844) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [470] N. Širovnik and J. Vukman, On derivations of operator algebras with involution, Demonstr. Math. 47 (2014), (845) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [471] P.B. Slater, Quantum and Fisher information from the Husimi and related distributions, J. Math. Phys. 47 (2006), Art. No

185 185 (846) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), [472] R. Slowik, Maps on infinite triangular matrices preserving idempotents, Linear Multilinear Alg. 62 (2014), (847) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [473] R. Slowik, Linear minimal rank preservers on infinite triangular matrices, Kyushu J. Math. 69 (2015), (848) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [474] P. Stano, D. Reitzner and T. Heinosaari, Coexistence of qubit effects, Phys. Rev. A 78 (2008), (849) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), [475] E. Størmer, Positive Linear Maps of Operator Algebras, Springer-Verlag, Berlin Heidelberg, (850) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [476] P. Szokol, M.-C. Tsai and J. Zhang, Preserving problems of geodesic-affine maps and related topics on positive definite matrices, Linear Algebra Appl. 483 (2015), (851) O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), (852) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), [477] A. Taghavi, Additive mappings on operator algebras preserving square absolute values, Honam Math. J. 23 (2001), (853) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [478] A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002),

186 186 (854) L. Molnár, On the range of a normal Jordan *- derivation, Comment. Math. Univ. Carolinae 35 (1994), (855) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (856) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), [479] A. Taghavi, Additive mappings on C -algebras preserving absolute values, Linear Multilinear Algebra 60 (2012), (857) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (858) L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), [480] A. Taghavi, Additive mappings on C -algebras sub-preserving absolute values of products, Journal of Inequalities and Applications 2012, Article ID 161, 6 p., electronic only (2012). (859) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (860) L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), [481] A. Taghavi and E. Dadar, Range-preserving maps on operator algebras, Int. J. Contemp. Math. Sci. 3 (2008), (861) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [482] A. Taghavi, V. Darvish, H. Rohi, Additivity of maps preserving products AP ± P A on C -algebras, Math. Slovaca, to appear. (862) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), (863) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [483] (2) A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Alg., to appear. (864) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996),

187 187 (865) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), [484] A. Tajmouati and A. El Bakkali, Linear maps preserving the Kato spectrum, Int. Journal of Math. Analysis 6 (2012), (866) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [485] S.E. Takahasi and O. Hatori, A structure of ring homomorphisms on commutative Banach algebras, Proc. Amer. Math. Soc. 127 (1999), (867) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), [486] T. Tanengtang, K. Paithoonwattanakij, P.P. Yupapin and S. Suchat, Quantum bits generation using correlated photons: Fidelity and error corrections, Optik 121 (2010), (868) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), [487] X.M. Tang, C.G. Cao and X. Zhang, Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 338 (2001), (869) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [488] F. Ticozzi and L. Viola, Quantum information encoding, protection, and correctionfrom trace-norm isometries, Phys. Rev. A 81 (2010), (870) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), [489] W. Timmermann, Remarks on automorphism and derivation pairs in ternary rings of unbounded operators, Arch. Math. 74 (2000), (871) L. Molnár and B. Zalar, Three-variable *-identities and homomorphisms of Schatten classes, Publ. Math. (Debrecen) 50 (1997), (872) L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997),

188 188 [490] W. Timmermann, Elementary operators on algebras of unbounded operators, Acta Math. Hung. 107 (2005) (873) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (874) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [491] W. Timmermann, Zero product preservers and orthogonality preservers in algebras of unbounded operators, Math. Pannon. 16 (2005), (875) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), (876) L. Molnár, Characterization of additive *- homomorphisms and Jordan *-homomorphisms on operator ideals, Aequationes Math. 55 (1998), [492] T. Tonev, Weak multiplicative operators on function algebras without units, Banach Cent. Publ. 91 (2010), (877) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (878) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [493] T. Tonev, Spectral conditions for almost composition operators between algebras of functions, Proc. Amer. Math. Soc. 142 (2014), (879) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [494] T. Tonev and A. Luttman, Algebra isomorphisms between standard operator algebras, 191 (2009), (880) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (881) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.

189 189 [495] T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl. 357 (2009), (882) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (883) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [496] E. Turilova, Automorphisms of spectral lattices of unbounded positive operators, Lobachevskii J. Math. 35 (2014), (884) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), [497] E. Turilova, Automorphisms of spectral lattices of positive contractions on von Neumann algebras, Lobachevskii J. Math. 35 (2014), (885) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), [498] A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), (886) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), (887) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), (888) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [499] A. Turnšek, A variant of Wigners functional equation, Aequat. Math., to appear. (889) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), [500] Z. Ullah and M.A. Chaudhry, θ-centralizers of rings with involution, Int. J. Algebra 4 (2010), (890) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995),

190 190 [501] J. Vukman, An equation on operator algebras and semisimple H -algebras, Glasnik Math. 40 (2005), (891) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [502] J. Vukman, On derivations of algebras with involution, Acta Math. Hung. 112 (2006), (892) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [503] J. Vukman, A note on Jordan *-derivations in semiprime rings with involution, Int. Math. Forum 1 (2006), (893) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [504] J. Vukman, On derivations of standard operator algebras and semisimple H -algebras, Studia Sci. Math. Hungar. 44 (2007), (894) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [505] J. Vukman, Identities related to derivations and centralizers on standard operator algebras, Taiwanese J. Math. 11 (2007), (895) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [506] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), (896) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [507] J. Vukman, On (m, n)-jordan centralizers in rings and algebras, Glasnik Math. 45 (2010), (897) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [508] J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glasnik Math. 46 (2011), (898) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [509] J. Vukman and M. Fošner, A characterization of two-sided centralizers on prime rings, Taiwanese J. Math. 11 (2007),

191 191 (899) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [510] J. Vukman and I. Kosi-Ulbl, Centralisers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), (900) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [511] J. Vukman and I. Kosi-Ulbl, A remark on a paper of L. Molnár, Publ. Math. (Debrecen) 67 (2005), (901) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [512] J. Vukman and I. Kosi-Ulbl, On centralizers of standard operator algebras and semisimple H -algebras, Acta Math. Hung. 110 (2006), (902) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [513] J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hung. 43 (2006), (903) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [514] J. Vukman and I. Kosi-Ulbl, On centralizers of semisimple H - algebras, Taiwanese J. Math. 11 (2007), (904) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [515] J. Vukman and I. Kosi-Ulbl, On two-sided centralizers of rings and algebras, CUBO A Math. J. 10 (2008), (905) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [516] J. Vukman, I. Kosi-Ulbl and D. Eremita, On certain equations in rings, Bull. Austral. Math. Soc. 71 (2005), (906) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), [517] D. Wang, Q. Guan and D. Zhang, Local automorphisms of semisimple algebras and group algebras, Acta Math. Sci. 38 (2011), (907) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [518] L. Wang, Additivity of Jordan triple elementary maps on triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 33 (2012).

192 192 (908) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (909) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [519] L. Wang, J. Hou and K. He, Fidelity, sub-fidelity, super-fidelity and their preservers, Int. J. Quantum Inf. 13 (2015), , 11 pp. (910) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), (911) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), [520] X. Wang, Local derivations of a matrix algebra over a commutative ring, J. Math. Res. Expo. 31 (2011), (912) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [521] Y. Wang, The additivity of multiplicative maps on rings, Commun. Algebra 37 (2009), (913) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [522] Y. Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl. 434 (2011), (914) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [523] Y. Wang and Y. Wang, Jordan homomorphisms of upper triangular matrix rings, Linear Algebra Appl. 439 (2013), (915) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [524] M. Wei, J. Zhang Elementary maps on triangular algebra, J. Northwest Univ. 45 (2009), (916) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), (917) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002),

193 193 [525] M. Wei M, J.H. Zhang, Jordan-triple elementary maps and Jordan isomorphisms on triangular algebras, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), (918) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), [526] T.L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), (919) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [527] J. Wu, Additive mappings preserving zero products, Acta Math. Sinica 42 (1999), (920) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), [528] X. Xia, Y. Jin, Y. Shang and L. Chen, Improved relativeentropy method for eccentricity filtering in roundness measurement based on information optimization, Research Journal of Applied Sciences, Engineering and Technology (RJASET) 5 (2013), (921) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), [529] J. Xie and F. Lu, A note on 2-local automorphisms of digraph algebras, Linear Algebra Appl. 378 (2004), (922) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), [530] J. Xu, B. Zheng and A. Fošner, Linear maps preserving tensor product of rank-one Hermitian matrices, J. Aust. Math. Soc. 98 (2015), (923) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [531] J. Xu, B. Zheng and H. Yao, Linear transformations between multipartite quantum systems that map the set of tensor product of idempotent matrices into idempotent matrix set, J. Funct. Space Appl. Volume 2013, Article ID , 7 pages. (924) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001),

194 194 (925) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [532] J.L. Xu, C.G. Cao and X.M. Tang, Linear preservers of idempotence on triangular matrix spaces over any field, Internat. Math. Forum 2 (2007), (926) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [533] C. Yan, G. Zhang and C. Gao, The form of finite rank idempotent operators of B(H) and its application, Natur. Sci. J. Harbin Normal Univ. 22 (2006), (927) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [534] A. Yang, Jordan isomorphisms on nest subalgebras, Advances in Mathematical Physics, Volume 2015, Article ID , 6 pages. (928) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [535] A.L. Yang and J.H. Zhang, Jordan isomorphisms on nest subalgebras of factor von Neumann algebras, Acta Math. Sinica 51 (2008), (929) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [536] D. Yang, Jordan *-derivation pairs on standard operator algebras and related results, Colloq. Math. 102 (2005), (930) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), [537] L. Yang, W. Zhang and J. Xu, Linear maps on upper triangular matrices spaces preserving idempotent tensor products, Abstr. Appl. Anal. (2014), Article ID , 8 pages (931) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [538] H. You, S. Liu and G. Zhang, Rank one preserving R-linear maps on spaces of self-adjoint operators on complex Hilbert spaces, Linear Algebra Appl. 416 (2006)

195 195 (932) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [539] X.P. Yu and F.Y. Lu, Maps preserving Lie product on B(X), Taiwanese J. Math. 12 (2008), (933) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (934) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp [540] L. Yuan and H.K. Du, A note on the infimum problem of Hilbert space effects, J. Math. Phys. 47 (2006), Art. No (935) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), [541] Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID , 5 pages. (936) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), (937) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), (938) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [542] B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), (939) L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), (940) L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), (941) L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), (942) L. Molnár, p-classes of an H*-algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), (943) L. Molnár, Conditions for a function to be a centralizer on an H*-algebra, Acta Math. Hung. 67 (1995), [543] B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995),

196 196 (944) L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), (945) L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), (946) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), (947) L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), (948) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), (949) L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), (950) L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), [544] B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), (951) L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), (952) L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), (953) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), (954) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), (955) L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), (956) L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), [545] F.J. Zhang, Nonlinear strong *-commutativity preserving maps on factor von Neumann algebras, Fangzhi Gaoxiao Jichukexue Xuebao 25 (2012), (957) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [546] F.J. Zhang and G.X. Ji, Additive maps preserving orthogonality on B(H), J. Shaanxi Normal Univ. Nat. Sci. Ed. 33 (2005), (958) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996),

197 197 [547] G. Zhang and S. Liu, Rank one preserving linear maps on spaces of symmetric operators, J. Heilongjiang Univ. Natur. Sci. 23 (2006), (959) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [548] H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, (960) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), (961) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp (962) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [549] H. Zhang and X. Wang, Local E-automorphisms on effect algebras, Pure Math. 2 (2012), (963) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (964) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), [550] J.H. Zhang, S. Feng and R.H. Wu, Local 2-cocycles of nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 416 (2006), (965) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), [551] J.H. Zhang, G.X. Ji and H.X. Cao, Local derivations of nest subalgebras of von Neumann algebras, Linear Algebra Appl. 392 (2004), (966) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), [552] J.H. Zhang and H.X. Li, 2-local derivations on digraph algebras, Acta Math. Sin. 49 (2006), (967) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003),

198 198 [553] J.H. Zhang, A.L. Yang and F.F. Pan, Local automorphisms on nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 402 (2005), (968) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), (969) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), [554] J.H. Zhang, A.L. Yang and F.F. Pan, Linear maps preserving zero products on nest subalgebras of von Neumann algebras, Linear Algebra Appl. 412 (2006), (970) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [555] J.H. Zhang and F.J. Zhang, Nonlinear maps preserving Lie products on factor von Neumann algebras, Linear Algebra Appl. 429 (2008), (971) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [556] W. Zhang, J. Hou, Maps preserving peripheral spectrum of generalized Jordan products of self-adjoint operators, Abstr. Appl. Anal. Volume 2014, Article ID , 8 pages. (972) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [557] W. Zhang, J. Hou and X. Qi, Maps preserving peripheral spectrum of generalized Jordan products of operators, Acta Math. Sin. 31 (2015), (973) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), (974) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), [558] X. Zhang, H. Cui and J. Hou, Jordan semi-triple mappings preserving rank and minimal rank, Proceedings of the Third International Workshop on Matrix Analysis and Applications, vol 3., World Academic Union, , 2009.

199 199 (975) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), [559] X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, (976) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), (977) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), (978) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), (979) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), (980) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), (981) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), [560] W. Zhang and J. Hou, Maps preserving numerical radius or cross norms of products on 2 2 matrix algebras, Journal of North University of China (Natural Science Edition) 30 (2009), (982) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), [561] W. Zhang and J. Hou, Maps preserving peripheral spectrum of Jordan semi-triple products of operators, Linear Algebra Appl. 435 (2011), (983) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), [562] W. Zhang and J. Hou, Maps preserving peripheral spectrum of generalized products of operators, Linear Algebra Appl. 468 (2015), (984) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002),

200 200 [563] X.H. Zhang and J.H. Zhang, Characterizations of Jordan isomorphisms of nest algebras, Acta Math. Sin. 56 (2013), (985) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), [564] L. Zhao and J. Hou, Additive Maps Preserving Indefinite Semi- Orthogonality, J. Systems Sci. Math. Sci. 27 (2007), (986) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), [565] B. Zheng, J. Xu nd A. Fošner, Linear maps preserving idempotents of tensor products of matrices, Linear Alg. Appl. 470 (2015), (987) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [566] B. Zheng, J. Xu nd A. Fošner, Linear maps preserving rank of tensor products of matrices, Linear Multilinear Alg. 63 (2015), (988) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, [567] J. Zhu and C. Xiong, Generalized derivable maps at zero point on some reflexive operator algebras, Linear Algebra Appl. 397 (2005), (989) L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), (990) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), [568] J. Zhu and C. Xiong, Characterization of generalized Jordan *-left derivations on real nest algebras, Linear Algebra Appl. 404 (2005), (991) L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997),

201 201 (992) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), [569] J. Zhu and C. Xiong, Generalized Jordan *-left derivations on real nest algebras, Acta Math. Sinica 48 (2005), (993) L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), (994) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000),

202 202 LECTURES AND TALKS by Lajos Molnár 1. Isometries and isomorphisms on positive definite matrices, 10th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 7-12, 2015, Kočovce, Slovak Republic 2. Linear bijections on von Neumann factors commuting with λ- Aluthge transform, Seminar talk, Nihon University, June 6, 2015, Tokyo, Japan. 3. On isometries of some matrix spaces, Colloquium talk, Department of Mathematics, Waseda University, June 5, 2015, Tokyo, Japan. 4. Generalized Mazur-Ulam theorems and isometries of positive definite cones in operator algebras, International Conference on Preserver Problems and Related Topics, Niigata University, May 24, 2015, Niigata, Japan. 5. Izometriák és izomorfizmusok, Colloquium talk, Bolyai Institute, University of Szeged, April 14, 2015, Szeged, Hungary. 6. Generalized Mazur-Ulam theorems and isometries of matrix spaces, Seminar talk, Department of Mathematics, The University of Mississippi, March 20, 2015, Oxford MS, USA. 7. Generalized Mazur-Ulam theorems and isometries of matrix spaces, Colloquium talk, Department of Mathematical Sciences, The University of Memphis, March 26, 2015, Memphis TN, USA. 8. Általánosított Mazur-Ulam tételek és mátrixterek izometriái, Seminar of the Department of Analysis, Budapest University of Technology and Economics, January 11, 2015, Budapest, Hungary. 9. Preservers: transformations on quantum structures and isometries of matrix spaces, Series of lectures at Winter School in Abstract Analysis, Charles University, January 10-17, 2015, Švratka, Czecz Republic 10. Isometries of matrix spaces, Varecza Árpád Emléknap, College of Nyíregyháza, October 30, 2014, Nyíregyháza, Hungary.

203 On the standard K-loop structure of positive invertible elements in a C -algebra, Analysis Seminar, University of Innsbruck, October 24-26, 2014, Innsbruck, Austria. 12. Quantum structures and their transformations, A course at the CIMPA Research School on Operator theory and the principles of quantum mechanics University Moulay Ismail, 2014 September 8-17, Meknes, Morocco. 13. Isometries and isomorphisms of spaces of positive definite and unitary matrices, International Linear Algebra Society (ILAS) 2014 Meeting, August 6-9, 2014, Seoul, South Korea 14. On the standard K-loop structure of positive invertible elements in a C -algebra, IWOTA 2014, VU University Amsterdam, July 14-18, 2014, Amsterdam, The Netherlands. 15. Isomorphisms and generalized isometries of positive definite cones and unitary groups in operator algebras, Zagreb Workshop on Operator Theory, University of Zagreb, July 3-4, 2014, Zagreb, Croatia 16. Transformations on density operators preserving quantum relative entropy or related quantities, Canadian Mathematical Society, 2014 Summer Meeting, June 6-9, Winnipeg, Canada. 17. An operation on the positive definite cone of a C -algebra and its algebraic properties, Colloquium Talk, Department of Mathematics, University of Manitoba, June 6, 2014, Winnipeg, Canada. 18. Isomorphisms and generalized isometries of positive definite cones and unitary groups in operator algebras, The 7th Conference on Function Spaces, Southern Illinois University, May 20-24, 2014, Edwardsville, USA. 19. On an operation on the positive definite cone of a C -algebra, Seminar Talk, Department of Mathematics, University of Denver, May 16, 2014, Denver, USA. 20. Algebraic properties of some operations on C -algebras, Seminar Talk, Department of Mathematics, University of Wyoming, May 13, 2014, Laramie, USA. 21. On certain operations on the set of positive invertible elements in a C -algebra, Seminar Talk, Department of Mathematics and Computer Science, West University of Timisoara, April 3, 2014, Timisoara, Romania

204 On the standard K-loop structure of positive invertible elements in a C -algebra, 14th Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities, January 29 - February 1, 2014, Hajdúszoboszló, Hungary. 23. Transformations on positive definite matrices preserving distances, Functional Analysis Workshop in honour of Z. Sebestyén s 70th birthday, Eötvös Lornd University, January 10, 2014, Budapest, Hungary. 24. Isometries of certain nonlinear spaces of matrices and operators, IWOTA 2013, Indian Institute of Science, December 16-20, 2013, Bangalore, India. 25. Transformations on positive definite matrices preserving distance measures, Analysis Seminar, University of Innsbruck, November 29 - December 1, 2013, Innsbruck, Austria. 26. Preserver Problems on Quantum Structures, Colloquium Talk, Department of Applied Mathematics, National Sun Yat-sen University, November 7, 2013, Kaohsiung, Taiwan. 27. Reflexivity of automorphism groups and isometry groups of some operator structures, Seminar Talk, Department of Applied Mathematics, National Sun Yat-sen University, November 6, 2013, Kaohsiung, Taiwan. 28. Transformations on spaces of unitary or positive definite matrices: Isometries and isomorphism, Seminar Talk, Department of Applied Mathematics, National Sun Yat-sen University, October 30, 2013, Kaohsiung, Taiwan. 29. Isometries and isomorphisms of some spaces of matrices, Operator Algebra Seminar, Department of Mathematics, University of Rome Tor Vergata, September 25, 2013, Rome, Italy. 30. Nonlinear preserver transformations on some quantum structures, Seminar of Department of Mathematics and Department of Physics, University of Calabria, September 19, 2013, Rende, Italy. 31. Isometries and isomorphisms of some spaces of matrices, Advanced School and Workshop on Matrix Geometries and Applications, ICTP, July 1-12, 2013, Trieste, Italy. 32. Sequential isomorphisms and endomorphisms of Hilbert space effect algebras, Numbers, Functions, Equations 2013, June 28-30, 2013, Visegrád, Hungary.

205 Reflexivity of automorphism groups and isometry groups of some operator structures, Sz.-Nagy Centennial Conference, University of Szeged, June 24-28, 2013, Szeged, Hungary. 34. Some non-linear preservers on quantum structures, International Linear Algebra Society (ILAS) 2013 Meeting, June 3-7, 2013, Providence, RI, USA. 35. Izometriák és izomorfizmusok, Lendület FIFA 13 Workshop, University of Debrecen, April 26-27, 2013, Debrecen, Hungary. 36. Isometries of some nonlinear spaces of operators, AMS 2013 Spring Southeastern Section Meeting, March 1-3, 2013, University of Mississippi, Oxford, MS, USA. 37. Transformations of the unitary group on a Hilbert space, The Thirteenth Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities, January 30-February 2, 2013, Zakopane, Poland. 38. Preserver problems on quantum structures, Seminar of the Department of Physics, University of Calabria, December 17, 2012, Cosenza, Italy. 39. Operátorstruktúrák izometriái, Celebration of Hungarian Science Meeting of Debrecen Branch of the Hungarian Academy of Sciences, November 15, 2012, Debrecen, Hungary. 40. Isometries of nonlinear operator structures, Seminar of the Institute of Analysis, TU Dresden, November 1, 2012, Dresden, Germany. 41. Isometries of nonlinear structures of linear operators, International Workshop on Functional Analysis, October 12-14, 2012, Timisoara, Romania. 42. C -algebras with isometric unitary groups are Jordan *- isomorphic, Seminar talk at the Department of Mathematics, University of Ljubljana, October 4, 2012, Ljubljana, Slovenia. 43. Sequential isomorphisms and endomorphisms of Hilbert space effect algebras, 11 th Biennial Meeting of the International Quantum Structure Association, University of Cagliari, July 23 27, 2012, Cagliari, Italy.

206 Reflexivity of isometry groups and automorphism groups of structures of Hilbert space operators, 50 th International Symposium on Functional Equations, University of Debrecen, June 17 24, 2012, Hajdúszoboszló, Hungary. 45. Algebraic properties of isometries on structures of linear operators, 5th Croatian Mathematical Congress, University of Rijeka, June 18 21, 2012, Rijeka, Croatia. 46. Reflexivity of the isometry groups of some spaces of Hilbert space operators, International Conference on Mathematics and Statistics (ICOMAS-2012), University of Memphis, May 15-18, 2012, Memphis, TN, USA. 47. Isometries of spaces of operators and functions, 7th Floor Seminar, Waseda University, November 8, 2011, Tokyo, Japan. 48. Isometries of spaces of operators and functions, Workshop on Commutative Algebra, Nara University of Education, November 4-6, 2011, Nara, Japan. 49. Order-preserving maps on spaces of operators and applications, Research on preserver problems related to Banach algebras and its applications, RIMS, Kyoto University, October 31 - November 2, 2011, Kyoto, Japan. 50. Transformations of the unitary group, Research on preserver problems related to Banach algebras and its applications, RIMS, Kyoto University, October 31 - November 2, 2011, Kyoto, Japan. 51. Transformations of the unitary group and sequential endomorphisms of effect algebras, Seminar talk at the Department of Mathematics, University of Ljubljana, September 8, 2011, Ljubljana, Slovenia. 52. Order automorphisms on positive definite operators and some applications, The 17th ILAS Conference, TU Braunschweig, August 22-26, 2011, Braunschweig, Germany. 53. Transformations on self-adjoint operators preserving commutativity or a measure of commutativity, IWOTA 2011, University of Seville, July 3-9, 2011, Seville, Spain. 54. Isometries and isomorphisms, Seminar talk at the Department of Mathematics, University of Ljubljana, June 28, 2011, Ljubljana, Slovenia.

207 Izometriák és izomorfizmusok, Functional Analysis and Preserver Problems Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 11, 2011, Budapest, Hungary. 56. Recent results on isometries of nonlinear spaces of functions and operators, Mathematical Colloquium, Department of Mathematics, University of Osijek, April 28, 2011, Osijek, Croatia. 57. Általános operátor-közepet megőrző transzformációk, Symposium dedicated to L. Losonczi s 70th birthday, Debrecen Branch of the Hungarian Academy of Sciences, March 1, 2011, Debrecen, Hungary. 58. Transformations on self-adjoint operators preserving a measure of commutativity, The Eleventh Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities, February 2 5, 2011, Wis la-malinka, Poland. 59. Order automorphisms of positive operators with some applications, Seminar talk at the Department of Mathematics, University of Ljubljana, November 5, 2010, Ljubljana, Slovenia. 60. Order automorphisms on positive definite operators and a few applications, Conference on Inequalities and Applications 10, September 19 25, 2010, Hajdúszoboszló, Hungary. 61. Linear maps on observables in von Neumann algebras preserving the maximal deviation, IWOTA 2010, TU Berlin, July 12-16, 2010, Berlin, Germany. 62. Transformations preserving relative entropies, Quantum Structures Boton 2010, 10th Biennial IQSA Meeting, June 21 26, 2010, Boston, USA. 63. Isometries of spaces of linear operators and probability distribution functions, The 6th Conference on Function Spaces, Southern Illinois University at Edwardsville, May 18-22, 2010, Edwardsville, USA. 64. Isometries of metric spaces of functions and operators, Conference Operators, Spaces, Algebras, Modules, University of Zagreb, March 1 4, 2010, Zagreb, Croatia.

208 Isometries and affine automorphisms of spaces of probability distribution functions, 10th Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities, February 2-6, 2010, Zamárdi, Hungary. 66. A kvantummechanikában fellépő bizonyos operátorstruktúrák izometriái, von Neumann Seminar, Institute of Mathematics, Technical University of Budapest, December 15, 2009, Budapest, Hungary. 67. A metrikus és algebrai szerkezet kapcsolata metrikus algebrai struktúrákban, Joint Seminar of the Institute of Mathematics and the Faculty of Informatics, University of Debrecen, November 19, 2009, Debrecen, Hungary. 68. Isometries of some metric spaces of functions and operators, Seminar Talk, Technical University of Dresden, October 29, 2009, Dresden, Germany. 69. Thompson isometries and transformations preserving the geometric mean of positive operators, 47th International Symposium on Functional Equations, June 14 20, 2009, Gargnano, Italy. 70. Surjective isometries of some metric spaces of functions and operators, Seminar talk, The University of Montana, April 29, 2009, Missoula, USA. 71. Preservers on quantum structures, Colloquium talk, The University of Montana, April 28, 2009, Missoula, USA. 72. Transformations on the space of positive operators, AMS Sectional Meeting, San Francisco State University, April 25 26, 2009, San Francisco, USA. 73. Wigner-type results concerning transformations on density operators, Quantum Structure 2009, February 24 27, 2009, Kočovce, Slovakia. 74. Transformations preserving divergences or distances on spaces of positive operators, Seminar talk at the Department of Mathematics, University of Ljubljana, December 11, 2008, Ljubljana, Slovenia. 75. Surjective isometries of some metric spaces of functions and operators, Seminar talk at the Department of Mathematics, University of Zagreb, December 5, 2008, Zagreb, Croatia.

209 Preservers on quantum structures, Colloquium talk at the Department of Mathematics, University of Zagreb, December 3, 2008, Zagreb, Croatia. 77. Matematikai struktúrák transzformációi: megőrzési problémák, Celebration of Science Meeting of Debrecen Branch of the Hungarian Academy of Sciences, November 28, 2008, Debrecen, Hungary. 78. Surjective isometries of some metric spaces of functions and operators, Colloquium talk at the Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, November 4, 2008, Prague, Czech Republic. 79. Surjective isometries of some metric spaces of functions and operators, Seminar talk at the Intitute of Mathematics, Physics and Mechanics, University of Ljubljana, October 29, 2008, Ljubljana, Slovenia. 80. Függvények és operátorok metrikus tereinek izometriáiról, Mathematical Colloquium, Bolyai Institute, University of Szeged, October 9, 2008, Szeged, Hungary. 81. Some preserver problems on quantum structures, Quantum Structures 08, 9th Biennial IQSA Meeting, July 6 12, 2008, Sopot, Poland. 82. Transformations on von Neumann algebras preserving maximal deviation, Linear Analysis and Mathematical Physics Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 21, 2008, Budapest, Hungary. 83. Maps on quantum states preserving the relative entropy, Gyula 60, Workshop on Functional Equations, Inequalities, and Applications, Debrecen Branch of the Hungarian Academy of Sciences, April 24, 2008, Debrecen, Hungary. 84. Preserver problems on quantum structures, Mathematical Colloquium, Department of Mathematics, University of Osijek, April 3, 2008, Osijek, Croatia. 85. Maps on positive operators preserving operator means, 8th Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities, January 30 - February 2, 2008, Poroszló, Hungary.

210 Order automorphisms of quantum observables and effects, 6th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 10 15, 2007, Nemecká, Slovak Republic. 87. Monotone transformations on quantum observables and effects with respect to different orders, 45th International Symposium on Functional Equations, June 24 - July 1, 2007, Bielsko-Bia la, Poland. 88. Megőrzési problémák, Conference on 10th Anniversary of the Bolyai Research Fellowship, Hungarian Academy of Sciences, April 26, 2007, Budapest, Hungary. 89. Preserver problems, Mathematical Institute of The Slovak Academy of Sciences, March 20, 2007, Bratislava, Slovakia. 90. Preserver problems, Festkolloquium, Fachrichtung Mathematik, Technische Universität Dresden, December 11, 2006, Dresden, Germany. 91. Megőrzési transzformációk, Generations in Science Conference at the Hungarian Academy of Sciences, December 1, 2006, Budapest, Hungary 92. Additivity of multiplicative maps on structures of linear operators, Second Short Workshop on Operator Theory, Agricultural University of Kraków, June 24-27, 2006, Kraków, Poland. 93. Additivity of multiplicative maps on structures of linear operators, 44th International Symposium on Functional Equations, May 14 21, 2006, Louisville, Kentucky, USA. 94. Operátorstruktúrák multiplikatív leképezéseinek additivitása Functional equations, harmonic analysis, spectral synthesis Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 2, 2006, Budapest, Hungary. 95. Multiplicative maps on algebraic structures of linear operators, Seminar of the Department of Mathematics, Pedagogical Faculty, University of Maribor, December 21, 2005, Maribor Slovenia. 96. Wigner tételétől a lokális automorfizmusokig, Joint Seminar of the Institute of Mathematics and the Faculty of Informatics, University of Debrecen, December 1, 2005, Debrecen, Hungary.

211 Preservers on quantum structures, Hungarian-Croatian Workshop on Informatics and Mathematics, October 5 8, 2005, Debrecen, Hungary. 98. Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, 5th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 12 17, 2005, Nemecká, Slovak Republic. 99. Az önadjungált operátorok halmazának transzformációiról, Functionalanalysis Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, June 8, 2005, Budapest, Hungary Characterizations of the determinant on sets of Hermitian matrices, 43th International Symposium on Functional Equations, May 15 21, 2005, Batz-sur-Mer, France Isometries of quantum effects, 42nd International Symposium on Functional Equations, June 20 27, 2004, Hradec nad Moravici, Czech Republic Preservers on Hilbert space effects, 5th Joint Conference on Mathematics and Computer Science, June 9 12, 2004, Debrecen, Hungary A kvantumállapotok halmazának transzformációiról, Seminar on Analysis, Institute of Mathematics, Technical University of Budapest, June 7, 2004, Budapest, Hungary A kvantumállapotok halmazának transzformációiról, Functional Equations and Inequalities Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 12, 2004, Budapest, Hungary Some preservers on the set of bounded observables, 4th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 8 13, 2003, Nemecká, Slovak Republic Preservers on quantum structures, Seminar talk of the Institute of Analysis, Technical University of Dresden, June 5, 2003, Dresden, Germany Some preservers on density operators, Conference on Topological Algebras, Their Applications, and Related Results (to celebrate the 70th birthday of Professor Wieslaw Żelazko), May 11 17, 2003, Bedlewo, Poland.

212 Megőrzési problémák Hilbert-tér operátorok algebrai struktúráin, Seminar talk of the Bolyai Institute of the University of Szeged, April 25, 2002, Szeged, Hungary Some preserver problems in structures of Hilbert space operators appearing in quantum mechanics, Seminar of the Institute of Mathematics, Physics and Mechanics, University of Ljubljana, March 27, 2002, Ljubljana, Slovenia Local automorphisms, 3rd Analysis Miniseminar (Dedicated to L. Losonczi s 60th birthday) Hungarian Academy of Sciences, Local Commission in Debrecen, October 13, 2001, Debrecen, Hungary Ortho-order automorphisms of Hilbert space effect algebras, The 8th International Conference on Functional Equations and Inequalities, September 10 15, 2001, Zlockie, Poland Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, 3nd Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 4 9, 2001, Nemecká, Slovak Republic Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, 39th International Symposium on Functional Equations, August 12 18, 2001, Sandbjerg Estate, Denmark Hilbert-tér effektjei halmazának automorfizmusairól, Seminar on Analysis, Institute of Mathematics, Technical University of Budapest, April 9, 2001, Budapest, Hungary On the automorphisms of effect algebras, Seminar talk at the joint Ljubljana-Maribor Seminar, Institute of Mathematics, Physics and Mechanics, University of Ljubljana and Department of Mathematics, University of Maribor, February 15, 2001, Slovenia Generalizations of Wigner s theorem on symmetry transformations, Seminar talk at the Technical University of Dresden, November 17, 2000, Dresden, Germany Local automorphisms and local isometries of operator algebras, Seminar talk at the Technical University of Dresden, November 16, 2000, Dresden, Germany.

213 Generalizations of Wigner s theorem on symmetries, Quantum Probability: Probability and Operator Algebras with Applications in Mathematical Physics, August 31 September 6, 2000, Göd, Hungary On the additivity of multiplicative maps on operator algebras, 38th International Symposium on Functional Equations, June 11 18, 2000, Noszvaly, Hungary Néhány függvényegyenletről operátoralgebrákon, Functional Equations Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 10, 2000, Budapest, Hungary Isomorphisms of standard operator algebras, 90 Years of The Reproducing Kernel Property, Jagiellonian University, April 17-21, 2000, Kraków, Poland Operátoralgebrák félcsoport izomorfizmusairól, Seminar talk at Eötvös Loránd University, April 3, 2000, Budapest, Hungary *-semigroup endomorphisms of B(H), Seminar on Functional Analysis, Jagiellonian University, October 12, 1999, Kraków, Poland Reflexivity of the automorphism and isometry groups of operator algebras, Seminar of the Mathematical Institute of the Polish Academy of Sciences at Kraków, October 11, 1999, Kraków, Poland Wigner s unitary-antiunitary theorem for Hilbert modules, 2nd Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 13-18, 1999, Nemecká, Slovak Republic Local automorphisms of some quantum mechanical structures, Functional Analysis and Applications: Memorial Conference for Béla Szőkefalvi-Nagy, August 2-6, 1999, Szeged, Hungary Operátoralgebrák leképezéseinek reflexivitása, Seminar on Analysis, Institute of Mathematics, Technical University of Budapest, June 7, 1999, Budapest, Hungary Néhány gyűrűelméleti eredmény alkalmazása operátoralgebrai problémákra, Seminar of the Department of Algebra, Mathematical Research Institute of the Hungarian Academy of Sciences, May 17, 1999, Budapest, Hungary.

214 Spring School on Functional Analysis, April 18 24, 1999, Paseky, Czech Republic Multiplicative preservers on operator algebras, Seminar of the Department of Mathematics, University of Maribor, March 1, 1999, Maribor, Slovenia A Wigner unitér-antiunitér tétel egy algebrai bizonyítása, Seminar talk at Eötvös Loránd University, October 20, 1998, Budapest, Hungary A Wigner unitér-antiunitér tétel egy algebrai bizonyítása, Short conference on the occasion of B. Szőkefalvi-Nagy s 85th birthday, September 30, 1998, Szeged, Hungary Reflexivity of the automorphism and isometry groups of operator algebras, The 17th International Conference on Operator Theory, June 23 26, 1998, Timisoara, Romania Stability of the surjectivity of endomorphisms and isometries of B(H), Numbers, Functions, Equations 98, June 1 6, 1998, Noszvaly, Hungary An algebraic approach to Wigner s unitary-antiunitary theorem, 36th International Symposium on Functional Equations, May 24 30, 1998, Brno, Czech Republic Reflexivity of the automorphism and isometry groups of operator algebras, Joint Seminar on Functional Analysis and C - algebras, University of Paderborn, July 3, 1997, Paderborn, Germany Reflexivity of the automorphism and isometry groups of operator algebras and the Stone-Čech compactification, Oberseminar Funktionentheorie/Zahlentheorie, University of Paderborn, June 4, 1997, Paderborn, Germany Jordan *-derivations on operator algebras, Joint Graz-Maribor Workshop on Derivations and Functional Equations, November 29 30, 1996, Maribor, Slovenia Additive mappings approximated by positive operators on operator ideals, ICAOR International Conference on Approximation and Optimization, July 29 August 1, 1996, Cluj-Napoca, Romania Algebraic differences among group algebras of compact infinite groups : The nonexistence of a surjective ring homomorphism

215 215 from L p (G) onto L q (G ), Ring Theory Conference, A satellite conference of the Second European Congress in Mathematics, July 15 20, 1996, Miskolc, Hungary Topological reflexivity of the automorphism and isometry groups of B(H), The 16th International Conference on Operator Theory, July 2 8, 1996, Timisoara, Romania Characterization of additive *-homomorphisms and Jordan *- homomorphisms on operator ideals, 34th International Symposium on Functional Equations, June 10 19, 1996, Wisla- Jawornik, Poland Reflexivity in the space of linear transformations on an operator algebra, Seminar of the University of Maribor, April 4, 1996, Maribor, Slovenia Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Stefan Banach International Mathematical Center, LINEAR OPERATORS II, January 8 February 22, 1996, Warszawa, Poland Two characterizations of additive *-automorphisms of B(H), The 5th International Conference on Functional Equations and Inequalities, September 4 9, 1995, Zlockie, Poland Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, First Joint Workshop on Modern Applied Mathematics, June 12 16, 1995, Ilieni (Illyefalva), Romania Automatic surjectivity of endomorphisms of operator algebras, Seminar of the University of Maribor, June 2, 1995, Maribor, Slovenia Recent results on automatic surjectivity of *-endomorphisms of operator algebras, 2nd Debrecen-Graz Seminar, May 11 14, 1995, Zamárdi, Hungary Isomorphisms of operator ideals, First Slovenian Congress of Mathematics, October 20 22, 1994, Ljubljana, Slovenia Operátor ideálok izomorfizmusa, Seminar of the Institute of Mathematics and Informatics, Lajos Kossuth University, September 29, 1994, Debrecen, Hungary.

216 The range of a Jordan *-derivation, The 15th International Conference on Operator Theory, June 6 10, 1994, Timisoara, Romania p-classes of an H -algebra, XIII. Österreichischer Mathematikerkongreß, September 20 24, 1993, Linz, Austria On local derivations of operator algebras, 31st International Symposium on Functional Equations, August 22 28, 1993, Debrecen, Hungary On compact operators, TEMPUS Summer School, August 9 28, 1993, Debrecen, Hungary.

217 217 REFEREE WORK Referee for Grants Hungarian National Foundation for Scientific Research King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia Ministry of Education, Science and Sport, Slovenia Ministry of Science, Education and Sports, Croatia The Natural Sciences and Engineering Research Council of Canada Referee s Reports for Journals and Books Abstr. Appl. Anal. Acta Acad. Paedagog. Agriensis Sect. Mat. N.S. Acta Math. Hung. Acta Math. Acad. Paedagog. Nyhaziensis. N.S. Acta Math. Scientia Acta Math. Sinica Acta Sci. Math. (Szeged) Aequationes Math. Ann. Pol. Math. Arch. Math. Banach Cent. Publ. Banach J. Math. Anal. Bull. Belgian Math. Soc. Bull. Korean Math. Soc. Canad. Math. Bull. Cent. Eur. J. Math. (CEJM) Colloq. Math. Commun. Math. Phys. Complex Anal. Oper. Theory Electr. J. Lin. Alg. Found. Phys. Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011.

218 218 Functional Equations Results and Applications, Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, Glasnik Math. Houston J. Math. Illinois J. Math. Indian J. Pure Appl. Math. Inequalities and Applications Proceedings of the Conference on Inequalities and Applications 07, International Series of Numerical Mathematics, Birkhäuser Verlag. Integral Equations Operator Theory Int. J. Math. Math. Sci. Int. J. Theor. Phys. Israel J. Math. J. Applied Math. J. Funct. Space Appl. J. Ineq. Appl. J. Ineq. Pure Appl. Math. J. Austral. Math. Soc. J. London Math. Soc. J. Math. Anal. J. Math. Anal. Appl. J. Math. Phys. J. Oper. Theo. Linear Algebra Appl. Linear Multilinear Algebra Math. Phys. Anal. Geom. Math. Slovaca Math. Z. Miskolc Math. Notes Monatsh. Math. Oper. Matrices Period. Math. Hungar. Proc. Amer. Math. Soc. Proc. Edinburgh Math. Soc. Publ. Math. (Debrecen) Real Anal. Exchange Rep. Math. Phys. Rocky Mountain J. Math. SIAM J. Matrix Anal. Appl. Studia Math. Studia Sci. Math. Hung. Topology Appl. Z. Anal. Anwend.

219 219 Reviews Math. Rev. Zbl. Math. Publ. Math. Debrecen Book Reviews

Curriculum Vitae. June 17, 2010

Curriculum Vitae. June 17, 2010 Curriculum Vitae Tamás Mátrai June 17, 2010 Personal data Name: Tamás Mátrai Date of Birth: 30 September 1978 e-mail: [email protected] Homepage: http://www.renyi.hu/ matrait Address: 4 Holly Court,

More information

Higher Education in Hungary

Higher Education in Hungary in Hungary Institute for Theoretical Physics Eötvös University RECFA visit to Hungary, October 4-5, 2013 Some facts about Hungary Population: 9.9 million GDP (2012): 98 billion EUR GDP per capita (2012):

More information

Left Jordan derivations on Banach algebras

Left Jordan derivations on Banach algebras Iranian Journal of Mathematical Sciences and Informatics Vol. 6, No. 1 (2011), pp 1-6 Left Jordan derivations on Banach algebras A. Ebadian a and M. Eshaghi Gordji b, a Department of Mathematics, Faculty

More information

LIST OF PUBLICATIONS OF BUI MINH PHONG

LIST OF PUBLICATIONS OF BUI MINH PHONG Annales Univ. Sci. Budapest., Sect. Comp. 38 (2012) 13-17 LIST OF PUBLICATIONS OF BUI MINH PHONG [1] On the connection between the rank of apparition of a prime p in Fibonacci sequence and the Fibonacci

More information

MIKAEL LINDSTRÖM LIST OF PUBLICATIONS 10.4.2014. Articles in international peer-reviewed journals

MIKAEL LINDSTRÖM LIST OF PUBLICATIONS 10.4.2014. Articles in international peer-reviewed journals MIKAEL LINDSTRÖM LIST OF PUBLICATIONS 10.4.2014 Articles in international peer-reviewed journals 2. Mikael Lindström: On Schwartz convergence vector spaces, Math. Nachr. 117, 37-49, 1984. 3. Mikael Lindström:

More information

BABCSÁNYI ISTVÁN PUBLIKÁCIÓI HIVATKOZÁSOKKAL

BABCSÁNYI ISTVÁN PUBLIKÁCIÓI HIVATKOZÁSOKKAL BABCSÁNYI ISTVÁN PUBLIKÁCIÓI HIVATKOZÁSOKKAL (2007. február 26.) 1. A félperfekt kváziautomatákról, Mat. Lapok, 21, 1970, pp. 95-102 (in Hungarian with English summary). [MR 46.5070; Zbl 223.94028] h1/1.

More information

An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations

An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations University of Szeged, Bolyai Institute and MTA-DE "Lendület" Functional Analysis Research Group, University of Debrecen

More information

Miodrag Cristian Iovanov

Miodrag Cristian Iovanov Miodrag Cristian Iovanov Address: 3333 W 2nd St. #55-215 Los Angeles, CA 90004, USA email: [email protected], [email protected]; [email protected] web: http://yovanov.net Current position Assistant Professor

More information

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules Journal of Linear and Topological Algebra Vol. 04, No. 02, 2015, 53-63 On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules M. Rashidi-Kouchi Young Researchers and Elite Club Kahnooj

More information

CURRICULUM VITAE of Giuseppe Molteni

CURRICULUM VITAE of Giuseppe Molteni CURRICULUM VITAE of Giuseppe Molteni Personal information Address: Dipartimento di Matematica, Università di Milano, Via Saldini 50, I-20133 Milano (Italy) Phone number: (+39) 02 503 16144 e-mail: [email protected]

More information

Editorial: Multidisciplinarity Breaking out of the disciplinary silos 5 Zoltán Veres

Editorial: Multidisciplinarity Breaking out of the disciplinary silos 5 Zoltán Veres Editorial: Multidisciplinarity Breaking out of the disciplinary silos 5 Zoltán Veres The concept of perception driven service process reengineering by entropy reduction 11 Richard Kása, Ákos Gubán, Miklós

More information

ISU Department of Mathematics. Graduate Examination Policies and Procedures

ISU Department of Mathematics. Graduate Examination Policies and Procedures ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated

More information

UNIVERSITY GRADUATE STUDIES PROGRAM SILLIMAN UNIVERSITY DUMAGUETE CITY. Master of Science in Mathematics

UNIVERSITY GRADUATE STUDIES PROGRAM SILLIMAN UNIVERSITY DUMAGUETE CITY. Master of Science in Mathematics 1 UNIVERSITY GRADUATE STUDIES PROGRAM SILLIMAN UNIVERSITY DUMAGUETE CITY Master of Science in Mathematics Introduction The Master of Science in Mathematics (MS Math) program is intended for students who

More information

C u r r i c u l u m V i t a e György Vaszil

C u r r i c u l u m V i t a e György Vaszil C u r r i c u l u m V i t a e György Vaszil May, 2011 Personal Family status: Languages: Married, father of three children (seven and five years, 21 months) English, German, Hungarian (mother tongue) Education

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Academic visits: March - May 2012 Zhejiang Normal University. 2005 CEU Award for Advanced Doctoral Students

Academic visits: March - May 2012 Zhejiang Normal University. 2005 CEU Award for Advanced Doctoral Students CURRICULUM VITAE Personal data Name: Balázs Patkós Place and date of birth: Budapest, Hungary, January 4 1978. e-mail: [email protected] and [email protected] Citizenship: Hungarian Research

More information

Complexity problems over algebraic structures

Complexity problems over algebraic structures Complexity problems over algebraic structures Theses of PhD dissertation Created by: Horváth Gábor Mathematical Doctoral School Theor. Mathematical Doctoral Program Dir. of School: Dr. Laczkovich Miklós

More information

Vita. Jeffrey Bergen Department of Mathematics DePaul University 2320 North Kenmore Avenue Chicago, Illinois 60614 E-mail: jbergen@depaul.

Vita. Jeffrey Bergen Department of Mathematics DePaul University 2320 North Kenmore Avenue Chicago, Illinois 60614 E-mail: jbergen@depaul. Vita Jeffrey Bergen Department of Mathematics DePaul University 2320 North Kenmore Avenue Chicago, Illinois 60614 E-mail: [email protected] Education: B.S. Brooklyn College 1976 S.M. University of Chicago

More information

Master of Arts in Mathematics

Master of Arts in Mathematics Master of Arts in Mathematics Administrative Unit The program is administered by the Office of Graduate Studies and Research through the Faculty of Mathematics and Mathematics Education, Department of

More information

EDWARD W. ODELL BIOGRAPHICAL DATA. EDUCATION Ph.D. Massachusetts Institute of Technology 1975 B.A. SUNY at Binghamton 1969

EDWARD W. ODELL BIOGRAPHICAL DATA. EDUCATION Ph.D. Massachusetts Institute of Technology 1975 B.A. SUNY at Binghamton 1969 EDWARD W. ODELL BIOGRAPHICAL DATA EDUCATION Ph.D. Massachusetts Institute of Technology 1975 B.A. SUNY at Binghamton 1969 PROFESSIONAL EXPERIENCE 2005- John T. Stuart III Centennial Professor of Mathematics

More information

GEOFF DIESTEL, PHD. Assistant Professor at Texas A&M-Central Texas(TAMUCT) from 2011-present.

GEOFF DIESTEL, PHD. Assistant Professor at Texas A&M-Central Texas(TAMUCT) from 2011-present. GEOFF DIESTEL, PHD Contact Information 1001 Leadership Place [email protected] Founder s Hall, 217E 254.501.5872 Killeen, TX 76549 Education PhD in Mathematics University of Missouri, May 2006 Dissertation:

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

J. Geom. Anal. MB J. Graph Theory MB J. Lond. Math. Soc. (2) MB J. Math. Biol. MB J. Math. Pures Appl. (9) MB J. Modern Dynam. MB J.

J. Geom. Anal. MB J. Graph Theory MB J. Lond. Math. Soc. (2) MB J. Math. Biol. MB J. Math. Pures Appl. (9) MB J. Modern Dynam. MB J. evista Clasificacion Acta Math. M Acta Numer. M Adv. Math. M Algorithmica M Amer. J. Math. M Ann. Appl. Probab. M Ann. Inst. Fourier (Grenoble) M Ann. Henri Poincaré M Ann. Inst. H. Poincaré Anal. Non

More information

CURRICULUM VITAE. August 2008 now: Lecturer in Analysis at the University of Birmingham.

CURRICULUM VITAE. August 2008 now: Lecturer in Analysis at the University of Birmingham. CURRICULUM VITAE Name: Olga Maleva Work address: School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK Telephone: +44(0)121 414 6584 Fax: +44(0)121 414 3389

More information

CURRICULUM VITAE. Mathematical Analysis, Differential and Difference Equations, Biomathematics, Computer Applications

CURRICULUM VITAE. Mathematical Analysis, Differential and Difference Equations, Biomathematics, Computer Applications CURRICULUM VITAE ame: István Győri Address: Home: 8220 Balatonalmádi, Vadász utca 12, Hungary Work: Department of Mathematics and Computing, University of Veszprém, 8201 Veszprém, Pf. 158. Hungary Phone:

More information

CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES

CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES László STACHÓ Bolyai Institute Szeged, Hungary [email protected] www.math.u-szeged.hu/ Stacho 13/11/2008, Granada László STACHÓ () CONTINUOUS

More information

Members of the Hungarian Section of The Combustion Institute 2011, before June

Members of the Hungarian Section of The Combustion Institute 2011, before June Members of the Hungarian Section of The Combustion Institute 2011, before June Name: István Barótfi Spec.: bioenergetics, protection of environment Company/Affil.: Szent István University, Gödöllő Address:

More information

ON SUPERCYCLICITY CRITERIA. Nuha H. Hamada Business Administration College Al Ain University of Science and Technology 5-th st, Abu Dhabi, 112612, UAE

ON SUPERCYCLICITY CRITERIA. Nuha H. Hamada Business Administration College Al Ain University of Science and Technology 5-th st, Abu Dhabi, 112612, UAE International Journal of Pure and Applied Mathematics Volume 101 No. 3 2015, 401-405 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v101i3.7

More information

Davi Maximo Alexandrino Nogueira

Davi Maximo Alexandrino Nogueira Davi Maximo Alexandrino Nogueira 1 Education Department of Mathematics, Stanford University 450 Serra Mall, Bldg 380, Stanford, CA 94305 URL: http://math.stanford.edu/ maximo E-mail: [email protected]

More information

Curriculum Vitae of Gábor Szederkényi

Curriculum Vitae of Gábor Szederkényi Name: Gábor Szederkényi Date and place of birth: 21 April 1975, Mór, Hungary Contact data: e-mail: [email protected] tel: +36-1-8864700 Current position full professor, Faculty of Information Technology

More information

Authors Czebe, András Erdős, Csaba Fehér, Júlia

Authors Czebe, András Erdős, Csaba Fehér, Júlia Czebe, András began his legal studies in 2009 at Law and Political Sciences where he is currently a senior student. He is known for his student research activities and publications in the area of criminal

More information

Szent István Egyetem. 2100 Gödöll, Páter Károly u. 1., Tudástranszfer Központ (GPS: 47.596149, 19.361354) Szent István University

Szent István Egyetem. 2100 Gödöll, Páter Károly u. 1., Tudástranszfer Központ (GPS: 47.596149, 19.361354) Szent István University 8. Magyar Nemzeti és Nemzetközi Lifelong Learning Konferencia 8 th Hungarian National and International Lifelong Learning Conference Szent István Egyetem 2100 Gödöll, Páter Károly u. 1., Tudástranszfer

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

Curriculum Vitae. Research interest: Data mining and visualization, networks/graphs, combinatorics, probability and their applications

Curriculum Vitae. Research interest: Data mining and visualization, networks/graphs, combinatorics, probability and their applications Curriculum Vitae Name: András Lukács Personal site: http://www.cs.elte.hu/~lukacs Email: [email protected] Current affiliation: Eötvös Loránd University, Faculty of Science, Institute of Mathematics, Department

More information

Curriculum Vitae DENIS OSIN

Curriculum Vitae DENIS OSIN Curriculum Vitae DENIS OSIN Department of Mathematics [email protected] The City College of CUNY www.sci.ccny.cuny.edu/ osin New York, NY 10031 (718) 545-0326 EDUCATION Ph.D. in Mathematics, Moscow

More information

EQUIVALENT CONTINUOUS G-FRAMES IN HILBERT C*-MODULES (COMMUNICATED BY PALLE JORGENSEN.)

EQUIVALENT CONTINUOUS G-FRAMES IN HILBERT C*-MODULES (COMMUNICATED BY PALLE JORGENSEN.) Bulletin of athematical Analysis and Applications ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 4 Issue 4 (2012.), Pages 91-98 EQUIVALENT CONTINUOUS G-FRAES IN HILBERT C*-ODULES (COUNICATED BY PALLE

More information

ENERGY ARBITRATION COURT ROLL OF ARBITRATORS

ENERGY ARBITRATION COURT ROLL OF ARBITRATORS ENERGY ARBITRATION COURT ROLL OF ARBITRATORS PRESIDENT: MEMBERS OF THE BOARD: Dr. Faludi Zoltán Dr. Berzeviczi Attila Dr. Grmela Zoltán Dr. Lajer Zsolt Dr. Szentkereszty Ákos ARBITRATORS: 1. Dr. Balog

More information

How To Teach Algebra

How To Teach Algebra Greg Oman c.v. 1 Greg Oman UCCS Department of Mathematics 1420 Austin Bluffs Parkway Colorado Springs, CO 80918 Curriculum Vitae 281 Engineering and Applied Science (office) (719) 255-3515 (office phone)

More information

Curriculum Vitae Gergő Orbán

Curriculum Vitae Gergő Orbán "1 Curriculum Vitae Computational Systems Neuroscience Lab Department of Theory MTA Wigner Research Centre for Physics 29-33 Konkoly Thege St Office 13-105 Phone +36 1 392 2732 e-mail [email protected]

More information

arxiv:quant-ph/0603009v3 8 Sep 2006

arxiv:quant-ph/0603009v3 8 Sep 2006 Deciding universality of quantum gates arxiv:quant-ph/0603009v3 8 Sep 2006 Gábor Ivanyos February 1, 2008 Abstract We say that collection of n-qudit gates is universal if there exists N 0 n such that for

More information

Curriculum Vitae NIKOLAOS GALATOS

Curriculum Vitae NIKOLAOS GALATOS Curriculum Vitae NIKOLAOS GALATOS School of Information Science Japan Advanced Institute of Science and Technology (JAIST) 1-1 Asahidai, Nomi Ishikawa 923-1292, Japan Telephone: (+81) 761-51-1203 Fax:

More information

The Positive Supercyclicity Theorem

The Positive Supercyclicity Theorem E extracta mathematicae Vol. 19, Núm. 1, 145 149 (2004) V Curso Espacios de Banach y Operadores. Laredo, Agosto de 2003. The Positive Supercyclicity Theorem F. León Saavedra Departamento de Matemáticas,

More information

Dr. Mária Judit Molnár, M.D., Ph.D., D.Sc.

Dr. Mária Judit Molnár, M.D., Ph.D., D.Sc. , M.D., Ph.D., D.Sc. Position(s) and Title(s) Vice-Rector for Scientific Affairs, Doctor of the Hungarian Academy of Sciences Professor of Neurology, Psychiatry and Clinical Genetics Director of the Institute

More information

F I K U S Z C O N F E R E N C E

F I K U S Z C O N F E R E N C E F I K U S Z C O N F E R E N C E T E C H N I C A L P R O G R A M November 3, 2006 (Friday) 9.00-10.00 Registration Hall 10.00-10.10 Opening Ceremony F19 10.10-10.40 10.40-11.10 Industry and Sciences in

More information

The Department of Mathematics Document Series

The Department of Mathematics Document Series The Department of Mathematics Document Series The University of Southern Mississippi Box 5045 Hattiesburg, MS 39406-0001 Graduate Program James Lambers, Director Jiu Ding John Perry Graduate Program Committee

More information

Chapter 13: Basic ring theory

Chapter 13: Basic ring theory Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

More information

Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators University of Szeged, Bolyai Institute 29th July 2013, Gothenburg Banach Algebras and Applications 1 Introduction, Motivation Directed

More information

Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations

Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations Wang and Agarwal Advances in Difference Equations (2015) 2015:312 DOI 10.1186/s13662-015-0650-0 R E S E A R C H Open Access Relatively dense sets, corrected uniformly almost periodic functions on time

More information

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT

More information

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th

More information

Europass Curriculum Vitae

Europass Curriculum Vitae Europass Curriculum Vitae Personal information First name(s) / Surname(s) Anna Address(es) Soós VIIA-3, str. Donath, 400300 Cluj Napoca, Romania Telephone(s) +40264581856 Mobile: +40742917015 Fax(es) +40264591906

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

Lecture 18 - Clifford Algebras and Spin groups

Lecture 18 - Clifford Algebras and Spin groups Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning

More information

The University of North Carolina at Pembroke 2015-2016 Academic Catalog

The University of North Carolina at Pembroke 2015-2016 Academic Catalog 402 MASTER OF ARTS IN MATHEMATICS EDUCATION (M.A.) Interim Director: Mary Klinikowski Sir Isaac Newton made the statement, If I have seen further than others, it is because I have stood on the shoulder

More information

THE Walsh Hadamard transform (WHT) and discrete

THE Walsh Hadamard transform (WHT) and discrete IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 54, NO. 12, DECEMBER 2007 2741 Fast Block Center Weighted Hadamard Transform Moon Ho Lee, Senior Member, IEEE, Xiao-Dong Zhang Abstract

More information

Quantum Mechanics and Representation Theory

Quantum Mechanics and Representation Theory Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30

More information

Allen Back. Oct. 29, 2009

Allen Back. Oct. 29, 2009 Allen Back Oct. 29, 2009 Notation:(anachronistic) Let the coefficient ring k be Q in the case of toral ( (S 1 ) n) actions and Z p in the case of Z p tori ( (Z p )). Notation:(anachronistic) Let the coefficient

More information

Classification of Cartan matrices

Classification of Cartan matrices Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

More information

New Horizons. The Future of the Eastern Partnership

New Horizons. The Future of the Eastern Partnership New Horizons The Future of the Eastern Partnership September 15, 2011 Budapest, Hungary A d d r e s s : B é r c u. 1 3-1 5., New Horizons The Future of the Eastern Partnership If we are together nothing

More information

16.3 Fredholm Operators

16.3 Fredholm Operators Lectures 16 and 17 16.3 Fredholm Operators A nice way to think about compact operators is to show that set of compact operators is the closure of the set of finite rank operator in operator norm. In this

More information

Humboldt College for. Protection of the Environment and Climate

Humboldt College for. Protection of the Environment and Climate Program Humboldt College for Protection of the Environment and Climate Thursday, the 21 th of October 2010 H-940 0 Sopron Cházár András tér 1, Building P Opening Address: Large Lecture Room of the Faculty

More information

Invariant Metrics with Nonnegative Curvature on Compact Lie Groups

Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Canad. Math. Bull. Vol. 50 (1), 2007 pp. 24 34 Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp and Zhongtao Wu Abstract.

More information

Fontosabb publikációk: Terdik György, Dr.-habil., DSc.

Fontosabb publikációk: Terdik György, Dr.-habil., DSc. Fontosabb publikációk: Terdik György, Dr.-habil., DSc. Könyv: 1. György Terdik, Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis, Lecture Notes in Statistics, Springer

More information

Department of Mathematics

Department of Mathematics Department of Mathematics 220 Yost Hall http://www.case.edu/artsci/math Daniela Calvetti, Department Chair [email protected] The Department of Mathematics at Case Western Reserve University is

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated

MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated 194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates

More information

RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

More information

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

More information

Ill-Posed Problems in Probability and Stability of Random Sums. Lev B. Klebanov, Tomasz J. Kozubowski, and Svetlozar T. Rachev

Ill-Posed Problems in Probability and Stability of Random Sums. Lev B. Klebanov, Tomasz J. Kozubowski, and Svetlozar T. Rachev Ill-Posed Problems in Probability and Stability of Random Sums By Lev B. Klebanov, Tomasz J. Kozubowski, and Svetlozar T. Rachev Preface This is the first of two volumes concerned with the ill-posed problems

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

Fusion frames in Hilbert modules over pro-c*-algebras

Fusion frames in Hilbert modules over pro-c*-algebras Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 5, No. 2, 2013 Article ID IJIM-00211, 10 pages Research Article Fusion frames in Hilbert modules over

More information

Europass Curriculum Vitae

Europass Curriculum Vitae Europass Curriculum Vitae Personal information First name(s) / Surname(s) Dr. István Molnár Telephone(s) + 36 (30) 427-3532 E-mail [email protected] Nationality Hungarian Date of birth August

More information

Brian Alan Snyder, Ph. D.

Brian Alan Snyder, Ph. D. Brian Alan Snyder, Ph. D. Current work address Department of Mathematics and Computer Science Work phone: (906) 635-2658 Lake Superior State Home phone: (906) 253-9822 650 West Easterday Ave. Department

More information

Leo Livshits Curriculum Vita

Leo Livshits Curriculum Vita Leo Livshits Curriculum Vita PERSONAL DATA Address:, Colby College, Waterville, Maine 04901, USA Phone: 207.859.5844 Fax: 207.859.5846 E-mail: [email protected] EDUCATION Ph.D. University of Toronto 1991

More information

CURRICULUM VITAE. Degree Branch University Graduation Year BSc. Industrial Engineering Çankaya University 2004

CURRICULUM VITAE. Degree Branch University Graduation Year BSc. Industrial Engineering Çankaya University 2004 ÇİĞDEM DİNÇKAL (PhD) CURRICULUM VITAE Academic Title: Assistant Professor. Work Address: Çankaya University, Department of Civil Engineering, N-A09, Yukarıyurtcu Mahallesi Mimar Sinan Caddesi No:4, 06790,

More information

Stephanie A. Blanda 020 McAllister Building University Park, PA 16802 Email: [email protected], Webpage: http://sblanda.weebly.com/

Stephanie A. Blanda 020 McAllister Building University Park, PA 16802 Email: sab466@psu.edu, Webpage: http://sblanda.weebly.com/ Stephanie A. Blanda 020 McAllister Building University Park, PA 16802 Email: [email protected], Webpage: http://sblanda.weebly.com/ Education The Ph.D. Candidate in Mathematics with a minor in Computational

More information

1 Introduction, Notation and Statement of the main results

1 Introduction, Notation and Statement of the main results XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 2007 (pp. 1 6) Skew-product maps with base having closed set of periodic points. Juan

More information

AKASH BANDYOPADHYAY ACADEMIC APPOINTMENTS INDUSTRIAL EMPLOYMENTS EDUCATION. (212) 998-0307 (office) (212) 995-4256 (fax)

AKASH BANDYOPADHYAY ACADEMIC APPOINTMENTS INDUSTRIAL EMPLOYMENTS EDUCATION. (212) 998-0307 (office) (212) 995-4256 (fax) September 2015 AKASH BANDYOPADHYAY Stern School of Business New York University Department of Finance 44 West 4 th Street, KMC 10-88 New York, NY 10012 (212) 998-0307 (office) (212) 995-4256 (fax) [email protected]

More information

Curriculum vitae (Dr. Zoltán Tóth)

Curriculum vitae (Dr. Zoltán Tóth) Curriculum vitae (Dr. Zoltán Tóth) Family name: First name: Sex: Tóth Zoltán male Date of birth: March 19, 1952 Place of birth: Nationality: Marital status: Education: Language: Debrecen, Hungary Hungarian

More information

THE KADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT

THE KADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT THE ADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT PETER G. CASAZZA, MATTHEW FICUS, JANET C. TREMAIN, ERIC WEBER Abstract. We will show that the famous, intractible 1959 adison-singer

More information

3. Prime and maximal ideals. 3.1. Definitions and Examples.

3. Prime and maximal ideals. 3.1. Definitions and Examples. COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

More information

ON FIBER DIAMETERS OF CONTINUOUS MAPS

ON FIBER DIAMETERS OF CONTINUOUS MAPS ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there

More information

Heather C. Smith. Education. Publications. Academic Positions

Heather C. Smith. Education. Publications. Academic Positions Heather C. Smith +1 (803) 200 1624 [email protected] people.math.sc.edu/smithhc5 My primary interests lie in combinatorics and graph theory. Current projects include topics of computational complexity,

More information